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Abstract. This work studies the influence of fuzzy uncertainties on the
asymptotic behavior of the solution of a prey-predator model. Here, ini-
tial conditions and parameters are interpreted as fuzzy variable. The
population densities at a specific time are also interpreted as a fuzzy
variable in which the possibility distribution function depends on the
possibility distribution functions of the parameters. We provide closed
formulas for expected values of some equilibrium points. We also compare
the expected value of the fuzzy solution with the deterministic solution
providing computational simulations in order see the difference between
theses approaches.
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1 Introduction

It is not always possible to know exactly the initial number of individuals or
the carrying capacity in a given environment in applied problems of population
dynamics. In general, one gets information by means of linguistic statements
such as the initial condition is approximately x0 or the carrying capacity is about
k0. To the extent that the label approximately is imprecise, it can be modeled as
a fuzzy set. Thus, linguistic statements like these can be seen as fuzzy restrictions
on the values taken by the variable of interest [1].

Zadeh proposed a fuzzy restriction as a possibility distribution with its mem-
bership function playing the role of a possibility distribution function. In the
context of population dynamics, let us suppose that the label approximately x0
is modeled by a fuzzy set x0 with membership µx0

(x). Thus, given a specific
numerical value x = u0, the value µx0

(u0) is the degree of possibility that the
actual initial condition of the dynamical system assumes the value u0 given
the proposition the initial condition is approximately x0. Thus, the membership
function µx0(x) is the distribution of the possibility associated with the variable
initial condition.

Once we do not have precise information about the actual value of initial
condition or parameters we can not require a precise description of the state of
the population on a fixed time t > 0. It is reasonable to look for a description of
the state of the system by means of a fuzzy restriction as the state of the system
at time τ is approximately u0. This, in turn, defines a possibility distribution on
the values assumed by the state of the system.
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Several approaches have been presented in order to consider fuzzy uncertain-
ties on differential equations. Some authors use the H – derivative to obtain
solutions with fuzzy uncertainties [2–11]. Others construct the fuzzy solutions
of differential equations by means of a family of differential inclusions [12–15].
A third approach consists in applying the Zadeh extension principle on the ini-
tial conditions of deterministic solutions to obtain fuzzy solutions of differential
equations [16–24].

However, when dealing with fuzzy uncertainties as fuzzy restrictions on the
values taken by the variable of interest, or possibility distribution function, one
faces the problem of describing how the possibility distribution function evolves
over time. One gets a similar problem when looking at the initial condition as a
random variable described by probability distribution functions [25–28]. Thus,
here we follow a similar approach used in probability theory to deal with fuzzy
uncertainties on initial conditions and parameters. As we will see, interpreting in
this way, we end up with the approach of applying the Zadeh extension princi-
ple on the initial condition and parameters of deterministic solutions. Therefore,
considering parameters and initial conditions as possibility distribution functions
of fuzzy variables lead us to define fuzzy solutions by taking Zadeh extension
of deterministic solutions which is similar to the third approach previously de-
scribed.

A naive approach to handle deterministic differential equations with uncer-
tainties, fuzzy or probabilistic, on parameters of the dynamical systems would be
to obtain a representative value of these parameters by means of some statistical
procedure [31]. These representative values, in turn, are inserted in the equation
and the analysis is carried on. That is, by this approach, we deal with uncertain-
ties prior to the analysis of the dynamical systems. Here we are going to think
in another direction. First, we are interested in describing how the possibility
distribution function evolves over time and, after that, we calculate a represen-
tative value of such a fuzzy variable. As we will see, these two approaches may
lead to distinct results.

Thus, in order to measure the effects of the fuzzy uncertainties on the dy-
namics we wonder about the expected value of the values assumed by the state of
the system. We do this by comparing the expected value with the deterministic
solution defined by the expected value of the initial condition and parameters.
We provide closed-form expressions for the expected value of the fuzzy variable
described by the logistic equation and for the fuzzy variable that represents the
maximum growth time.

The organization of this article is as follows: in Section 2 we discuss some
basic concepts on fuzzy sets and fuzzy variables; in Section 3 we present the
prey-predator model we are considering in this work; in Section 4 we discuss
about the expected value of the fuzzy variable that describes the state of the
system at time t > 0; in Section 5 we discuss about the expected value of the
equilibrium points; in Section 6 we provide numerical simulations to illustrate
our main results.
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2 Some basic concepts

2.1 Fuzzy sets

As it is well known, given a set U, a fuzzy subset of U is characterized by
a function defined on U taking values on [0, 1] ([33]). This function is called
membership function. Given α ∈ [0, 1], an α-cut or α-level of a fuzzy set is
defined as the set of points of U where the membership function is greater than
or equal to α. Precisely, if u is a fuzzy set of U with membership function
µu : U → [0, 1] then, for 0 < α ≤ 1, the α-cut of u is a subset of U given by

[u]α = {x ∈ U : µu(x) ≥ α}

and, for α = 0,

[u]0 = {x ∈ U : µu(x) > 0}

is the support of u ([4]).

Let us denote by F (U) the set of fuzzy subsets of U ⊂ R, in which the α-cuts
are non-empty, compact and (simply-) connected for every α ∈ [0, 1]. We can
measure the distance between two fuzzy sets in the following way: given two
points u,v ∈ F (U), the distance between u and v is defined by

d∞(u,v) = sup
α∈[0,1]

dH([u]α, [v]α), (1)

where dH is the Hausdorff distance for compact sets. We also denote by χ{A}
the characteristic function of the set A.

In this work, we are interested in fuzzy variables taking values on U =
[0,+∞), the set of non-negative real numbers. However, we describe the fol-
lowing concepts for a general set U ⊂ Rn.

A fuzzy subset u of U , defined by a membership function µu : U → [0, 1],
induces, according to Zadeh [1], a possibility distribution function on the set of
values of a variable of interest ξ. That is, if ξ is a fuzzy variable then µu(x) is
the degree of possibility that ξ assumes the particular value x. In the context
of possibility theory, µu(x) = 0 means that it is impossible that the variable ξ
assumes the value x. The quantity µu(x) represents the degree of possibility of
the assignment ξ = x, where some values x being more possible than others. The
closer the value µu(x) is to 1, the more possible it is that x is the actual value
of the variable.

It is well known ([1]) that given a subset A ⊂ U , the possibility measure of
A is defined by

Posµ(A) = sup
x∈A

µu(x),

and the necessity measure of A is defined by

Necµ(A) = 1− Posµ(Ac),
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where Ac stands for the complement set of A in U . The credibility measure of
A, A ⊂ U , according to [32], is defined as

Crµ(A) =
1

2
(Posµ(A) + Necµ(A)) .

We point out that Posµ(A) is a measure of the possibility of the fuzzy variable
ξ to assume values in A. Note that Posµ(∅) = 0 and Posµ(U) = 1. On the other
hand, Necµ(A) can be seen as a measure of the fuzzy variable ξ not assume
values in Ac. Thus, both numbers are measures for the question if an event A
either occur or not ([36]). Thus, the Crµ(A) is the average of these two answers
to the occurrence of an event A.

In order to get a representative value of a fuzzy variable ξ, it is important to
define the concept of its expected value ([1]). The expected value of ξ is defined
as

E[ξ] =

∫ ∞
0

Crµ([r,+∞))dr −
∫ 0

−∞
Crµ((−∞, r))dr,

provided that at least one of these integrals is finite ([32]).
Now, when U is the set of non-negative real numbers, if we define the quan-

tities
ξ′α = inf{x : µu(x) ≥ α} and ξ′′α = sup{x : µu(x) ≥ α},

for all α > 0, then the previous formula becomes

E[ξ] =
1

2

∫ 1

0

(ξ′α + ξ′′α) dα, (2)

provided that ξ′α and ξ′′α are finite ([32]). We emphasize that the definition of
Pos(A), Nec(A) and Cr(A) depends on the possibility distribution function µu

of the fuzzy variable ξ.

2.2 Transformations of fuzzy variables

Consider now a continuous function g defined on some subset of the real numbers.
If ξ is a fuzzy variable then so is η = g(ξ), and there is a natural way to define
a possibility distribution function µg(u)(x) to g(ξ) from the distribution µu(x)
of ξ as it follows: given A ⊂ U, then g(ξ) assumes values on A if and only if ξ
assumes values on g−1(A). Thus, by definition, the possibility of g(ξ) to assume
values in A is the same as the possibility of ξ to assume values on g−1(A). Thus,
following [1], it turns out that

Posη(A) = sup
y∈A

µĝ(u)(y) = sup
x∈g−1(A)

µu(x) = Posξ
(
g−1(A)

)
,

and, as a consequence, we obtain the possibility distribution function of the fuzzy
variable η = g(ξ) by taking

µĝ(u)(y) = sup
x∈g−1(y)

µu(x). (3)
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We remark that expression (3) is the Zadeh extension of g as given in [33].
This is the reason why we denote the possibility distribution function of g(ξ) by
µĝ(u)(y). We also remark that this approach is similar to that one followed in
the context of transformation of random variables in probability theory (see, for
instance, [25]).

According to [34], if g is monotone (increasing or decreasing) then the ex-
pected value of the fuzzy variable η = g(ξ) can be computed by

E [g (ξ)] =
1

2

∫ 1

0

(g(ξ′α) + g(ξ′′α)) dα. (4)

This formula will be useful in the following sections.

2.3 Several fuzzy variables

One faces the problem of uncertainties on several variables in population dynam-
ics and other applications. Before proceeding to the next section, let us present
the main ideas on this subject.

Let ξ1 and ξ2 be fuzzy variables with possibility distribution functions µu1

and µu2
, respectively, both defined on U . Following [1], these variables define

a fuzzy variable, namely η = (ξ1, ξ2), on U × U , in which its joint possibility
distribution function µu : U × U → [0, 1] is given by

µu(x, y) = min{µu1
(x), µu2

(y)}. (5)

We are assuming that the variables ξ1 and ξ2 are unrelated, or non-interactive,
in the sense that a specific value of ξ1 gives no information about the possible
values that ξ2 can assume.

3 A prey-predator model

We are considering the prey-predator model given by the system of differential
equations 

dx

dt
= a1x− b1x2 − c1xy, x(0) = xo > 0,

dy

dt
= a2y − b2y2 + c2xy, y(0) = yo > 0,

(6)

in which the parameters are all non negative except possibly a2. Let ϕt(xo, yo, p)
be the solution of Eq. (6) at (xo, yo) and a vector of parameters p. As is well
known, the application ϕt : R2 → R2 is the flow acting on the phase space R2.
Thus, for every initial condition (xo, yo) ∈ R2 we have a deterministic solution
ϕt(xo, yo, p) = (x(t, xo, yo, p), y(t, xo, yo, p)) .
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Eq.(6) has Jacobian matrix at (x̄, ȳ) given by

J(x̄, ȳ) =

(
a1 − 2b1x̄− c1ȳ −c1

c2 a2 − 2b2ȳ + c2x̄

)
(7)

and thus it turns out that:

a) The equilibrium point q1 = (0, 0) is unstable;
b) The equilibrium point q2 = (a1/b1, 0) is unstable;
c) The equilibrium point q3 = (0, a2/b2) is unstable provided that c1a2 < a1b2;
d) The equilibrium point

q4 =

(
a1b2 − a2c1
b1b2 + c1c2

,
a2b1 + a1c2
b1b2 + c1c2

)
is unstable provided that a1b2 < a2c1.

The following analyzes the behavior of the solution x(t) and y(t) under fuzzy
uncertainties.

4 Fuzzy uncertainties on the model

Due to the lack of complete information or error of measurements, more often
than not, one needs to deal with imprecision on the parameters. A naive approach
to deal with uncertainties in models like the previous one defined by Eq. (6), it
could be to compute the average values of the parameters and then analyzing
the dynamics by means of its deterministic solution using these average values
for the parameters.

Thus, let us assume that parameters and initial conditions are under restric-
tion given by fuzzy label as approximately, for instance. That is, we are assuming
that these variables satisfy a statement like the variable ξ is approximately ξo.
Thus, according to Zadeh, the membership function of the fuzzy label approx-
imately is the possibility distribution function of ξ. In works like [24] and [16],
in case of having fuzzy uncertainties on the initial conditions, the authors de-
fine the fuzzy solution of Eq. (6) as the Zadeh’s extension of the deterministic
flow ϕt : R2 → R2. In case of having fuzzy uncertainties on other parameters of
Eq. (6), we consider those parameters as initial conditions of a differential equa-
tion with zero derivative and proceed as before, taking the Zadeh’s extension on
the initial condition of the deterministic flow.

Here, however, we are going to take another direction. Since we are assum-
ing that xo, yo and some parameter, or vector of parameters, p in Eq. (6) are
fuzzy variables, these quantities x(t, xo, yo, p) and y(t, xo, yo, p), for a fixed t > 0,
are fuzzy variables as well. Following the recipe described in the previous sec-
tions, for a fixed t > 0, we can obtain the possibility distribution function of
ϕt(xo, yo, p) by means of the Zadeh’s extension on the parameters xo, yo and p
of the functions x(t, xo, yo, p) and y(t, xo, yo, p). That is, the number of pray and
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predators at a fixed time t ≥ 0 are fuzzy variables whose possibility distribution
are x̂(t,xo,yo,p) and ŷ(t,xo,yo,p).

Although these two approaches seem different, the relationship between them
is as it follows ([17]).

Theorem 1 ([17]). Let the applications π̂x and π̂y be the Zadeh’s extensions
of the orthogonal projections πx : R2 → R and πy : R2 → R on the x and y axis,
respectively. Then it follows that:

x̂ = π̂x ◦ ϕ̂t ŷ = π̂y ◦ ϕ̂t.

4.1 Fuzzy uncertainties on equilibrium points

We consider fuzzy uncertainties on the parameters so that the equilibrium points
are also fuzzy variables whose the possibility distribution function are the Zadeh’s
extension of the expressions that define such equilibrium points. In [17] the au-
thors have proved if an equilibrium point is asymptotically stable then x̂ and ŷ
converge to the Zadeh’s extension of the x and y coordinates of the expressions
that define such equilibrium point. In other words, we have that q̂ is the Zadeh’s
extension of an equilibrium point then

x̂ = π̂x ◦ ϕ̂t → π̂x ◦ q̂

ŷ = π̂y ◦ ϕ̂t → π̂y ◦ q̂

Theorem 2. Suppose that the fuzzy set c1 is possibility distribution function of
the fuzzy variables c1 and furthermore suppose that

η′α = inf{x : µc1
(x) ≥ α}, η′′α = sup{x : µc1

(x) ≥ α}.

Then it turns out that:

a) The α - cuts of the fuzzy set π̂x ◦ q̂ are[
a1b2 − a2η′′α
b1b2 + c2η′′α

,
a1b2 − a2η′α
b1b2 + c2η′α

]
.

b) The α - cuts of the fuzzy set π̂y ◦ q̂ are[
a2b1 + a1c2
b1b2 + c2η′′α

,
a2b1 + a1c2
b1b2 + c2η′α

]
.

Proof. Since πx, πy and each coordinate of the equilibrium point q4 are con-
tinuous functions for c1 > 0 then we have for a continuous function f that
[f̂(u)]α = f([u]α). In both cases, the x and y coordinates are decreasing
functions with respect to c1 and this proves the statement.

Next we look at the expected values of fuzzy solutions and equilibrium points.
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5 Expected values of fuzzy solutions and equilibrium
points

We are interested, in this section, in the behavior of the expected values of the
fuzzy solution defined by considering xo, yo and c1 as fuzzy variables whose the
possibility distribution functions are xo, yo, c1, respectively. To this end, we
have the following theorem.

Theorem 3. Let qx(c1) and qy(c1) the fuzzy variables defined by the x and y
coordinates of q4 respectively. If c1 is a fuzzy variable with triangular possibility
distribution function µc1(x) = (c− ε/c/c+ ε) then we have that:

E [qx] = −a2
c2

+
b2A

2c22ε
ln

(
B + c2ε

B − c2ε

)

E [qy] =
A

2c2ε
ln

(
B + c2ε

B − c2ε

)
in which A = a2b1 + a1c2 and B = b1b2 + c2c.

Proof. To prove the first statement we must observe that the α - cuts of µc1
(x)

are the intervals [η′α, η
′′
α] where

η′α = c− (1− α)ε and η′′α = c+ (1− α)ε.

Since the expected value of the fuzzy variable qxc is given by

E[qx(c1)] =
1

2

∫ 1

0

[qx(η′α) + qx(η′′α)] dα,

integrating we obtain the desired result.
On the other hand, the second statement can be prove similarly taking into

account the expression that defines qy(c1).

We have also the following theorem.

Theorem 4. Suppose that the fuzzy sets xo, yo and c1 are possibility distribu-
tion functions of the fuzzy variables xo, yo and c1, respectively, and let qx and qy
be the fuzzy variables defined by the x and y coordinates of q4. If the equilibrium
point q4(c1) is asymptotically stable for all c1 ∈ [c1]0 then we have that:

a) The expected value of the fuzzy variable x(t) converges to the expected value
of qx. That is, E [x(t)]→ E [qx] as t→∞.

b) The expected value of the fuzzy variable y(t) converges to the expected value
of qy. That is, E [y(t)]→ E [qy] as t→∞.

Proof. Since q4(c1) is asymptotically stable for all c1 ∈ [c1]0, according to [35]
(Corollary 14, p. 12), the family of function indexed by t, x(t) : K → R, K =
[xo]

0× [yo]
0× [c1]0, converges uniformly to f : K → R, defined by f(xo, yo, c1) =
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qx, as t → ∞. That is, given ε > 0, there is a T > 0 such that for all t > T we
have |x(t, xo, yo, c1)− qx(c1)| < ε for all (xo, yo, c1) ∈ K. Thus,

|E [x(t, xo, yo, c1)]− E [qx(c1)]| =
∣∣∣∣12
∫ 1

0

[x(t, h′α)− qx(ζ ′′α) + x(t, h′′α)− qx(ζ ′α)] dα

∣∣∣∣
≤ 1

2

∫ 1

0

|x(t, h′α)− qx(ζ ′′α)| dα+
1

2

∫ 1

0

|x(t, h′′α)− qx(ζ ′α)| dα

< ε

in which h′α = (ξ′α, η
′
α, ζ
′
α) and h′′α = (ξ′′α, η

′′
α, ζ
′′
α). This inequality proves the first

statement.
We can prove the second statement analogously.

Once that qx(E(c1)) is not necessarily equal to E(qx(c1)) then we can con-
clude from last theorem that the expected value a the fuzzy solution are not
necessarily equal a deterministic solution, at least not near an equilibrium point.
Thus, although we are not able to find a closed-formula for the expected value of
fuzzy solutions of Eq. (6) from last statement we can conclude that the two ap-
proaches of dealing with uncertainties discussed here provide different numerical
values.

6 Worked example

In order to illustrate the results obtained in previous sections, let us consider
xo, yo and c1 as fuzzy variables given by the triangular fuzzy possibility dis-
tribution functions µxo

(x) = (5/6/7), µyo
(x) = (0.01/0.51/1.01) and µc1

(x) =
(0.0150/0.0250/0.0400). The others parameters of Eq. (6) are: a1 = 0.1, b1 =
0.01, a2 = −0.02, b2 = 0.01 and c2 = 0.005.

The expected value of the fuzzy variable c1 is 0.0250 and so the equilibrium
point q4 = (6.6667, 1.3333) is asymptotically stable. However, since c1 is a fuzzy
variable thus q4 is also a fuzzy variable and, as predicted by Theorem 3, the
expected value of this fuzzy variable is E(q4) = (6.7119, 1.3560). By Theorem 4,
the expected value of the projections of the fuzzy solution of Eq. (6), the red
curves in Figure 1, converges to E(q4) as the time evolves.

7 Conclusion

In this work we have interpreted the initial condition and parameters of a prey-
predator model as fuzzy variables in which the possibility distribution function
is given by a membership function of fuzzy sets. These fuzzy sets represent a
label acting as a restriction on the values taken by the variables of interest.
As we have shown, this approach leads to different results than the standard
approach in which the uncertainties are handled apart from the dynamical sys-
tem. Finally, we would like to point out that if we see parameters and initial
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Fig. 1. Projections of the fuzzy solutions of Eq. (6). The white curve represents the
deterministic solution calculated using the expected values of the fuzzy variables xo, yo
and c1. The red curve represents represents the expected value of the fuzzy projections.

conditions as possibility distributions functions of fuzzy variables then Zadeh’s
extension of deterministic solutions is the natural way to define fuzzy solutions
for autonomous differential equations.
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