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Introduction 

Potential health threats originating   from   viruses   in the 

environment have been a neglected subject. Equipped with the 

small genome (< 200 kb), high mutation rates, and frequent 

gene recombination, viruses evolve to be the most abundant 

biological entities on earth [1]. Non-culture methods (e.g., 

metagenomics, virome) [2] and specialized taxonomy 

approaches [3] make it possible to progressively unfold 

environmental virology from behind the veil. Viruses that host 

prokaryotes, animals, plants, and even humans have been 

confirmed to be extensively present in environmental media 

such as air [4], ocean (105-107 virus-like particles mL-1), and 

soil (103-109 virus-like particles g-1). Compared with other 

microorganisms, the current understanding of environmental 

viruses is still at a preliminary level. One of the urgent tasks 

is to illuminate the sensitive relationship between 

environmental viruses and human health [5]. 

During a pandemic, the environment fluctuated greatly 

with anthropogenic activities aimed at preventing and 

treating COVID-19. Viruses lurking in the environment are one 

of the first to realize this vacillation [6]. The average use of 

disinfectants in wastewater treatment plants increased during 

the pandemic. Chlorine and surfactants containing excessive 

biocidal agents were used to disinfect hospitals, residential 
areas, and wastewater treatment plant systems [6,7]. 

The played role of the natural environment in the outbreak 
of COVID-19 is becoming clearer with clues of the SARS-CoV-2 
in vitro [8]. The distribution of SARS-CoV-2 during COVID-19 
can be the last and most essential piece that completes the 
puzzle. So that SARS-CoV-2 RNA was found in water in 
sewage [9] and also, SARS-CoV-2 aerosol particles were 
detected in air at PM2.5 [10, 11]. To determine the origin 
of environmental SARS-CoV-2 RNA the areas of hospitals 
should be considered. As the pivot between artificial and 
natural habitats, the wastewater treatment plant is a potential 
reservoir of SARS CoV-2 [12]. Therefore, the areas around the 
wastewater treatment plant effluent receivers were crucial 
in assessing the transmission path through the environment. 
To substantiate the hypothesis that chemicals resulting from 
pandemic prevention measures alter the virus community and 
thus pose a fundamental risk, soil and ambient water samples 
near hospital areas and wastewater treatment plants should 
be collected and evaluated. 

Detection of SARS-CoV-2 RNA in the environment 

SARS-CoV-2 RNA has been found in the environment during 

treatment processes when the pandemic broke out [13]. Some 
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OPEN ACCESS 

 
Due to extensive COVID-19 prevention measures, millions of tons of chemicals penetrated 

the natural environment. Alterations of viruses in the environment, the neglected perceiver of 

environmental fluctuations, remain obscure. Chemicals especially trihalomethane restrained the 

virus community diversity. Segments of SARS-CoV-2 RNA have been detected near hospitals 

that suggesting the environment as a missing link in the transmission route. Human viruses 

lurking in the environment were potentially activated by pandemic prevention chemicals, warning 

an overlooked burden to human health. This letter warns of the risk of activation of human viruses 

in the environment following the overuse of COVID-19 prevention devices and emphasizes the 

long-term monitoring of environmental viruses in the post-pandemic period. 

Abstract 

http://www.communitymedjournal.com/
mailto:ehsanifar@gmail.com


Risk of activation of human viruses lurking in ambient following COVID-19 prevention supplies excessive use 

  https://doi.org/10.29328/journal.jcmhs.1001014   www.communitymedjournal.com       012  

 

 

 

studies quantified SARS-CoV-2 in raw sewage [14], wastewater 

[15], or receiving water of wastewater treatment plant 

effluent [16] through RT-qPCR, also, gene segments of SARS- 

CoV-2 may exist in natural water irrelevant with wastewater 

discharges. SARS-CoV-2, which is thought to be a fecal 

transmitted virus [17], can persist in the water environment 

[18]. Given that SARS-CoV-2 cannot survive disinfection in 

wastewater treatment plants [19]. the genetic material of the 

new coronavirus in the natural water nearby the hospitals 

may originate through direct contact or bioaerosol from 

COVID-19 patients [11]. In fact, RNA fragments of SARS-CoV-2 

in natural water indicate a transmission pathway in which the 

aquatic environment served as an intermediate host. The virus 

may also be lurking in an environment that has not yet been 

identified. Several forms of SARS-CoV-2 including integrated 

enveloped particles were found to be stable in water for 12 

days [20]. Despite this, whether or not SARS-CoV-2 was viable 

in actual aquatic conditions is vital to completing the through 

of spreading in the environment. Attempts have been made to 

evaluate the infectiousness of SARS-CoV-2 in water in terms of 

cytopathic effect [21]. Further efforts are imperative to assess 

the threat of the SARS-CoV-2 in the natural environment. 

The virus community succession following the use of 

COVID-19 prevention supplies 

Chemicals generated from COVID-19 pandemic 

prevention supplies lead to ecological impacts through the re-

constructing of the virus community. Although the level of 

environmental pollution was thought to be drastically reduced 

due to widespread and severe lockdown [22,23], secondary 

pollution from disinfectants and medical treatment threatens 

the ecological balance [24]. The environment is considered to 

be a huge reservoir of viruses [25] and many viruses within 

were be detected to potentially infect humans. Members of 

human-related Picornaviridae such as Enteroviruses, 

Coxsackieviruses, Echoviruses, Polioviruses, Hepatitis A virus 

along Rotaviruses belong to Reoviridae have been observed in 

aquatic environments including rivers, lakes, sewage and even 

drinking water [26]. H5N1 virus [27] and H7N9 [28] virus as 

well as Norovirus [29] in soil posed threat to human health. 

The viruses that lurk in the environment are undoubtedly a 

threat to human health when they stimulate from dormant 

to a viable state. Therefore, monitoring for environmental 

viruses must be done immediately, especially when a public 

health crisis such as broke out of the COVID-19 pandemic. 

As adjunctive therapy, glucocorticoids are recommended for 

the treatment of moderate to severe patients [30] and are 

used clinically at a proportion of 44.5% [31]. Residue and by-

products of excessively used corticosteroids drugs and 

disinfectants eventually flew into the environment through 

sewage, medical waste, and surface runoff. This would add the 

extra stress from chemicals such as trihalomethane, total 

chlorine, quaternary ammonium surfactants, and 

glucocorticoids to the virus in the environment. However, the 

effect of chemicals related to pandemic prevention sources 

on the viruses is unknown. Examining the environment-virus 

interaction with the concept of One Health helps to claim the 

growing concern about the excessive usage of pandemic 

devices [32,33]. 

In particular, the glucocorticoids from treatment and 

trihalomethane, total chlorine, quaternary ammonium 

surfactants from the disinfectants enter the ecology through 

household and medical waste. Undoubtedly the microbes in 

the environment were confronted with the interference of 

the above chemicals, which has been so far been ignored. This 

mini-review shed light on the short-term collapse of viruses 

and emphasized the ecological damage caused by pandemic 

prevention supplies from a dimension of the environmental 

microbial community, especially the viral one. In general, the 

microbial community succession followed the cycle of 

collapse, reorganization, exploitation, and conservation [34]. 

Pathogens, such as human viruses have a tendency to be 

predominant during succession [35]. Therefore, subsequent 

monitoring should be greatly important to comprehensively 

depict the succession process and avoid ecological threats in 

this procedure. 

Human virus thriving following excessive disinfection 

Viruses, especially some human viruses whose abundance 

increased with trihalomethane, evolve to gain resistance 

under excessive disinfection. Based on a study, human gamm- 

aherpesvirus 4 and Orf virus responded to trihalomethane in 

positive correlation. Trihalomethane, a typical chlorination 

by-product, measured the chlorine-containing disinfectants 

consumption. The high concentration of trihalomethane in the 

effluent receptor of the wastewater treatment plant is 

consistent with the excessive usage of disinfectants during the 

COVID-19 pandemic. It is found that excessive use of 

disinfectants is the cause of the evil of microbial resistance [8]. 

Transforms of physiological state, for example, increased 

membrane permeability, stress response, and SOS response 

offered easier access to the resistance of microorganisms after 

disinfection [36]. It has been widely acknowledged that the 

virus frequently integrates and acquires host genes [37]. 

Equipped with the horizontal transfer, viruses served as a gene 

pool [38] and accumulated resistance through transduction 

[39]. The long-term exposure of disinfection byproduct is led 

to gene mutation [40]. Under the induction of disinfectants 

during the COVID-19 pandemic, human  gammaherpesvirus 

4 and Orf virus, which are highly correlated with trihalo 

methane, may gain resistance through gene mutation or 

horizontal transfer. 

In addition, the trihalomethane-virus coexistence implied 

intrinsic features that made it difficult to remove Human 

gammaherpesvirus 4 and Orf   virus   through   disinfection. In 

general, viruses are more resistant to disinfection than other 

pathogens [41]. Therefore, the endure simultaneously of 

viruses with trihalomethane in excessive disinfection 
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circumstances is normal [42]. In addition, the herpes virus 

[43], as well as the Orf virus [44], were discovered to unite as 

vesicles. Depending on this morphology, viruses can effectively 

combat adversities such as disinfection [45]. Despite the 

prevalence of Orf virus [44] and human gammaherpesvirus 4 

[46], few types of research have focused on distribution in 

the natural environment that should be considered in a wider 

geographical range. Also, the mechanism of the amplifying link 

between trihalomethane and human viruses still needs to be 

explained through a small microcosm simulation experiment. 

The proliferation of human viruses caused by gluco 

corticoids 

Glucocorticoids are positively corresponded with potential 

virus viability, indicating a positive co-occurrence 

relationship between each other. In recognition of SARS- CoV-

2 RNA genomes as well as glucocorticoid concentrations in a 

lake adjacent to a hospital during the COVID-19 pandemic, by 

considering the distance and amount of medical waste 

accumulation, the possibility of SARS-CoV-2 RNA and 

glucocorticoids through the hospital leakage to the adjacent 

lake was found [47]. The glucocorticoid, for example, 

methylprednisolone was used in the clinical treatment of 

18.6% of COVID-19 patients [31]. Therefore, glucocorticoids 

may some extent represent hospital-related contaminants and 

embodied a novel coronavirus infection status. 

Glucocorticoids, as a double-edged sword, caused to stimulate 

dormant virus [48] and accelerate virus replication [49,50]. 

Presumably, glucocorticoids interacted directly with these 

viruses via idiosyncratic responsive elements. The herpesvirus 

replication gene expression is activated by glucocorticoids 

through ES-1 fragment-mediated interaction [51]. SARS- CoV-

2 is bounded to glucocorticoids via the main protease Mpro 

based on computational calculations [52]. However, retaining 

this type of communication may be advantageous for SARS-

CoV-2 [53]. Rare research to date has referred to the 

glucocorticoid-virus association in the aqueous medium. In 

situations where hormone residues in the environment have 

become a widespread problem [54], it is important to conduct 

research on the environmental interaction between 

glucocorticoids and viruses. 

Conclusion 

This mini-review focused on the characteristics of 

environmental viruses using high-intensity use of pandemic 

prevention resources during the COVID-19 epidemic. The 

abundance and viability of specific human viruses are 

potentially enhanced by trihalomethane and glucocorticoids, 

leading to a neglected threat to human health. From the vision 

of environmental virology, this study revealed environmental 

damage under unconventional human activities, that is, the 

excessive   usage   of   pandemic   prevention   resources. It is 

important to study the mechanisms between viruses and 

epidemic prevention chemicals systematically at the 

community, species, and gene level. Studies should also be 

launched to assess the subsequent dynamics of the virus 

community and to track community succession trends. This 

review serves as a proposal for the development of 

environmental management policy in the post-epidemic 

period and emphasizes the need for regular monitoring of the 

human virus in the environment. 
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