
Monika Wolfmayr- Doctor of Engineering
- Senior Researcher at JAMK University of Applied Sciences
Monika Wolfmayr
- Doctor of Engineering
- Senior Researcher at JAMK University of Applied Sciences
Efficient computational methods in hyperspectral imaging
About
25
Publications
1,037
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
127
Citations
Introduction
Current institution
Publications
Publications (25)
Lossless image compression is vital for missions with limited data transmission bandwidth. Reducing file sizes enables faster transmission and increased scientific gains from transient events. This study compares two wavelet-based image compression algorithms, CCSDS 122.0 and JPEG 2000, used in the European Space Agency Comet Interceptor and Hera m...
This book discusses the use of artificial intelligence (AI) for security purposes. It is divided into three parts: methodological fundamentals of AI, use of AI for critical infrastructure protection and anomaly detection. The first section describes the latest knowledge for creating safe AIs and using them to enhance protection. This book also pres...
This work presents the multiharmonic analysis and derivation of functional type a posteriori estimates of a distributed eddy current optimal control problem and its state equation in a time-periodic setting. The existence and uniqueness of the solution of a weak space-time variational formulation for the optimality system and the forward problem ar...
An approach to parameter optimization for the low-rank matrix recovery method in hyperspectral imaging is discussed. We formulate an optimization problem with respect to the initial parameters of the low-rank matrix recovery method. The performance for different parameter settings is compared in terms of computational times and memory. The results...
An approach to parameter optimization for the low-rank matrix recovery method in hyperspectral imaging is discussed. We formulate an optimization problem with respect to the initial parameters of the low-rank matrix recovery method. The performance for different parameter settings is compared in terms of computational times and memory. The results...
This work presents the multiharmonic analysis and derivation of functional type a posteriori estimates of a distributed eddy current optimal control problem and its state equation in a time-periodic setting. The existence and uniqueness of a weak space-time variational formulation for the optimality system and the forward problem are proved by deri...
This work presents the derivation of a model for the heating process of the air of a glass dome, where an indoor swimming pool is located in the bottom of the dome. The problem can be reduced from a three dimensional to a two dimensional one. The main goal is the formulation of a proper optimization problem for computing the optimal heating of the...
This work presents the derivation of a model for the heating process of the air of a glass dome, where an indoor swimming pool is located in the bottom of the dome. The problem can be reduced from a three dimensional to a two dimensional one. The main goal is the formulation of a proper optimization problem for computing the optimal heating of the...
In this paper, a new technique is shown for deriving computable, guaranteed lower bounds of functional type (minorants) for two different cost functionals subject to a parabolic time-periodic boundary value problem. Together with previous results on upper bounds (majorants) for one of the cost functionals, both minorants and majorants lead to two-s...
This article is devoted to presenting efficient solvers for time-periodic parabolic optimization problems. The solvers are based on deriving two-sided bounds for the cost functional. Here, we especially employ the time-periodic nature of the problem discussed in order to obtain fully computable and guaranteed upper and lower bounds for the cost fun...
This article is devoted to the efficient numerical solution of the Helmholtz equation in a two‐ or three‐dimensional (2D or 3D) rectangular domain with an absorbing boundary condition (ABC). The Helmholtz problem is discretized by standard bilinear and trilinear finite elements on an orthogonal mesh yielding a separable system of linear equations....
In this paper, a new technique is applied on deriving computable, guaranteed lower bounds of functional type (minorants) for two different cost functionals subject to a parabolic time-periodic boundary value problem. Together with previous results on upper bounds (majorants) for one of the cost functionals, both minorants and majorants lead to two-...
This paper is devoted to the efficient numerical solution of the Helmholtz equation in a two- or three-dimensional rectangular domain with an absorbing boundary condition (ABC). The Helmholtz problem is discretized by standard bilinear and trilinear finite elements on an orthogonal mesh yielding a separable system of linear equations. The main key...
This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker-Planck problem appearing in computational neuroscience. We obtain computable error bounds of the functional type for the static and time-dependent case and for different boundary condit...
This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker-Planck problem appearing in computational neuroscience. We obtain computable error bounds of the functional type for the static and time-dependent case and for different boundary condit...
In this work, new results on functional type a posteriori estimates for elliptic optimal control problems with control constraints are presented. More precisely, we derive new, sharp, guaranteed, and fully computable lower bounds for the cost functional in addition to the already existing upper bounds. Using both, the lower and the upper bounds, we...
This paper is devoted to the a posteriori error analysis of multiharmonic
finite element approximations to distributed optimal control problems with
time-periodic state equations of parabolic type. We derive a posteriori
estimates of functional type, which are easily computable and provide
guaranteed upper bounds for the state and co-state errors a...
This paper is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors a...
In this work, new theoretical results on functional type a posteriori
estimates for elliptic optimal control problems with control constraints are
presented. More precisely, we derive new, sharp, guaranteed and fully
computable lower bounds for the cost functional in addition to the already
existing upper bounds. Using both, the lower and the upper...
The paper is concerned with parabolic time-periodic boundary value problems
which are of theoretical interest and arise in different practical
applications. The multiharmonic finite element method is well adapted to this
class of parabolic problems. We study properties of multiharmonic
approximations and derive guaranteed and fully computable bound...
This paper is on preconditioners for reaction–diffusion problems that are both, uniform with respect to the reaction–diffusion coefficients, and optimal in terms of computational complexity. The considered preconditioners belong to the class of so-called algebraic multilevel iteration (AMLI) methods, which are based on a multilevel block factorizat...
- This paper presents the multiharmonic analysis of a distributed parabolic optimal control problem in a time-periodic setting. We prove the existence and uniqueness of the solution of some weak space-time variational formulation for the parabolic time-periodic boundary value problem appearing in the constraints for the optimal control problem. Sin...
This paper presents the analysis of a distributed parabolic optimal control problem in a multiharmonic setting. In particular, the desired state is assumed to be multiharmonic. After eliminating the control from the optimality system, we arrive at the reduced optimality system for the state and the co-state that is nothing but a coupled system of a...
In this note, we present some of our recent work on the multiharmonic analysis of a distributed parabolic optimal control problem in a time-periodic setting. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)