

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EA’09, March 3, 2009, Charlottesville, VA, USA.
Copyright 2009 ACM 978-1-60558-456-0/09/03...$5.00.

Representing Architectural Aspects with a Symmetric
Approach

Alessandro Garcia1, Eduardo Figueiredo2, Claudio Sant’Anna3, Monica Pinto4, Lidia Fuentes4

1Computer Science Department, Pontifical Catholic University of Rio de Janeiro, Brazil
2Computing Department, Lancaster University, United Kingdom

3Computer Science Department, Federal University of Bahia (UFBA), Brazil
4Dpto. de Lenguajes y Ciencias de la Computacion, University of Malaga, Spain

afgarcia@inf.puc-rio.br, e.figueiredo@lancaster.ac.uk, santanna@dcc.ufba.br, {pinto, lff}@lcc.uma.es

ABSTRACT
Aspect-oriented (AO) techniques are emerging as promising
approaches to enhance the representation of crosscutting concerns
throughout the software lifecycle. This includes new AO
specification mechanisms for the architectural design stage that is
at the heart of the software process. However, existing modelling
languages have failed short to provide simple and scalable
notations for visually representing the so-called “architectural
aspects”. This paper reports our ongoing effort on the definition of
a visual architecture representation for aspect-oriented systems.
Our proposal follows a symmetric approach and provides a more
expressive set of visual elements in order to: (i) provide a more
intuitive notation for expressing aspectual compositions, (ii)
facilitate a symbiotic transition of AO requirements specifications
to AO architecture designs, (iii) make the transition of
architectural descriptions to AO detailed designs more
straightforward, and (iv) improve the early detection of
modularity anomalies in aspect-oriented design. We discuss the
advantages and drawbacks of our modelling proposal in terms of
two applications from different domains.

Categories and Subject Descriptors
D.2.11 [Software Architectures]. Languages.

General Terms
Design, Languages.

Keywords
Architecture, symmetric visual notation, aspects.

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) is one of the
most eminent post-OO software development paradigms. Existing
modelling languages have been enriched with new modularization

and composition forms in order to support modular representation
of crosscutting concerns throughout the software lifecycle.
Crosscutting concerns are features that affect several modularity
units in a certain system representation. One of the main reasons
for visual AOSD models not achieving maturity is that effective
visual representations of AO software architectures have been
clearly neglected [11].

Even though a number of AO design languages [14, 9] and
requirements specification techniques [11, 14] have been
consistently defined, researchers have not paid enough attention to
visual notations for AO architectures. This leads to a number of
methodological breakdowns as software architecture provides the
link between the problem and solution models. Architectural
models also allow the communication amongst a plethora of
different stakeholders, including requirements engineers, detailed
designers, and the quality assurance team.

However, all the existing approaches for representing AO
software architectures are in a preliminary stage of research [19].
All of them try to provide visual means to express aspectual
compositions, by defining how architectural aspects affect
architecture elements in well-defined join points. Typically, they
are asymmetric extensions of the component-and-connector model
[1, 12, 13, 18], which is historically a core architecturally-relevant
system representation mechanism. By asymmetric, we mean that
all of them make an explicit distinction between aspects (i.e.,
“aspectual components”) and non-aspectual components. The
visual asymmetry in such approaches leads to a number of
scalability and expressiveness problems. It also makes the
transition of requirements to architecture specifications difficult.

This paper reports on our ongoing effort for the definition of
an expressive and intuitive notation for AO software architectures.
This work is partially funded by the AOSD-Europe project, and
the contributions are twofold: (i) a discussion of some limitations
in existing asymmetric languages for modelling AO architectures
(Section 2), and (ii) the provision of an innovative symmetric
notation to visually represent such designs (Section 3). We also
discuss a preliminary evaluation we performed in the context of
two case studies (Section 4). Section 5 concludes this paper.

2. ISSUES ON THE VISUAL NOTATION OF
ARCHITECTURAL ASPECTS
This section reports on some problems we faced when applying
existing asymmetric AO architectural notations in several projects
[6]. The goal in these projects was to achieve visual
representations of AO architectures that were: (i) easy to

understand in terms of where architectural aspects occur and
which forms of composition with other architectural components
are used, (ii) straightforwardly translating aspect-oriented
concepts commonly supported by multiple AO architecture
description languages (ADLs) [2], (iii) supporting appropriate
high-level modularity measurements, and (iv) smoothly mapping
requirements-level aspects to architecture-level aspects. We
should highlight that not all the problems discussed later in this
section are necessarily intrinsic to asymmetric approaches.
The HW Architecture. The Health Watcher (HW) system is a
real-life Web-based information system [5] that supports the
registration of complaints to the health public system. It is used as
our running example throughout this paper. Figure 1 illustrates a
partial graphical representation of the HW architecture, which is
based on a set of components mainly realizing an instance of the
layered style. It is composed of seven architectural components;
three of them are layers: (i) the GUI (Graphical User Interface)
component provides a Web interface for the system, (ii) the
Business component defines the business elements and rules, and
(iii) the Data component addresses the data management by
storing the information manipulated by the system.

The aspect-oriented HW architecture also contains four
architectural aspects: Persistence, Distribution, Concurrency and
Error Handling (EH). For instance, the Distribution aspectual
component externalizes the system services at the server side and
supports their distribution to the clients. Figure 1 shows an
asymmetric representation of the HW architecture, based on the
AOGA language, which we chose to illustrate the limitations of
existing visual notations and respective meta-models [19]. In
AOGA, aspects are aspectual components that are represented by
UML components with a diamond in the top.
Problem 1: Expressiveness Impairments. Since AOGA and other
asymmetric notations create a specific symbol to represent an
aspect, it is not possible to smoothly use the same notation for a
component that does not play the role of an aspect in a context,
but not in others. This expressiveness bottleneck also hinders
reuse of component representations across different projects,
when the target component is an aspect in one architectural
design. Such a dichotomised notation gives the wrong impression
that a certain aspectual component cannot assume different roles
defined by, for example, different styles. For instance, in one of
the HW releases [16], the Distribution component played the role
of being both an aspect and a layer. With an asymmetric
architectural notation, it would not be obvious to notice that
Distribution was free to take part in other collaborations and play
different architecture stylistic roles, i.e. “being a layer”.

Problem 2: Inability to Represent Heterogeneous Aspectual
Compositions. We also observed that in existing approaches [19],
there are not many visual ways to graphically specify and
distinguish different forms of collaborations between non-
aspectual and aspectual components. For example, there is no
possibility of clearly communicating the sequencing of a
crosscutting composition; i.e. the order (e.g. before, after, or
around) in which the aspect computation will affect the base
computation. In general, architects cannot easily check the
composition sequencing at a glance, because they are only
supported in the expanded view of component interfaces [19] and,
even worse, it is textually declared together with the crosscutting
service. Fig. 1 illustrates this problem in the context of the
TransactionControl interface. Also, in asymmetric notations the
sequencing is typically associated with a service in a certain
aspect interface, which in turn also reduces the component
specification reusability. This also might cause problems when the
same service is involved in different aspectual compositions,
thereby affecting the target join points in distinct orders. Finally,
some of these notations (AOGA is an example) typically use the
same symbol to represent different composition mechanisms, even
though they have different architecturally-relevant semantics. For
example, crosscutting interfaces and relationships are used to
denote both behaviour-based (pointcut-advice-like) and structural
compositions (such as inter-type declarations or structure merges).
Problem 3: Limited Scalability. In the projects [6, 16] where we
used existing asymmetric architecture notations, a number of
scalability issues were detected. Some examples are discussed in
the following. First, they do not scale when a crosscutting
interface affects several join points in the architecture, even via
the same aspect interface. Fig. 1 illustrates this problem for the
ConcurrencyManager interface that affects all interfaces of the
Data component. Actually, this is a generic problem in AO design
notations as crosscutting is a kind of relationship that often
implies a plethora of links between the aspect and the affected
elements. In other words, such notations suffer from not having
visual resources to quantify such links. Second, they neither
support graphical capabilities for representing certain inter-aspect
dependencies. Also, they are typically textual and alternatively
based on the use of stereotypes [19]. Even though AOGA has a
stereotype dedicated for annotating aspect precedence, the
granularity is aspect-aspect level and cannot be tailored to certain
compositions or particular architectural join points, such as a
particular service.
Problem 4: Hindering Architecture Modularity Assessment. A
direct consequence of problems 2 and 3 is that architects are not

TransactionControl

_beginTransaction
commitTransaction_

<<expanded view>>

Address
Repository

GUI

HWFacade InitFacade

Complaint
Repository

Disease
Repository

Symptom
Repository

Employee
Repository

HealthUnit
Repository

Speciality
Repository

BUSINESS

DATA

Persistence

Distribution

Concurrency
Transaction

Control InitPersistence

Concurrency
Manager

Timestamp
Control

Legend
Component Aspectual Component

Crosscutting InterfaceInterface

Association Crosscutting Relationship

Legend
Component Aspectual Component

Crosscutting InterfaceInterface

Association Crosscutting Relationship

Remote
Services

EH
Default

handlers

<<precedes>>

Figure 1. Health Watcher architectural design with AOGA

able to effectively assess modularity properties of an AO
architecture design. Differently from current practice in UML 2
[17], where different kinds of connectors (delegators,
dependencies, or assemblies) are supported by the notation and
the underpinning meta-model, existing AO architecture notations
are not yet mature to serve as expressive artefacts to support early
modularity assessment. We experienced this problem in
architectural assessment of 3 case studies [6, 16]. For instance,
because the differences in the representation of certain
architectural aspect compositions are not made explicit (problem
3), computation of specific architectural metrics such as afferent
and efferent couplings [6] is impaired.
Problem 5: From Requirements to Architecture. From our
experience defining a mapping process and guidelines [7, 8] to
relate AO requirements (specified using RDL [10]) and AO
architecture (specified using AO-ADL [3]), we learned that a 1-to-
1 mapping is not possible. Instead, the same crosscutting concern
can be mapped either to a non-aspectual or to an aspectual
component, or even to an architectural decision depending on the
application context. An example is Distribution that, as mentioned
before, can play the role of being an aspect or a layer depending
on the HW release. The problem is that asymmetric visual
notations provide different abstractions to represent components
and aspects and, as a consequence, force us to make the decision
of mapping requirements to a component or to an aspect as part of
the mapping process itself. This is neither necessary, as the
decision can be postponed until a refined version of the mapped
architecture, nor desirable, as emerging AO requirement proposals
are symmetric and do not make such a distinction.

3. A SYMMETRIC VISUAL NOTATION
This section presents our visual notation in terms of: (i) its meta-
model (Section 3.1) with the key architectural abstractions
supported, and (ii) a set of graphical elements to allow the
representation of aspectual compositions in component-and-
connector models. Both meta-model and graphical elements were
defined to address the limitations discussed in Section 2.

The proposed notation is an evolution of our previous work
[12, 19], rather than a totally new approach. It has being
systematically derived from: (i) a previous systematic analysis of
four modelling approaches, namely TranSAT [1], PCS
Framework [18], AOGA [12], and CAM of DAOP-ADL [13], (ii)
a primitive visual notation defined for an AO extension to the
ACME language [15], (iii) an analysis of abstractions consistently
appearing across existing ADLs, such as AO-ADL [3],
AspectualACME [15], DAOP-ADL [13], and others [2]. The
derivation of our current approach involved the “transformation”

of a previous asymmetric notation [19], unified from the 4
approaches mentioned above in (i), into a new symmetric
notation. Hence, Section 4 evaluates the benefits and drawbacks
obtained in this transformation process.

3.1. Meta-Model
Figure 2 presents our notation meta-model. Our visual notation
extends the set of architecturally-relevant abstractions and
respective graphical elements of UML 2 [17], such as services,
components, interfaces, and connectors. In fact, we use UML 2 as
the basis without modifications to its existing visual elements. As
a result, existing UML architectural models can be
straightforwardly refactored to accommodate architectural
aspects. It is not the goal of this paper to discuss the integration of
our notation’s meta-model and UML 2 meta-model. Also, for the
sake of simplicity we omitted from the meta-model (Fig. 2) some
conventional architectural concepts in UML 2, such as ports.
From this integration perspective, the discussion here is limited to
evaluate on why specific UML connectors, with associated
graphical representations, are not appropriate to represent a
crosscutting composition (Section 3.3).

The meta-model focuses on the definition of new aspect-
oriented concepts and their relations. The meta-model (Fig. 2)
subsumes 3 main categories of elements: (i) components and
interfaces (Section 3.2); (ii) aspectual connectors (Section 3.3);
and (iii) crosscutting relationships (Section 3.4).

3.2. No Specialized Components and Interfaces
A component is considered a modularity unit within a system
architecture that has one or more provided and/or required
interfaces (potentially exposed via ports). A component specifies
a formal contract of the services that it provides to its clients and
those that it requires from other components or services in the
system in terms of its provided and required interfaces. Its
internals are hidden and inaccessible other than as provided by its
interfaces. Such access constraints also apply to components
playing the role of architectural aspects, i.e. those ones involved
in a crosscutting collaboration with other components (Section
3.3). If an architectural aspect needs to know any internal detail of
a certain component, such a detail needs to be made available at
one of its interfaces.

The meta-model is symmetric in the sense that it does not
define an explicit abstraction for an aspect. Both crosscutting and
non-crosscutting concerns are represented by components. The
distinction is made at the connector level (Section 3.4), i.e. it is
the way two or more components are composed that denote that a
crosscutting composition is taking place. No new “aspectual”

Component

Relationship

Crosscut

Precedence

1..*

Interface

Required
Interface

Provided
Interface

Complex
Component

1..*

Binding
0..*

Sequencing

Connector RoleBase Role

Crosscutting
Role

1..*

1..*

1

1

Quantifier

1..*

0..*

Scope

Join Point Systemic

1..*

XOR

Components & Interfaces
Crosscutting

Connectors

1..*

1

1

1..*

1..*

1..* 1

0..*

1

1..*

1
1..*

1..*1..*

0..*

Before

After

Around

Before

After

Around

Aspectual
Connector

Figure 2. Meta-Model of the Symmetric Visual Notation

component interface is defined in the meta-model as we believe
that “aspectual components” also offer services and expose events
or attributes, like any other component.

3.3. Aspectual Connectors
Our position is that a minimum of new abstractions and respective
graphical elements should be supported by the visual notation.
The reason is that architectural description languages, whether
textual or visual, were conceived with the goal of being agnostic
to specific architectural styles, such as layered and pub-sub
architectures. Hence, architecture design languages should be kept
as small as possible, while accommodating support for
representing architecture-relevant aspects.

In fact, UML 2 and other component-and-connector notations
do not create specific graphical elements to denote that a certain
component is a layer, a publisher, or an aspect. This visual
distinction would be very counter-productive in large architecture
designs since it is common to find single components playing
multiple roles defined by different architectural styles. As
discussed in Section 2, the Distribution component (Fig. 1) is an
example of this case in the HW architecture. Also, based on our
experience, it is becoming increasingly clear that the key
difference of an aspect-oriented architecting style is the
composition semantics [2].

Hence, the visual representation of AO software architectures
should provide support for the possible architecture-level
crosscutting compositions observed in our case studies (Section
2). This should be rooted at the traditional notion of connectors
(and attachments) of the software architecture discipline. The
reason is that connectors are the locus of composition in
architectural design [2]. As a result, our visual notation supports
the notion of aspectual connectors (Figure 3). This emphasis on
aspectual connectors is not currently supported by the investigated
visual notations for aspect-oriented software architectures [1, 12,
13, 18]. However, it is consistently becoming a common practice
in recent AO textual description languages [15, 3]. Before
describing how we represent aspectual connectors, we discuss
first why conventional connector types, available in UML 2, are
not appropriate to capture the notion of crosscutting compositions.

Connectors can define a wide range of composition styles,
ranging from simple dependencies to complex collaboration
protocols. For example, UML 2 defines three specialized
connectors for interlinking components, namely dependencies,
assemblies, and delegators. Different visual elements are
associated with each of them. Crosscutting compositions cannot
obviously be represented by dependencies; hence, we concentrate
our discussions on assemblies and delegators.
Assembly vs. Aspectual Connectors. We cannot rely on assembly
connectors to represent crosscutting compositions because they
imply a simple relation between required and provided ports [17].
In addition, an assembly connector must only be defined from a
required interface (or port) to a provided interface (or port), which
violates a typical composition property of crosscutting
collaborations [2]: an aspectual component and affected
components can be linked through both their provided interfaces.
Delegation vs. Aspectual Connectors. In addition, we cannot
reuse the notion of delegation connectors. They have a number of
modelling constraints that do not match the requirements for
aspectual compositions at the architectural level. The main
problem is that they subsume a “forwarding” semantic. A
delegation connector is a connector that links the external contract

of a component (as specified by its ports) to the internal
realization of that behaviour by the component’s parts [17].
Besides, a delegation connector must only be defined between
used Interfaces or Ports of the same kind (e.g., between two
provided interfaces or between two required interfaces).
Aspectual compositions involve the identification of several join
points (e.g. affected interfaces or services) to be connected to the
component encapsulating a “crosscutting concern”. They also
specify composition operators on when or how those points are
being connected with other services provided by components
encapsulating a “crosscutting concern”.

Finally, architecture-level crosscutting compositions require
that aspectual connectors might actuate directly over other
connectors. Most architecture representation languages do not
grant this property to connectors [2], which reinforces the need for
a specialized type of connector. Fig. 3 shows our visual
representation for aspectual connectors. The use of the stereotype
is optional and not motivated. The aspectual connector is a
component-like graphical notation with elements to specify the
“crosscutting collaboration” amongst involved architectural
elements. A simpler notation (cf. Fig. 5) is available in case
connector internals are not relevant.

crosscutting roles

<<component>>

<<aspectual connector>>

base roles

around crosscutting
relationship

<<component>>

before after

Figure 3. Notation for Aspectual Connectors

3.4. Base and Crosscutting Roles
Aspectual connectors (Figure 2) are basically formed by base and
crosscutting roles (Figure 3). These roles consist of two types of
connector’s interfaces, and define the roles the connected
components are playing in a crosscutting composition. A
crosscutting role defines which component is playing the role of
an “aspect” in the architectural model, i.e. which component is
encapsulating a crosscutting concern and needs to affect other
interfaces. Crosscutting roles are represented by triangles “cutting
across” the connector boundaries. Base roles are associated with
different join points affected by the components attached to the
crosscutting roles. They are represented by small rectangles in the
opposite extreme of an aspectual connector (Figure 3).

Crosscutting relationships define how the connectors and
components are attached. In another words, they are equivalent to
attachments in ADLs (ACME and xADL), and their visual
representation is a dashed arrow. The arrows associate
crosscutting or base roles with component interfaces. In the
presence of multiple base and crosscutting roles, the dashed
arrows can also cut across the aspectual connector representation
in order to show how base and crosscutting roles are interlinked.
This situation is illustrated in Fig. 4, which is a symmetric visual
representation of the HW system shown in Fig. 1 (Section 2). The
DataControl connector has multiple roles which are bound
through the dashed arrows.

3.5. Pointcut and Sequencing Specifications
The set of join points of interest (i.e., pointcuts) in a certain
crosscutting composition are conventionally indicated by visual

(and sometimes, textual) elements associated with a crosscutting
relationship. When a component interface is touched by an arrow,
it means that one or more of the interface services are affected by
an aspectual connector. If a precise indication of which service(s)
are being connected, the name of the service(s) is attached to the
arrow using stereotypes. Fig. 4 illustrates an example of specific
services being bound through the Synchronization connector. In
addition, whenever it is required, a sequencing operator can be
associated with a crosscutting relationship. It specifies when or
how the connector is affecting the service(s). By now, the notation
includes graphical elements for three sequencing operators:
before, after, and around (Figure 3). However, other operators
could be used. Some concrete examples for the HW architecture
are presented in Figure 4.

3.6. Quantification and Aspect Interaction
Our visual notation provides support for specifying
quantifications, i.e. describing in a single place which elements a
certain aspectual connector is affecting. The goal is to overcome
the problem 3 discussed in Section 2, i.e. visually support
quantification and reduce the number of arrows for crosscutting
relationships. An example is presented in Figure 4: the
Synchronization connector affects all the Data interfaces.

The notation used is: (i) a set of multiple grouped dashed
arrows pointing to the direction of the affected elements, plus (ii)
a label with an expression indicating more precisely a property
that matches the affected elements. Fig. 4 shows that the
Synchronization connector is affecting all interfaces of the Data
component. We defined specific visual elements to represent
certain recurring quantifications that we observed in our study
(Section 2), such as: “all the provided interfaces in…” and “all the
required interfaces in…”. Due to space limitation, we cannot
present the visual notations for all of them here.

The visual notation also provides elements for addressing
aspect interactions (problem 3). Fig. 4 illustrates a scenario where
we specify that the same aspectual connector is affecting (in an
after fashion) the same join point, i.e. the interface HWFacade. As
a result, two diamonds are on the top of this interface. However,
priority is given to the element that is associated with the diamond
closer to the interface circle. It means that TransactionControl has
precedence over InitPersistence. The same semantics applies to
before and around operators; in the case of two or more around
operators actuating over the same join points, inner circles have
priority over the enclosing ones. Graphical elements are also used
to represent XOR and OR relationships.

4. EVALUATION
This section summarizes the evaluation of the proposed visual
notation (Section 3) using two case studies: (i) the complete
specification of the HW architecture (Section 2), and (ii) the
definition of an auction system’s architecture based on AO
requirements. In particular, we tried to observe to what extent the
visual notation addressed the challenges discussed in Section 2.

First, the expressiveness problems were solved since we do
not have a separate visual element for representing aspects
(problem 1). Moreover, it is still straightforward to identify the set
of components playing the role of aspects in the architectural
design: it consists of all elements bound to crosscutting roles (the
triangles in the aspectual connectors). Our visual notation also
allows more intuitive and clear representations of different kinds
of aspectual compositions (problem 2). For instance, the symbols
used for before, after, and around have demonstrated to be a nice
addition for both communication and measurement purposes. The
sequencing operators can be often inferred from use cases and/or
AO requirements documents. They are useful to distinguish
different forms of coupling early in the design process, thereby
facilitating application of AO architecture metrics [6].

It is true that some points in the architecture model might
aggregate a number of visual elements, such as join points that are
shared by multiple aspectual connectors. For example, like the
two interfaces between GUI and Business layers (Fig. 4).
However, it causes also a desirable effect: the architects and
programmers should pay special attention to this part of the
architecture since this is a point where multiple “aspects” interact.
Visual means to express quantification were very useful in the
HW architecture, where four cases of broadly-scoped aspectual
connectors were identified. They were associated with
synchronization, persistence, and distribution, and generic error
handling issues. Hence, scalability-related impairments have been
substantially reduced (problem 3). When more complex aspectual
connectors were required, we exploited the resource of internal
representations available in UML.

Even though the resulting visual language is much richer than
the original asymmetric notation [19], a number of simplifications
were also achieved. The notation meta-model no longer has
abstractions and visual elements dedicated for aspects, aspect
interfaces (i.e. crosscutting interfaces in the aspectual
components), advice, and inter-type declarations. These elements
are also present in almost all the asymmetric notations [1, 12, 13,
18] we analyzed. In addition, because we support the specification
of multiple forms of crosscutting compositions, it also facilitates

Address
Repository

GUI

HWFacade InitFacade

TransactionControl Complaint
Repository

Disease
Repository

Symptom
Repository

Employee
Repository

HealthUnit
Repository

Speciality
Repository

BUSINESS

DATA

D
at

aC
on

tro
l

InitPersistence

RemoteAccessDISTRIBUTION

Timestamp

CONCURRENCY

ConcurrencyManager

PERSISTENCE

TimestampControl

Remote
Services

Synchronisation

EH ClientExceptions
Default

Handlers

<(Concurrency. synchronize
all provided interfaces of Data)>

Figure 4. Symmetric Representation of the Health Watcher Architecture.

the transition of architectural design to detailed design. It is easier
to identify which slice of the component boundaries is likely to be
translated to a design or programming aspect.

Finally, we also tried to analyze whether benefits or
drawbacks were obtained from the viewpoint of requirements-
architecture transitions (problem 5). The symmetric visual
notation was used in the context of an end-to-end methodology
for AOSD [8, 9]. It has the objective of defining a single approach
that, starting from aspect-oriented requirements, results in an
aspect-oriented architecture specification [3]. The Auction System
case study is used in [8] in order to illustrate the integrated
approach. We omitted requirements and architectural specifica-
tions due to lack of space. More details can be found in [7-8].

A typical concern in the auction system case study is security,
with a requirement specifying that “Users have to log on to the
auction system for each session”. Following a symmetric
decomposition model, security, user and auction are modelled at
the requirements level using the same element (concern,
viewpoint, goal). The requirement used as example states that the
security concern is related to the interactions among the user and
the auction concerns, modelling a user that needs to be
authenticated before buying and selling in an auction. During the
mapping from requirements to architecture these concerns are
mapped to components in the visual notation. Figure 5 shows the
User, the Auction and the Security components. The ‘log-on’ verb
in the requirement of the security concern is mapped to an
operation of a provided interface of the Security component.

In the Auction System analysis, a crosscutting influence has
been identified between security and the interaction among users
and auctions, both at the requirements and at the architecture
levels. Notice, however, that using the symmetric visual notation,
there is no impediment to use Security as a non-aspectual
component in other architectures. Thus, the Security component
can be composed either as a non-aspectual or as an aspectual
component with no difference in its component specification.

The decision of the role played by a component is taken during
the specification of the connectors. Concretely, in the
UserAuctionSecurity connector in Figure 5, the User and Auction
components are connected to base roles of the connector,
participating in the interaction as non-aspectual components, and
the Security component is connected to a crosscutting role of the
connector, participating in the interaction as an aspectual
component. Notice that the crosscutting behaviour modelled by
the Security component can be any operation defined as part of its
provided interface (log-on interface in Figure 5). The kind of
binding (sequencing in section 3.5), ‘before’ in this example, is
also represented in the visual notation, as shown in Figure 5.

USER
log-on

SECURITY

UserAuctionSecurity

AUCTION
buySellService

Figure 5. Mapping of the security non-functional
requirement to the symmetric visual notation

5. FINAL REMARKS
Even though some ADLs (e.g. DAOP-ADL, AspectualACME,
Fractal) have been proposed, they focus on the provision of a
textual description. This paper presented a symmetric visual
notation for representing AO software architectures. In our case
studies, we observed that most of the expressiveness and

scalability problems identified in existing asymmetric notations
were addressed by our symmetric modelling approach.

As a next step, we are planning to enrich the visual notation
with elements to express structural aspect-oriented compositions.
In fact, this is a major limitation that we identified in the current
visual notation. In an industrial-strength case study [4], we
observed that more structural composition operators, such as
merge and unification are also required in architecture
specifications. We have been working on the definition of new
operators as extensions to the xADL language [4], but have not
reflected much about visual representation for such operators.
However, we learned that the connector abstraction is potentially
not the best abstraction to capture such structural compositions, as
connectors have been historically explored for behavior-
dependent architecture compositions.

6. REFERENCES
[1] O. Barais et al. TranSAT: A Framework for the Specifcation
of Software Architecture Evolution. Ws on Coordination and
Adaptation Techniques for Software Entities, ECOOP, 2004.
[2] T. Batista et al. Reflections on Architectural Connection:
Seven Issues on Aspects and ADLs. Early Aspects at ICSE, 2006.
[3] M. Pinto, L. Fuentes. AO-ADL: An ADL for describing
Aspect-Oriented Architectures. Early Aspects at AOSD, 2007.
[4] N. Boucke, A. Garcia, T. Holvoet. Composing Architectural
Structures in xADL. Early Aspects at AOSD, 2006.
[5] S. Soares, E. Laureano, P. Borba. Implementing Distribution
and Persistence Aspects with AspectJ. Proc. of OOPSLA, 2002.
[6] C. Sant’Anna, C. Lobato, C. Chavez, A, Garcia, C. Lucena.
On the Quantitative Assessment of Modular Multi-Agent
Architectures. NetObjectDays, 2006, Germany.
[7] R. Chitchyan, M. Pinto, A. Rashid, L. Fuentes. COMPASS:
Composition-Centric Mapping of Aspectual Requirements to
Architecture. Trans. on AOSD, vol. 4, pp. 3-53, 2007.
[8] R. Chitchyan et al. From Aspectual Requirements to Design.
AOSD-Europe Newsletter, 2nd edition, Jan 2007.
[9] R. Pawlak et al. A UML Notation for Aspect-Oriented
Software Design. Aspect Oriented Modelling at AOSD, 2002.
[10] R. Chitchyan et al. Semantics-based Composition for Aspect-
Oriented Requirements Engineering. Proc. of AOSD 2007.
[11] R. Chitchyan et al. Survey of Analysis and Design
Approaches, AOSD-Europe, Deliverable D11, 2005.
[12] U. Kulesza, A. Garcia, C. Lucena. Towards a Method for the
Development of Aspect-Oriented Generative Approaches. Early
Aspects at OOPSLA, 2004, Vancouver, Canada.
[13] M. Pinto, L. Fuentes, J. Troya. DAOP-ADL: An Architecture
Description Language for Dynamic Component and Aspect-Based
Development. LNCS 2830, 118-137, 2003
[14] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and
Design: the Theme Approach. Addison-Wesley, 2005.
[15] A. Garcia et al. On the Modular Representation of
Architectural Aspects. European Ws. on Software Architecture,
EWSA, 2006.
[16] P. Greenwood et al. On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study. Proc.
of ECOOP 2007.
[17]UML www.omg.org/technology/documents/formal/uml.htm
[18] M. Kande. A Concern-Oriented Approach to Software
Architecture. PhD Thesis, Swiss Fed. Inst. Tech. (EPFL), 2003.
[19] I. Krechetov, B. et al. Towards an Integrated Aspect-Oriented
Modeling Approach for Architecture Design. AOM at AOSD’06.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /SymbolMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

