
Reserved, On Demand or Serverless:
Model-based simulations for cloud budget planning

Edwin F. Boza∗, Cristina L. Abad∗, Mónica Villavicencio∗, Stephany Quimba∗, Juan Antonio Plaza†
∗Escuela Superior Politécnica del Litoral, ESPOL. Campus Gustavo Galindo Km 30.5 Vı́a Perimetral, Guayaquil, Ecuador.

†Dátil. Av Miguel Alcı́var, Edificio Torres del Norte, Torre A, oficina 308, Guayaquil, Ecuador.
eboza@fiec.espol.edu.ec, cabadr@espol.edu.ec, mvillavi@espol.edu.ec, struquim@espol.edu.ec, juanantonio@datil.co

Abstract—Cloud computing providers offer a variety of pricing
models, complicating the client decision, as no single model is
the cheapest in all scenarios. In addition, small to medium-
sized organizations frequently lack personnel that can navigate
the intricacies of each pricing model, and as a result, end up
opting for a sub-optimal strategy, leading to overpaying for
computing resources or not being able to meet performance goals.
In this paper, we: (1) present the results of a study that shows
that, in Ecuador, a considerable percentage of companies choose
conservative pricing strategies, (2) present a case study that shows
that the conservative pricing strategy is suboptimal under certain
workloads, and (3) propose a set of models, a tool and a process
that can be used by tenants to properly plan and budget their
cloud computing costs. Our tool is based on M(t)/M/∗ queuing
theory models and is easy to configure and use. Note that, even
though we are motivated by our study of adoption of cloud
computing technologies in Ecuador, our tool and process are
widely applicable and not restricted to the Ecuadorian context.

Keywords—Cloud, reserved, on-demand, serverless, budget,
simulation, queuing theory

I. INTRODUCTION

The term cloud computing encompasses a myriad of ser-
vices available to tenants, including—but not limited to—
storage services like Dropbox, productivity suites like Office
365, computing offerings like those of Amazon Web Ser-
vices (AWS), Microsoft Azure, Google cloud services and
Rackspace, among others. The term can also include private
clouds, or in-house datacenters where virtual machines (VMs)
are provisioned on-demand to different organizational units.

In this paper, we concentrate on utility computing offerings,
which include what providers often refer to as Infrastructure-
as-a-Service (IaaS) and Platform-as-a-Service (PaaS). We bun-
dle these types of offerings together because there is no clear
line where to make the division between the two categories [4].
In addition, we also include in our analysis the recent devel-
opment of serverless computing, which lets the tenant define
functions to be executed as a response to client requests [14].
The reason to consider serverless computing in the same
category as server-based offerings is that—in essence—both
are computing resources. Furthermore, many microservices
for web applications can easily be implemented using any
of these types of cloud services (i.e., on VMs, containers,
or as functions executed on demand). In short, even though
“the cloud” encompasses many types of computation, storage,

communication, and software services [4], in this paper we
focus on the computing part of cloud computing.

Organizations are increasingly adopting cloud computing
due to benefits like reducing infrastructure costs, avoiding
over-provisioning, scaling applications to handle variable de-
mand, analyzing Big Data at a low cost, etc. [2], [5], [23].
These benefits are particularly attractive to small and medium-
sized enterprises (SMEs), which can offer innovative products
or services without large investments [11], [22], [25].

The main enabler of these benefits is the pay-as-you-
go or utility model, in which you pay only for consumed
resources. Examples include bid-based VMs, on-demand VMs
or containers that are launched and released depending on
tenant-defined elasticity rules to adapt to client demand, and
functions that are executed only when a client invokes them.

Sadly, emerging markets—potential big winners of the
cloud—have been slow in adopting it; and when they do, they
tend to opt for the less flexible pricing models [12].

We are concerned that flexible cloud pricing options are not
being sufficiently embraced, leading to overpaying when the
client demand is variable (as is the case in most industries).
We present a case study that shows that a conservative pricing
strategy can be suboptimal under dynamic workloads, leading
to significant increase in costs (39.5× in our example).

We then propose a tool and process that can be used
by companies to find out which cloud pricing model best
suits their needs. Our tool is based on M(t)/M/∗1 queuing
theory models and is easy to configure and use. Our approach
provides a significant improvement over the current cloud
budgeting process for small and medium enterprises [10], in
which cost is estimated using simple math or online budgeting
apps. In contrast, our tool provides better budget estimation
via the support of dynamic workloads and generation of
performance metrics; hence, the choice of a pricing model can
be guided by exploring the cost versus performance tradeoff.

This paper is structured as follows. In Section II, we
describe pricing models offered by cloud providers. In Section
III, we present an overview of the adoption of cloud computing
in Ecuador, focusing on the preferred payment models. In
Section IV, we show the importance of choosing the right
cloud pricing model. In Section V, we propose a set of models,

1Expressed in Kendall’s notation, which describes the arrival process, the
service time distribution and the number of servers, as detailed in Section V.978-1-5386-3894-1/17/$31.00 c© 2017 IEEE

TABLE I: Pricing models supported by three cloud providers.

Pricing model Amazon Microsoft Google
AWS Azure Cloud Platform

Reserved VMs × × ×
On-demand VMs × × ×
Bid-based VMs × ×
Serverless computing × × ×

tool and process to help users properly plan and budget their
cloud infrastructure. In Section VI, we discuss related work.
Finally, we present our conclusions in Section VII.

II. BACKGROUND: CLOUD PRICING MODELS

In this section, we describe the pricing models offered by
Amazon Web Services, Microsoft Azure and Google Cloud
Platform, for their different computing offerings. Table I
indicates the pricing models supported by each provider2.

On-demand VMs: On-demand VMs or instances, are VMs
requested as needed, where only the used time is paid. They
are suitable for short-term or new applications, unpredictable
workloads, and for tenants wanting to minimize costs.

Reserved VMs: Provider gives preferential pricing based
on long-term commitments or upfront payments. Suitable for
stable applications or when provisioning for peak load.

Bid-based VMs: Tenant can define its capacity needs and
the maximum per-hour price. Provider assigns resources when
they are available at the specified price, thus providing an
extreme way to get a regular VMs at the lowest price.

Serverless computing: The Function-as-a-Service (FaaS)
model hides platform concerns from tenants, allowing them
to run code in response to client requests. Tenant-defined
functions are executed as needed; provider charges per request.

III. ADOPTION OF CLOUD PRICING MODELS IN ECUADOR

In this section, we report on an ongoing study of cloud
computing adoption in Ecuador3, with regard to the payment
models that Ecuadorian organizations use or plan on using.

Methodology: We designed a survey instrument with 29 ques-
tions in three sections: (1) information about the interviewee;
(2) information about the organization; and (3) knowledge
and state of adoption of cloud computing in the surveyed
organization. A pilot test enabled us to improve the wording
and sequence of the questions. The improved survey instru-
ment was input into a LimeSurvey server and distributed via
email. We solicited expanded feedback from 25 organizations
via personalized emails, phone calls, or in-person interviews.
The list of potential respondents was obtained from three
sources: the superintendency of companies, ESPOL’s Career

2We do not discuss the pricing of renting hosts (vs. VMs) because this is
only supported by one cloud provider, and its use and pricing is similar to
that of VMs. The difference is in issues regarding licenses and performance.

3We analyzed the results obtained up to Jun 23, 2017.

TABLE II: Demographic profile

Organization Size
Micro (< 10 employees) 25.00%
Small (10-49 employees) 18.48%
Medium (50-199 employees) 21.74%
Large (200+ employees) 34.78%

Organization Age
< 5 years 22.83%
6-10 years 15.22%
11-15 years 14.13%
16-20 years 16.30%
21-25 years 9.78%
25+ years 21.74%

Organization Sector
Information and communication 34.78%
Financial and insurance activities 11.96%
Education 8.70%
Wholesale and retail trade 6.52%
Construction 4.35%
Transportation and storage 4.35%
Administrative and support service activities 4.35%
Agriculture, forestry and fishing 3.26%
Professional, scientific and technical activities 3.26%
Other 16.48%

TABLE III: Pricing models vs. organization size

Fixed On-demand Don’t pay Don’t know Total
Micro 9 9 3 2 23
Small 5 11 1 0 17
Medium 8 4 3 5 20
Large 12 8 3 9 32
Totals 34 32 10 16 92

Center, and the Ecuadorian Software Association; from them
a random sample of 300 companies was taken to invite them
to participate in the study.

Results: We ran the survey from May through June 2017 and
obtained 92 responses. More than 40% of the participating
organizations are micro or small enterprises. The demograph-
ics of this sample are presented in Table II. Regarding the
pricing model, we can observe that micro and small enterprises
prefer on-demand models (per use) while medium and large
enterprises prefer the fixed one (See Table III). It is worth
mentioning that 57.61% of the participants provided additional
information justifying their payment model selection.

Respondents who selected fixed payment for reserved or
fixed service justified their decision based on the fact that
an “annual budget must be approved at the beginning of
the fiscal year, allowing the organizations to deal with fixed
monthly payments”. This seems to indicate that they are used
to paying fixed values for the IT services they receive (i.e.
licenses, maintenance, software development, Internet, etc.).
Furthermore, preferring annual contract-based pricing may
indicate a lack of clarity on the cloud’s financial model [12].

On the other hand, respondents that indicated that their
organizations were comfortable using on demand models,
provided justifications that demonstrate a careful analysis of
this decision, based on their organizational needs as well as
a solid understanding of the benefits of the pay-as-you-go
approach. Some examples of the answers provided are:

• “Our business is project-based (or client-based); payment
must be in accordance to this model” (2 respondents).

• “We have periods of peak or seasonal activity; we need
more resources at peak times” (6 respondents, though
one said they would consider changing to fixed monthly
payments if their needs were to become more constant).

• “We like to pay only for what we use” (11 respondents).
In addition, one client indicated that even though they

believe in the pay-as-you-go model, they have a cap on their
cloud expenses, regardless of their client demand.

Finally, less than 2% of the respondents mentioned the use
of serverless computing (lambdas or functions).

Takeaway 1: A considerable percentage (36.96%) of Ecuado-
rian organizations opt for fixed monthly payments instead of
on-demand models, to facilitate annual budgeting.

IV. CASE STUDY

In this section we show that choosing the wrong type of
cloud computing offering can lead to increased costs.

Consider a file compression service that can be consumed,
for example, by: (1) A service that bundles invoice files
(e.g., PDF, XML and verified XML), such as those used by
Ecuadorian companies to fulfill requirements of the Internal
Revenue Service (SRI), and sends them to clients via email.
(2) A learning platform used by university students to submit
project files that are compressed into a single bundle. Or,
(3) the call detail records (CDR) reporting module of an IP
switching system that compresses files for download.

We chose the first motivating example for our case study. In
this example, the invoices are converted to the proper formats
and compressed promptly after being entered into the system.
These compressed files are later consumed by an email invoice
delivery service and a web interface (which shows them to the
clients as files that can be downloaded for their convenience).

We are interested in the workflow of the compression
service, which—following industry best practices—can be
implemented as follows. First, the compression request is
inserted into a message queue. Next, a consumer service
performs the compression work. The exact details of how this
workflow is implemented depend on the computing service
being used. Lets consider two possible scenarios: (a) Using a
fixed number of VM worker nodes, or (b) using on-demand
worker functions. Figures 1a and 1b depict these architectures.

Based a real workload from Datil, a company that has an
invoicing-as-a-service cloud product implemented on top of
a public cloud provider, we know that the load perceived
by the system varies depending on the time of the day,
with most of the invoicing requests being processed during
retail commercial hours; non-commercial hour requests come
mainly from gas stations, which operate 24×7. Figure 2 shows
the system’s average request rate, for every hour in a day.

We calculated the annual computing cost of such compres-
sion service in a public cloud, for several pricing scenarios;
our results are shown in Figure 3b. We obtained these costs
using the Cloud Cost Calculator tool described in Section V.

ConsumerProducer
Queue

Messaging

(a) Using a fixed number of virtual machines

Producer
Queue

Messaging

Workers

Function

Trigger Controller

(b) Using on-demand function workers

Figure 1: Cloud architectures for the compression workflow.

1

2

3

4

0 4 8 12 16 20 24

Hour slot

R
e

q
u

e
s
t

ra
te

 (
re

q
u

e
s
ts

/s
e

c
o

n
d

)

Figure 2: Average request rate, for every hour in a day.

If the service level objective (SLO) is 60 seconds, then
opting for serverless computing leads to a 97.5% cost re-
duction with respect to reserved VMs. However, the reduced
costs come at a penalty of increased latency: 1.7 s vs. 0.36 s
average latency for serverless and reserved VMs, respectively
(see Figure 3a). For the application under study, the increased
latency is not an issue, as invoice emails can be sent within
an hour after the client being invoiced, and still be within the
service level agreement (SLA) that the tenants of the invoicing
service are willing to sign. For other applications, such latency
penalty (1.26 s for 90th percentile) may be prohibitive. In that
case, the tenant could set a smaller SLO; for example, 0.33 s,
in which case the best option is on-demand VMs.

Takeaway 2: More flexible pricing models can yield signifi-
cant cost reduction at the cost of reduced performance.

V. PROPOSED SOLUTION

Our solution is threefold: First, we propose a set of models
that represent three alternatives to pay for computing resources
in the cloud. Second, we present a software tool that can
be used to estimate yearly cloud computing costs for each
pricing model. Finally, we describe an easy-to-follow process
for tenants to plan and budget their cloud computing costs.

Latency SLO: 0.33 seconds Latency SLO: 60 seconds

Reserved VMs On−Demand VMs Serverless Reserved VMs On−Demand VMs Serverless

0

1

2

3

Pricing model

R
e
q
u
e
s
t
la

te
n
c
y
 (

s
e
c
s
)

90th percentile 99th percentile

(a) Average and tail (90 and 99 percentiles) latency or time between com-
pression request being sent and the completion of the compression job.

SLOs (secs)
Pricing model 0.33 60
Reserved VMs $595.68 $297.84

Required instances 2 1

On-demand VMs $566.12 $411.72
Required instances 1.38 1

Serverless computing (Exceeds SLO) $7.54

(b) Yearly costs and required VMs for different pricing
models and SLOs (0.33 and 60 secs average latency).

Figure 3: Latency and costs obtained using our tool configured as shown in Table IV, for two SLOs: average latency within
0.33 and 60 seconds. Table shows costs and VMs required (on average) to achieve SLO.

A. Model

We use a set of M(t)/M/∗ queuing theory models with
an arrival process fully characterized by a piecewise-constant
arrival rate like the one shown in Figure 2.

In an M(t)/M/∗ model, arrivals are governed by a non-
stationary or non-homogeneous Poisson process (NSPP or
NHPP), where arrivals at time t are a function of t: λ(t).

We define λ(t) with table of λh values, where 0 ≤ h < 24.
For a time t in seconds, it follows that λ(t) = λh, where
h = t mod 3600. This lets us consider daily patterns, where
more requests are received during certain times of the day.

We chose to model arrivals with an NSPP because this
is simple enough to allow the user to incorporate dynamic,
non-Poisson, features in an intuitive way without requiring
extensive data collection or analysis [19].

We did not consider dependent arrival times (i.e., a non-
renewal process like a Markovian Arrival Process) to avoid
complicating the model and intimidating potential users. In
other words, our goal was simplicity and not accuracy, since
it is impossible to accurately predict a year’s costs based on
prior information. Our approach makes it easy to obtain an
informed prediction; imprecisions in the estimate are better
dealt with by including a contingency amount in the budget
for errors and unexpected changes in workload.

Job service times are exponentially distributed, thus fully
characterized by the mean service time, which can be obtained
by the user by running a few tests and timing their service.
Standard benchmarking tools can be used for this purpose.

The number of servers depends on the type of architecture
and pricing model being simulated.

For reserved VMs, we use a M(t)/M/c model where the
number of servers c is given by c = VMs× n, where VMs is
the number of reserved virtual machines, and n is the number
of concurrent requests that can be serviced by each VM. We
can find the proper number of servers to use by considering
a tenant-defined service level objective (SLO) expressed in
terms of the maximum average time in system (i.e., latency of
requests), as configured by the user, and running simulations
for an increasing number of servers until the target SLO is met.
In other words, we solve a simulation-based optimization [7],

Algorithm 1: Exhaustive search (simulation optimization)
Input: Simulator, Sim; hourly arrival rates, λh[]; mean

job service time, s; max. average latency, SLO
Output: Least number of servers such that average

request latency (calculated by Sim) is ≤ SLO
c := 0;
latency := 0;
repeat

c := c+ 1;
latency := Sim(c, λh[],s);

until latency ≤ SLO;
return c;

with a discrete decision variable (c) and a finite feasible set:

minimize
c

f(c) subject to f(c) ≤ SLO, and c > 0,

where f(c) is the average request latency, as reported by a
simulation run of the M(t)/M/c model configured with c
servers, and a user-defined λh and average job service time.
SLO is the maximum average latency tolerable by the tenant.
By minimizing the number of servers, we are also minimizing
the budget as the cost function increases with c.

Alternatively, we could find c using the approximation
derived by Green and Kolesar [13]. However, we opted for the
simulation optimization approach because the approximation
works under the assumption that λ(t) is sinusoidal [13].

To solve the optimization we do an exhaustive search using
Algorithm 1. This approach is sufficient because we have one
optimization variable, the optimization variable is discrete, and
there are no local optima; thus, there is a small feasible set to
evaluate and we can stop the search once a solution is found.

Note that the M(t)/M/c model described above also works
for statically provisioned on-demand VMs with no elasticity,
and for the case of reserved hosts. These models only differ
with respect to their hourly costs.

For on-demand VMs with auto-elasticity, we use a
M(t)/M/c model, where c changes dynamically during the
simulation, based on the hourly request throughput and a con-
figurable maximum average latency. We refer to this approach
as a M(t)/M/dyn model herein.

A serverless computing architecture is naturally modeled
with an infinite number of servers, as the provider launches
as many functions as needed; i.e., with a M(t)/M/∞ model.

Mathematical analysis: The two main metrics that we are
interested in are: average time in system and estimated costs.

The waiting time in an M(t)/M/c system can be approx-
imated using pointwise stationary approximation (PSA) [13].
The yearly costs can be calculated once c is known: Costs =
VMs× VMhourlyCost× 24× 365, where VMs = dc/ne.

The M(t)/M/dyn system can be represented with a
M(t)/M/c(t) model, with a time-varying number of servers;
c(t) can be approximated using a stationary M/M/c model
for each hourly segment, and then combining the different
c values in a stepwise function c(t). The expected waiting
time for this model can be then approximated using stationary
backlog carryover (SBC) [24]. This approximation would
yield a lower-bound on the real waiting time as in a cloud
environment the number of servers per hour need not be fixed
during a particular hour slot (if the cloud provider charges
in a granularity smaller than one hour); tenant-configured
elasticity managers could thus lead to waiting times larger than
those estimated by this model. It follows that Costs = 365×∑23

h=0(VMsh × VMhourlyCost), where VMsh = dc(h)/ne.
In a M(t)/M/∞ system requests never queue up, so the

average waiting time is 0 and the average time in system is
the average service time. The yearly cost can be calculated by
knowing that the expected number of arrivals by time t, Λ(t)
is: Λ(t) =

∫ t

0
λ(s) ds. Thus, for an arrival rate in requests

per second, we can calculate the arrivals in a day as Λ(23) =∑23
h=0 λ(h)×3600. It follows that Costs = Λ(23)×365×(cr+

cgs×mem), where cr is the provider’s cost per request, cgs
is the provider’s cost per GB/second, and mem is the average
memory used by the function, in GBs/second.

We opted for simulating the systems instead of applying
the formulas and approximations described above for several
reasons: (1) the simulation results are more exact than those
based on approximations, (2) the simulation code can be
easily modified to do a trace-based study with real workloads
in addition to generating model-based arrivals, and (3) the
simulation approach lets the tenant obtain the waiting time
distribution (and not only the expected waiting time), which
can be extremely useful as tenants usually care about tail
latencies and not only average latency. Furthermore, providers
usually charge for use in discrete increments which are easier
to handle in a simulation than in a mathematical analysis.

B. Cloud Cost Calculator (CLOUDCAL)

We implemented CLOUDCAL4 using the SimPy discrete
event simulation library,5 with a generator Process for
arrivals and Resources for computing units.

Generating the request interarrival times is not as simple
as sampling from the hourly distribution because this naive
approach ignores the changes of λ(t) after t = h, thus

4Available at: https://github.com/ebozag/CLOUDCAL
5Available at: https://simpy.readthedocs.io/en/latest/

TABLE IV: Configuration parameters of our tool. The experi-
mental values were those used in Section IV.

Parameter Format Experimental vals.
General configuration parameters

Hourly arrival rates (λh[], reqs/sec) Float[] values in Fig. 2
Latency SLO (max. avg. lat.) (secs) Float 0.33 and 60
Simulation time (secs) Integer 86400s

Reserved VMs
Number of reserved VMs Integer 1
Max. number of requests that can
be serviced concurrently by a VM Integer 2
Average service time (s, secs) Float 0.3s
VM hourly cost Float 0.034
Cost rounded to nearest (secs) Integer 3600

On-Demand VMs
Max. number of requests that can
be serviced concurrently by a VM Integer 2
Average service time (s, secs) Float 0.3s
VM hourly cost Float 0.047
Cost rounded to nearest (secs) Integer 3600

Serverless computing
Time to setup function (secs) Integer 1.4s [14]
Average service time (s, secs) Float 0.3s
Memory allocated to function (MB) Integer 128
Cost per request Float 0.0000002
Cost per GB per second Float 0.00001667

introducing an inertia error [17]. While this approximation
may be valid for cases when λ(t) varies slowly, we make no
such assumption on the behavior of the arrival process. Instead,
we generate arrivals using the thinning method [18], which is
basically an acceptance-rejection approach that discards (or
thins) some events to correct the generation process. Our
implementation is based on the code written by Nelson [20].

Table IV lists the configuration parameters that need to be
provided to be able to estimate the yearly cloud costs.

The simulation approach has an advantage over simple
cloud cost calculators like the Amazon Web Services Simple
Monthly Calculator6 in that it lets user make their decision
based on the cost and the predicted performance for each
specific configuration. This tradeoff is important because, as
we have shown in this paper, the reduced costs achievable
with more dynamic pricing models come with a performance
penalty that may not be tolerable to some applications.

For each pricing model, CLOUDCAL finds the configuration
that yields the minimum cost while not exceeding the tenant’s
latency SLO. These configurations are Pareto optimal for their
pricing models. The set of configurations with their expected
cost and performance is presented to the user, who can select
the most economical option or the highest in performance,
depending on the tenant’s internal utility function.

C. Cost budgeting process

We propose the following process to determine which
pricing model is most adequate for a cloud tenant:

1) Configure CLOUDCAL.
2) Run CLOUDCAL; output is set of Pareto optimal config-

urations that minimize cost while meeting SLO.
3) Choose one of the Pareto optimal configurations; none

of them outperforms the others in all criteria.

6Available at: https://calculator.s3.amazonaws.com/

4) Add a contingency amount to the cost obtained with
CLOUDCAL; consider a 5 to 10% of unexpected costs
due to changes in the workload or other issues7.

5) Include the total cost in the yearly budget (cost + con-
tingency amount). Also, remember to take into account
the inflation rate for the whole IT budget.

D. Accuracy

The queuing theory models used on CLOUDCAL are accu-
rate representations of the real system, with the exception of
assuming exponential arrivals and exponential service times.
We chose this approach as it makes it easy for the user to
configure the system. However, if a more accurate representa-
tion is desired, an advanced user can modify CLOUDCAL to
use any other distributions (including, an empirical distribution
representing the actual observed system behavior)8.
E. Running time

We ran CLOUDCAL ten times with the configurations used
in this paper (including both SLOs), on a Linux machine with
8 × 1.4 GHz cores, and 8 GB of RAM. Our results show
that running CLOUDCAL prior to budgeting yearly costs is
not prohibitive, as it took, on average, 30.1 s to calculate
all pricing scenarios, including finding the proper number of
servers to use via the simulation optimization approach.

VI. RELATED WORK

The problem of deciding on a pricing model for cloud
providers has been studied in depth [1], [6], [16], [21], [28].

From the client’s perspective, others have studied which
is the best pricing model and number of VMs to select for
large cloud deployments, given a particular application like
MapReduce and a target deadline [8], [9], [27]. The Serverless
model is a very recent cloud offering (end of 2014 for AWS
Lambda), and was thus not considered in these studies.

Our tool provides a significant improvement over the current
cloud budgeting process used by small and medium enterprises
(SMEs), as described in [10]. SMEs that cannot afford large
IT departments must resort to simplistic calculations or online
budgeting tools to get rough cost estimates. Our approach has
the advantage of providing a better budget estimation and the
inclusion of performance metrics, hence the choice of a pricing
model can be guided by the estimated budget and SLOs.

Finally, choosing the best VM for an application is an or-
thogonal problem [3], [26], [29]. Prior to configuring CLOUD-
CAL, the user can profile the application on all VM types, or
do an instrumentation-based performance prediction [29].

VII. CONCLUSIONS

We presented a set of models that can be used to calculate
the performance and costs of different cloud computing pricing
models, for a specific service given a configurable workload.

7This applies even in the case of reserved VMs, as a tenant can decide
mid-year to add one or more VMs to its server farm.

8We note that if we had opted for using mathematical approximations in-
stead of simulations, then we could use Kingman’s approximation to calculate
the waiting times based on any general (non-exponential) distribution [15].

We simulate those models in a software tool that outputs the
set of Pareto optimal cloud configurations that meet tenant-
defined SLOs. Finally, we defined a process that can be used to
properly plan the yearly cloud computing budget for a service.

Acknowledgments: This research was supported in part by
gifts from Microsoft, Google and Amazon. We thank our
anonymous reviewers for their valuable comments which
helped improve the paper.

REFERENCES

[1] Al-Roomi et al., “Cloud computing pricing models: a survey,” Intl. J.
Grid and Distrib. Comp., vol. 6, no. 5, 2013.

[2] Alharbi et al., “Strategic value of cloud computing in healthcare organ-
isations using the balanced scorecard approach: A case study from a
saudi hospital,” Proc. Comp. Sci., vol. 98, 2016.

[3] O. Alipourfard et al., “CherryPick: Adaptively unearthing the best cloud
configurations for Big Data analytics,” in Usenix NSDI, 2017.

[4] M. Armbrust et al., “A view of cloud computing,” Comm. ACM, vol. 53,
no. 4, 2010.

[5] S. Arvanitis, N. Kyriakou, and E. Loukis, “Why do firms adopt cloud
computing?” Telematics and Informatics, 2016.

[6] H. Bhargava and M. Gnagwar, “Pay as you go or all you can eat? Pricing
methods for computing and information services,” in HICSS, 2016.

[7] Y. Carson and A. Maria, “Simulation optimization: Methods and appli-
cations,” in Proc. Winter Simul. Conf., 1997.

[8] N. Chohan et al., “See spot run: Using spot instances for mapreduce
workflows.” in USENIX HotCloud, 2010.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Comm. ACM, vol. 51, no. 1, 2008.

[10] A. Eivy, “Be wary of the economics of serverless cloud computing,”
IEEE Cloud Computing, vol. 4, no. 2, 2017.

[11] B. Fakieh et al., “SMEs and cloud computing: The benefits to the
national economy and global competitiveness,” in Proc. EMCIS, 2016.

[12] A. Gohad et al., “Cloud pricing models: A survey and position paper,”
in IEEE Intl. Conf. Cloud Comp. Emerg. Mrkts., 2013.

[13] L. Green and P. Kolesar, “The pointwise stationary approximation for
queues with nonstationary arrivals,” Mgmt. Sci., vol. 37, no. 1, 1991.

[14] S. Hendrickson et al., “Serverless computation with open Lambda,” in
USENIX Conf. Hot Topics in Cloud Comp., 2016.

[15] J. Kingman, “The single server queue in heavy traffic,” Mathematical
Proc. Cambridge Philosophical Soc., vol. 57, no. 4, 1961.

[16] G. Laatikainen, A. Ojala, and O. Mazhelis, “Cloud services pricing
models,” in Intl. Conf. Software Business, 2013.

[17] L. Leemis and S. Park, Discrete-event simulation: A first course.
Pearson Prentice Hall, 2006.

[18] P. Lewis and G. Shedler, “Simulation of nonhomogeneous poisson
processes by thinning,” Naval Res. Logistics Qtly., vol. 26, no. 3, 1979.

[19] Nelson and Gerhardt, “Modelling and simulating non-stationary arrival
processes to facilitate analysis,” J. Simulation, vol. 5, no. 1, 2011.

[20] B. Nelson, Foundations and methods of stochastic simulation: A first
course. Springer, 2013.

[21] N. Nguyen et al., “Resource management in cloud networking using
economic analysis and pricing models: A survey,” Com. Surv. Tut, 2017.

[22] P. Priyadarshinee, M. Jha, and R. Raut, “Cloud computing adoption in
SMEs: A literature review,” in AIMS Intl. Conf. Management.

[23] Schniederjans and Hales, “Cloud computing and its impact on economic
and environmental performance,” Decision Support Sys., vol. 86, 2016.

[24] R. Stolletz, “Approximation of the non-stationary m(t)/m(t)/c(t)-
queue using stationary queueing models: The stationary backlog-
carryover approach,” European J. Oper. Res., vol. 190, no. 2, 2008.

[25] Vajjhala and Ramollari, “Big data using cloud computing: Opportunities
for small and medium-sized enterprises,” lib. euser. org, 2016.

[26] S. Venkataraman et al., “Ernest: Efficient performance prediction for
large-scale advanced analytics,” in Usenix NSDI, 2016.

[27] A. Wieder et al., “Orchestrating the deployment of computations in the
cloud with Conductor,” in Usenix NSDI, 2012.

[28] H. Xu and B. Li, “Dynamic cloud pricing for revenue maximization,”
IEEE Trans. Cloud Comp., vol. 1, no. 2, 2013.

[29] N. Yadwadkar et al., “Selecting the best VM across multiple public
clouds: A data-driven performance modeling approach,” in SOCC, 2017.

