
Mona Johannessen- PhD
- Professor (Full) at UiT The Arctic University of Norway
Mona Johannessen
- PhD
- Professor (Full) at UiT The Arctic University of Norway
About
93
Publications
14,683
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,640
Citations
Introduction
Mona Johannessen currently works at the Department of Medical Biology(IMB), UiT-The Arctic University of Norway. Mona studies molecular aspects in the interaction between host and microbe that important for bacterial colonization and infection. This includes adhesins, bacterial immune evasion and membrane vesicles.
Skills and Expertise
Current institution
Publications
Publications (93)
Klebsiella pneumoniae is a resident of the human gastro-intestinal tract and an opportunistic, critical priority pathogen that can cause severe systemic infections. To overcome emerging multi-drug resistance, discovery and validation of novel targets for developing new treatment options is essential. Here, we explored the highly druggable and funct...
In search of new putative antimicrobial drug targets in methicillin-resistant Staphylococcus aureus, we aimed to identify and characterize retaining glycosidase activities in this bacterial pathogen. Using activity-based protein profiling (ABPP), a panel of 7 fluorescent probes was screened to detect activities of diverse retaining glycosidase fami...
Biofilms present a great challenge in antimicrobial therapy due to their inherent tolerance to conventional antibiotics, promoting the need for advanced drug delivery strategies that improve therapy. While various nanoparticles (NPs) have been reported for this purpose, DNA-based NPs remain a largely unexploited resource against biofilm-associated...
Common dCas9-based CRISPR interference (CRISPRi) system for gene regulation requires antibiotic selection and exogenous inducer molecules, posing significant challenges when applied in in vivo bacterial infection models. Using Staphylococcus aureus as a model organism, we have developed a programmable, plasmid-based, but selection-free (ppsf)-CRISP...
Isogenic bacterial cell populations are phenotypically heterogenous and may include subpopulations of antibiotic tolerant or heteroresistant cells. The reversibility of these phenotypes and lack of biomarkers to differentiate functionally different, but morphologically identical cells is a challenge for research and clinical detection. To overcome...
The dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi) gene regulation technique requires two components: a catalytically inactive Cas9 protein (dCas9) and a single-guide RNA that targets the gene of interest. This system is commonly activated by expressing dCas9 through an inducible gene promoter,...
Klebsiella pneumoniae is a normal resident of the human gastro-intestinal tract and an opportunistic, critical priority pathogen that can cause a variety of severe systemic infections. Due to emerging multi-drug resistance of this pathogen, the discovery and validation of novel targets for the development of new treatment options is an urgent prior...
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host–pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratin...
In the Staphylococcus aureus genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) and their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in S. aureus USA300, a predomin...
Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and vi...
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratin...
Introduction
Improved understanding of Staphylococcus aureus throat colonization in the presence of other co-existing microbes is important for mapping S. aureus adaptation to the human throat, and recurrence of infection. Here, we explore the responses triggered by the encounter between two common throat bacteria, S. aureus and Streptococcus angin...
Enterococcus faecium is a leading cause of nosocomial infections, particularly in immunocompromised patients. The rise of multidrug-resistant E. faecium, including Vancomycin-Resistant Enterococci (VRE), is a major concern. Vaccines are promising alternatives to antibiotics, but there is currently no vaccine available against enterococci. In a prev...
Isogenic bacterial cell populations are phenotypically heterogenous and may include subpopulations of antibiotic tolerant or heteroresistant cells. The reversible nature of these phenotypes and lack of biomarkers to differentiate functionally different, but morphologically identical cells is a challenge for research and clinical detection. To overc...
In the Staphylococcus aureus genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) with their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in S. aureus USA300, a predomi...
Improved understanding of Staphylococcus aureus throat colonization in the presence of other co-existing microbes is important for mapping S. aureus adaptation to the human throat, and recurrence of infection. Here, we explore the responses triggered by the encounter between two common throat bacteria, S. aureus and Streptococcus anginosus, in the...
Nucleic acid-based materials showcase an increasing potential for antimicrobial drug delivery. Although numerous reports on drug-loaded DNA nanoparticles outline their pivotal antibacterial activities, their potential as drug delivery systems against bacterial biofilms awaits further studies. Among different oligonucleotide structures, micellar nan...
Background
The nose and the throat are the most predominant colonizing sites of Staphylococcus aureus, and colonization is a risk factor for infection. Nasal colonization is well described; however, we have limited knowledge about S. aureus throat colonization. The main objective of this study was to explore differentially expressed genes (DEGs) in...
Background: The nose and the throat are the most predominant colonizing sites of Staphylococcus aureus, and colonization is a risk factor for infection. Nasal colonization is well described; however, we have limited knowledge about S. aureus throat colonization. The main objective of this study was to explore differentially expressed genes (DEGs) i...
Infected chronic skin wounds and other skin infections are increasingly putting pressure on the health care providers and patients. The pressure is especially concerning due to the rise of antimicrobial resistance and biofilm-producing bacteria that further impair treatment success. Therefore, innovative strategies for wound healing and bacterial e...
To avert the poor bioavailability of antibiotics during S. aureus biofilm infections, a series of zwitterionic nanoparticles containing nucleic acid nanostructures were fabricated for the delivery of vancomycin. The nanoparticles were prepared with three main lipids: (i) neutral (soy phosphatidylcholine; P), (ii) positively charged ionizable (1,2-d...
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved numerous antimicrobial resistance mechanisms and is identified as a serious public health threat by the World Health Organization and U.S. Centers for Disease Control and Prevention. The glycopeptide vancomycin (VAN) remains a cornerstone of therapy for severe MRSA infections despite in...
An active wound dressing should address the main goals in wound treatment, which are improved wound healing and reduced infection rates. We developed novel multifunctional nanofibrous wound dressings with three active ingredients: chloramphenicol (CAM), beta-glucan (βG) and chitosan (CHI), of which βG and CHI are active nanofiber-forming biopolymer...
Burns and other skin injuries are growing concerns as well as challenges in an era of antimicrobial resistance. Novel treatment options to improve the prevention and eradication of infectious skin biofilm-producing pathogens, while enhancing wound healing, are urgently needed for the timely treatment of infection-prone injuries. Treatment of acute...
Bacterial extracellular vesicles (EVs) have a vital role in bacterial pathogenesis. However, to date, the small RNA-cargo of EVs released by the opportunistic pathogen Staphylococcus aureus has not been characterized. Here, we shed light on the association of small RNAs with EVs secreted by S. aureus MSSA476 cultured in iron-depleted bacteriologic...
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infections and causes serious reproductive tract complications among women. The limitations of existing oral antibiotics and treatment of antimicrobial resistance require alternative treatment options. We are proposing, for the first time, the natural polyphenol resver...
Clinical metagenomics is actively moving from research to clinical laboratories. It has the potential to change the microbial diagnosis of infectious diseases, especially when detection and identification of pathogens can be challenging, such as in prosthetic joint infection (PJI). The application of metagenomic sequencing to periprosthetic joint t...
The persistence of Staphylococcus aureus has been accredited to its ability to escape immune response via host cell invasion. Despite the efficacy of many antibiotics against S. aureus, the high extracellular concentrations of conventional antibiotics required for bactericidal activity is limited by their low cellular accumulation and poor intracel...
Topical administration of drugs into the vagina can provide local therapy of vaginal infections, preventing the possible systemic side effects of the drugs. The natural polysaccharide chitosan is known for its excellent mucoadhesive properties, safety profile, and antibacterial effects, and thus it can be utilized in improving localized vaginal the...
Curcumin, a multi-targeting pharmacologically active compound, is a promising molecule for the treatment of skin inflammation and infection in chronic wounds. However, its hydrophobic nature remains to be a challenge in development of its pharmaceutical products, including dermatopharmaceuticals. Here we propose deformable liposomes (DLs) as a mean...
Background:
Blood culture bottles (BCBs) provide a semiautomated method for culturing periprosthetic tissue specimens. A study evaluating BCBs for culturing clinical samples other than body fluids is needed before implementation into clinical practice. Our objective was to evaluate use of the BacT/Alert® Virtuo blood culture system for culturing p...
Bacterial membrane vesicles (MVs) mediate bacterial virulence by enabling secretion and long distance delivery of bacterial effector molecules. Staphylococcus haemolyticus has now been demonstrated to produce membrane vesicles (MVs). The protein content of S. haemolyticus MVs was identified by Mass spectrometry and compared to proteins identified i...
Enterococcus faecium has undergone a transition to a multidrug-resistant nosocomial pathogen. The population structure of E. faecium is characterized by a sharp distinction of clades, where the hospital-adapted lineage is primarily responsible for bacteremia. So far, factors that were identified in hospital-adapted strains and that promoted pathoge...
Staphylococcus haemolyticus is a skin commensal emerging as an opportunistic pathogen. Nosocomial isolates of S. haemolyticus are the most antibiotic resistant members of the coagulase negative staphylococci (CoNS), but information about other S. haemolyticus virulence factors is scarce. Bacterial membrane vesicles (MVs) are one mediator of virulen...
Early recognition of pathogens by the innate immune system is crucial for bacterial clearance. Many pattern recognition receptors (PRRs) such as Toll-like (TLRs) and (NOD)-like (NLRs) receptors have been implicated in initial sensing of bacterial components. The intracellular signaling cascades triggered by these receptors result in transcriptional...
Using Caenorhabditis elegans as an infection host model for Vibrio cholerae predator interactions, we discovered a bacterial cytotoxin, MakA, whose function as a virulence factor relies on secretion via the flagellum channel in a proton motive force-dependent manner. The MakA protein is expressed from the polycistronic makDCBA (motility-associated...
Significance:
Enterococcal infections, especially bacteremia and endocarditis, are challenging to treat because E. faecium have acquired resistance to multiple classes of antimicrobials, including ampicillin, aminoglycosides, and glycopeptides. Thus, research on different modes of enterococcal pathogenicity is warranted. This study utilized a prot...
Background:
Staphylococcus aureus cell wall anchored Serine Aspartate repeat containing protein D (SdrD) is a member of the microbial surface component recognising adhesive matrix molecules (MSCRAMMs). It is involved in the bacterial adhesion and virulence. However the extent of genetic variation in S. aureus sdrD gene within isolates from healthy...
Staphylococcus aureus produces membrane-derived vesicles (MVs), which share functional properties to outer membrane vesicles. Atomic force microscopy revealed that S. aureus-derived MVs are associated with the bacterial surface or released into the surrounding environment depending on bacterial growth conditions. By using a comparative proteomic ap...
The antimicrobial drug chloramphenicol (CAM) exhibits activity against resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). However, its use has been limited due to its toxicity. As the threat of antibiotic resistance continues to grow, a promising approach might be to increase the use of historical antimicrobial agents t...
Background
Colonization of the body is an important step in Staphylococcus aureus infection. S. aureus colonizes skin and mucous membranes in humans and several animal species. One important ecological niche of S. aureus is the anterior nares. More than 60% of the S. aureus in the nose are found in vestibulum nasi. Our aim was to describe the local...
S. aureus expresses a panel of cell-wall anchored adhesins including proteins belonging to the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family, exemplified by the Serine-aspartate-repeat protein D (SdrD), which serve key roles in colonization and infection. Deletion of sdrD from S. aureus strain NCTC8325-4 attenua...
Staphylococcus aureus is known as a frequent colonizer of the skin and mucosa. Among bacterial factors involved in colonization are adhesins such as the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Serine aspartate repeat containing protein D (SdrD) is involved in adhesion to human squamous cells isolated from the...
Background
The human polyomavirus BK expresses a 66 amino-acid peptide referred to as agnoprotein. Though mutants lacking agnoprotein are severely reduced in producing infectious virions, the exact function of this peptide remains incompletely understood. To elucidate the function of agnoprotein, we searched for novel cellular interaction partners....
Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search an...
Studies on S. aureus populations colonizing the nasal cavity reveal that some bacterial strains are more common while others are rarely found. This study included five isolates with the most common spa types and five isolates with rare spa types from healthy population. Selected phenotypic traits and genomic content among nasal S. aureus isolates w...
The human body is constantly challenged by a variety of commensal and pathogenic microorganisms that trigger the immune system. Central in the first line of defense is the pattern-recognition receptor (PRR)-induced stimulation of the nuclear factor κB (NFκB) pathway, leading to NFκB activation. The subsequent production of pro-inflammatory cytokine...
Staphylococcus aureus is a common human commensal but carriage varies between e.g. geographic location, age, gender, ethnicity and body niche. The nares, throat and perineum are the most prevalent sites for carriage in the general adult population. Other sites of the skin and the intestine are also frequently colonised. Thus, a successful establish...
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP r...
Staphylococcus aureus is a major human pathogen and a multitude of virulence factors enables it to cause infections, from superficial lesions to life-threatening systemic conditions. Staphylococcal protein A (SpA) is a surface protein contributing to S. aureus pathogenesis by interfering with immune responses and activating inflammation. Seven isol...
Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25–30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., th...
Pretreatment with β-glucan has been shown to protect against regional ischemia-reperfusion injury, through inhibition of myocardial NF-κB activation. The aim was to examine whether β-glucan pretreatment could protect against the global ischemia-reperfusion injury, which is encountered in the clinical setting during open heart surgery.
Twenty-one pi...
Peptide 38–66 is detected by immunoblot. 50 ng, 250 ng, and 500 ng peptide 38–66 were separated on SDS PAGE (NuPAGE, Invitrogen), followed by immunoblot using antibody against agnoprotein as primary antibody, and HRP-conjugated goat anti rabbit secondary antibody.
(TIF)
Vero cells were transfected with expression plasmids encoding BKV agnoprotein (200 ng) and α-SNAP (200 ng). The cells were fixated and immunostained against BKV agnoprotein and α-SNAP. The cell nuclei were visualized by DRAQ5 staining. Arrows indicate co-localization of BKV agnoprotein and α-SNAP.
(TIF)
The human polyomavirus BK (BKV) infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV) and SV40, and agnoprotein-deficient mut...
Vitamin D induces the expression of antimicrobial peptides with activity against Staphylococcus aureus. Thus, we studied the association between serum 25-hydroxyvitamin D (25(OH)D) and S. aureus nasal colonization and carriage. Nasal swabs, blood samples and clinical data from 2,115 women and 1,674 men, aged 30-87 years, were collected in the Troms...
The mitogen-activated protein kinase-activated protein kinase-5 (MK5) resides predominantly in the nucleus of resting cells, but p38MAPK, extracellular signal-regulated kinases-3 and -4 (ERK3 and ERK4), and protein kinase A (PKA) induce nucleocytoplasmic redistribution of MK5. The mechanism by which PKA causes nuclear export remains unsolved. In th...
The mitogen-activated protein kinase (MAPK) cascades regulate important cellular processes, including growth, differentiation, apoptosis, embryogenesis, motility and gene expression. Although MAPKs mostly appear to be constitutively expressed, the transcript levels of some MAPK-encoding genes increase upon treatment with specific stimuli. This appl...
Mitogen-activated protein kinase (MAPK) pathways can play a role in F-actin dynamics. In particular, the p38 MAPK/MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) pathway is involved in F-actin alternations. Previously, we showed that MK5 is implicated in F-actin rearrangement induced by the cAMP/cAMP-dependent protein kinase pat...
Polyomaviruses were originally isolated in mouse and in monkey (SV40) about 50 years ago. In 1971, the first human polyomaviruses BK and JC were isolated and subsequently demonstrated to be ubiquitous in the human population. Recent studies have shown that SV40 can spread between humans and led to the identification of three new human polyomaviruse...
Inter- and intracellular communications and responses to environmental changes are pivotal for the orchestrated and harmonious operation of multi-cellular organisms. These well-tuned functions in living organisms are mediated by the action of signal transduction pathways, which are responsible for receiving a signal, transmitting and amplifying it,...
The human polyomavirus BK (BKV) genome encodes the capsid proteins VP1 to VP3 and the three regulatory proteins, large and small tumor-antigen and the agnoprotein. Agnoprotein is a phospho-protein, but phosphorylation sites, protein kinases that mediate phosphorylation, and the biological importance of phosphorylation for the life-cycle of BK virus...
Gamma-glutamyltransferase (GGT) plays a central role in the homeostasis of the antioxidant glutathione (GSH). The expression of GGT has been shown to be upregulated after oxidative stress, but the signalling pathways implicated remain poorly characterized. The results here show that acute exposure of CC531 cells to oxidative stress resulted in acti...
The MAPK-activated protein kinases belong to the Ca2+/calmodulin-dependent protein kinases. Within this group, MK2, MK3, and MK5 constitute three structurally related enzymes
with distinct functions. Few genuine substrates for MK5 have been identified, and the only known biological role is in ras-induced senescence and in tumor suppression. Here we...
The polyomaviruses BK, JC and SV40 are common in the human population. Their DNA genomes encode large T-antigen, small t-antigen, agnoprotein, and the capsid proteins VP1-3. Studies with these viruses have contributed extensively to the understanding of processes such as replication, transcriptional and posttranscriptional regulation, and cell cycl...
Protein kinase D (PKD), a family of serine/threonine kinases, can be activated by a multitude of stimuli in a protein kinase
C-dependent or -independent manner. PKD is involved in signal transduction pathways controlling cell proliferation, apoptosis,
motility, and protein trafficking. Despite its versatile functions, few genuine in vivo substrates...
The prevailing view of stimulus-induced activation of the transcription factor cAMP response element-binding protein (CREB) presumes phosphorylation at serine-133. Although, phosphorylation of this residue seems to be necessary, it is not sufficient to trigger CREB-driven transcription, indicating that other phosphoserine-133-independent mechanisms...
Numerous cellular processes require the concerted action of multiple proteins that assemble in functional complexes. Protein-protein interaction domains allow specific proteins to combine with certain partners. Specificity of protein-protein association can be obtained by an interaction code predicted by conserved amino acid sequences. One of the p...
Extracellular-regulated kinase 3, an atypical member of the mitogen-activated protein kinase subfamily of extracellular-regulated kinases, was originally identified in 1991. Little is known about the biochemical properties, regulation, and biological functions of this protein kinase, partially due to the unstable nature of endogenous and low ectopi...
Cyclic adenosine 3',5'-monophosphate (cAMP) was originally shown to induce gene transcription through activation of cAMP-dependent protein kinase (PKA), and subsequent phosphorylation of the transcription factor cAMP response element-binding protein, CREB, at serine-133. However, elevated cAMP levels may activate multiple signalling pathways with p...
The transactivation domain of the cAMP response element-binding protein (CREB) consists of two major domains. The glutamine-rich Q2 domain, which interacts with the general transcription factor TAFII130/135, is sufficient for the recruitment of a functional RNA polymerase II complex and allows basal transcriptional activity. The kinase-inducible do...
Recruitment of a RNA polymerase II complex by the glutamine-rich Q2 domain of cAMP response element-binding protein (CREB) allows basal transcriptional activity, while recruitment of CBP/p300 through signal-induced phosphorylation of the kinase-inducible domain at serine-133 enhances CREB-dependent transcription. Here we demonstrate that co-adminis...
The small t antigen (st-ag) of simian virus 40 can exert pleiotropic effects on biological processes such as DNA replication, cell cycle progression and gene expression. One possible mode of achieving these effects is through stimulation of NFkappaB-responsive genes encoding growth factors, cytokines, transcription factors and cell cycle regulatory...
The small t antigen (st-ag) of simian virus 40 can exert pleiotropic effects on biological processes such as DNA replication, cell cycle progression and gene expression. One possible mode of achieving these effects is through stimulation of NFκB-responsive genes encoding growth factors, cytokines, transcription factors and cell cycle regulatory pro...
Previous studies have demonstrated that the serine/threonine protein phosphatase 2A (PP2A) can modulate the transcriptional activity of several sequence-specific DNA-binding proteins. However, less is known about the effect of PP2A on the activities of general transcription factors and transcriptional coregulators. Here we describe that the activit...
The p38 mitogen-activated protein kinase (MAPK) pathway is an important mediator of cellular responses to environmental stress. Targets of p38 include transcription factors, components of the translational machinery, and downstream serine/threonine kinases, including MAPK-activated protein kinase 5 (MK5). Here we have used enhanced green fluorescen...