
Procedia Computer Science  00 (2010) 000–000 

Procedia 
Computer 
Science

www.elsevier.com/locate/procedia

WCIT-2010

  A transparent virtual machine monitor level packet compression 
network service 

Ali Hamidi, Hadi Salimi and Mohsen Sharifi 
Distributed Systems Labaratory, School of Computer Engineering, Iran University of Science and Technology,  

Abstract 

Packet compression is a well-known technique for improving the performance of low speed networks such as WANs. This 
technique is also effective in networks with a high cost per transmitted byte, namely wireless networks. Most implementations of 
this technique as a network service, like IPComp, are not transparent and require modifications either to applications or to 
operating  systems.  Some  other  implementations  of  this  technique  as  a  network  service,  e.g.  WANProxy,  run  as  user  space  
processes that impose extra overhead due to unnecessary packet hooking mechanisms, involving frequent switches between user 
and kernel spaces. This paper presents a transparent packet compression network service using virtualization technology. This 
service transparently compresses network packet payloads and reduces communication overhead of applications running inside 
virtual machines. This service requires no modifications to applications, operating systems or virtual machine monitors. In 
addition, it has no extra overhead for switching between user and kernel spaces, because it is implemented as a configurable 
kernel module that can be activated or deactivated dynamically. A proof-of-concept transparent packet compression service has 
been implemented on Xen hypervisor. Evaluation results show the feasibility of development and dynamic configuration of such 
a transparent packet compression network service. Results also show approximately 25% improvement in network performance 
of applications over slow or congested links. In addition, the results show that this service can tremendously reduce transmitted 
bytes over high cost networks like wireless networks, in a transparent manner. 

Keywords: Packet Compression; Virtualization Technology; Transparent Network Service 

1. Introduction 

Compressing network packets is a well-known technique to improve network performance in a low speed 
network like WAN [1]. In addition, in some networks such as wireless ones, packet compression can improve 
efficiency especially when the link has high cost per transmitted byte [2]. In a technical view, compressing network 
packets can help reaching better performance in networks that the time needed for compression or decompression of 
a packet and transferring it through the network in lower than the time needed to transfer uncompressed packet. 

In networking community, there are two classes of packet compression technique: (1) network headers 
compression and (2) bulk compression. As the names imply, the first class just packs the network packet headers, 
while the later treats the whole packet (headers and data) as a block of raw bytes and compresses the whole. As far 
as, TCP/IP is the most common protocol stack nowadays, in this paper we concentrate on approaches that have been 
proposed on this protocol stack.  

There are many approaches proposed to compress network headers [1][2]. In such approaches if the compression 
is applied to IP header, there must be a compression and a decompression on every physical link in the network, 
because IP header information is used for routing packets from sender to receiver. We know that every compression 

c⃝ 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Guest Editor.

Procedia Computer Science 3 (2011) 401–407

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2010 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.12.067

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.12.067


Ali Hamidi / Procedia Computer Science 00 (2010) 000–000 

and decompression action has a cost and imposes an overhead to the network performance. Hence, compressing IP 
header on every physical link has a lot of overhead on the network performance and it must be done on hardware. 
But, (de)compressing of IP payload that contains headers and data of upper layer network protocols can be done in 
two nodes that are placed at two sides of a slow or congested link.  

On the other hand, in recent years, Virtualization Technology (VT) experiences resurgence due to its support for 
consolidation, isolation and migration [3]. In addition, the development of high performance Virtual Machine 
Monitors (VMMs), like Xen [4] and VMware ESX [5] has made VT more applicable to high performance 
computing (HPC) [6], Grid computing [7] and also pervasive computing [8]. More recently, an innovative concept 
called Cloud computing [9] has been introduced to the computing community. Generally, Clouds are an evolution of 
Grids using VT for dynamic provisioning of resources and scalability [10]. VT also allows plugging new transparent 
services into computing environments without any modifications to applications or operating systems. Many 
researches use this support in order to get information from applications or operating systems running in virtual 
execution environments [11][12][13]. VT can also be used to change the way applications use system resources like 
the network interface [12][14]. 

In our previous work [15], we proposed a local acknowledgement network service implemented in a virtualized 
environment. To achieve high performance, we have implemented and deployed this network service as a kernel 
module at the kernel space. We have used this approach to eliminate the need of switching from kernel-space 
networking modules into user-space network service and vice versa.  

In this paper we have used the mentioned approach to implement a network service that transparently 
(de)compresses network packets at two ends of a slow or congested link. Using this technique a system 
administrator can dynamically improve communication performance of nodes over slow or congested link. This 
means that for enabling or disabling packet compression network service, there is no need to change or reconfigure 
operating systems and applications running inside them. This technique makes packet compression more common 
and easy to use. The evaluation results of the proof-of-concept packet compression network service show 
approximately 25% improvement in network performance of the TCP applications on slow or congested link. 

The rest of paper is organized as follows. Section 2 presents some notable related works. Section 3 presents our 
approach to provide transparent packet compression network service. In Section 4 we report evaluation results of the 
implemented packet compression network service and finally Section 5 concludes the paper. 

2. Related Work 

IPComp [16] is the most famous packet compression technique that has been proposed in RFC 3173. It is actually 
a new protocol for compressing IP packets payload. This protocol has been designed to increase overall 
communication performance between nodes over slow or congested links. IPComp has been practically used inside 
IPSec [17] protocol family in case of compressing packet size before applying encryption to the IP packets, because 
encryption causes the data to be random in nature and compressing that data in lower protocol layers is ineffective. 
The most important issue in using IPSec protocol stack is the need of changing default protocol stack of the 
operating system. In other words, when an administrator decides to use IPSec, she should compile operating system 
kernel and configure it to use IPSec protocol stack. As we said before, one of the goals of this paper is provisioning 
of packet compression network service transparently. This means that administrators can dynamically enable or 
disable this service, without any change in application or operating system.  

In [18] there are some techniques that have been proposed to do bulk compression on the packets and 
overcoming its limitation like the need of large memory for memory and synchronizing dictionary at the compressor 
and decompressor. Bulk compression has no benefit in compressing network headers that are inside the packet, 
because the information inside the packets varies from a packet to packet. If a compression algorithm understands 
the syntax and semantic of headers inside a packet, it can be successful in exploring redundancies and it can gain 
good ratio in reducing the headers size [1]. This sub-domain of packet compression is called Header Compression 
and there are some researches like Van Jacobson Header Compression [19], IP Header Compression [2] and Robust 
Header Compression [20] that have been done in this sub-domain. In addition there are also some researches that 

402 A. Hamidi et al. / Procedia Computer Science 3 (2011) 401–407



Ali Hamidi / Procedia Computer Science 00 (2010) 000–000 

have  been  proposed  to  perform  header  compression  on  the  low  speed  serial  links  and  their  protocols  like  PPP  
[19][21].  

Some other works [22][23] concentrate on limited bandwidth of wireless networks and uses compression to 
improve communication performance of the application over these networks. For example in [22] a new header 
compression scheme has been proposed that efficiently compress UDP/IP and TCP/IP headers.  

WANProxy [24] is a user space application that acts as a network accelerator for applications communicating 
through WAN by compressing TCP packets. Beside the features and performance improvement that WANProxy 
could gain, we believe that (1) Applications must be modified to use WANProxy as their proxy to communicate 
through WAN and we know that this is not possible for all applications like legacy and closed source applications, 
(2) Because of user space nature of WANProxy, for every transferred packet, it have to go through network stack 
two times more. So we believe that using our approach, we can gain better improvement in network performance 
because this approach does not suffer from passing packet between user and space modes. In addition, this approach 
can achieve a high level of transparency in which neither the application nor the operating system has to be 
modified.  

3. Transparent Packet Compression Service 

In virtualized environments, VMM has the most privileged access to resources. This means that all resource 
accesses made by guest operating systems running inside VMs must go through VMM. This level of isolation 
creates the opportunity to provide several services for virtual machines transparently. We have chosen the Xen 
hypervisor as our testbed VMM. Fig 1 shows the typical networking path of an application running inside a virtual 
machine (DomU) in a Xen-based environment. In this environment, there is a special domain called driver domain 
or Dom0 that has direct access to hardware and the Xen hypervisor implements a ring-based shared memory 
mechanism for communication of front-end and back-end drivers.  

Fig. 1. Typical networking path of an application running inside DomU in a Xen-based environment [15]. 

NIC

Shared Memory Segment 

Dom0 DomU Guest 
Application 

Frontend Driver Backend Driver Real Driver 

Bridging, Routing 

Hardware 

A. Hamidi et al. / Procedia Computer Science 3 (2011) 401–407 403



Ali Hamidi / Procedia Computer Science 00 (2010) 000–000 

To make the performance overhead of switching between user and kernel spaces lower, we use this fact that all 
network  traffic  of  VMs  must  go  through  Dom0,  so  we  can  place  our  packet  compression  network  service  inside  
Dom0 kernel as a pluggable kernel module. We have implemented packet compression network service using 
netfilter [25] kernel module, because it is a flexible callback based packet filtering framework in the Linux kernel. 
We used a set of netfilter hooks in our implementation to capture the packets. Using these hooks, our packet 
compression network service was able to capture all traffics entering/exiting VMs. In addition, to provide dynamic 
configuration for the packet compression network service we used ProcFS [26] that is a RAM-based file system 
inside Linux kernel. Using this file system we built a configuration management system for packet compression 
network service. System administrators can simply manipulate configuration attributes of the service by opening and 
reading a virtual file, as well as changing the configuration attributes by writing new values to this file. 

Fig 2 shows the architecture of our proof-of-concept packet compression network service that is installed on two 
physical  machines.  According to  this  figure,  each  physical  machine  has  a  Xen-based virtualized  environment.  As  
stated before, packet compression network service is beneficial when applied to two or more machines that are 
communicating through a low speed or congested link. For simplification, we decided to only compress TCP 
packets. As depicted in Fig 2, there are two TCP applications running inside different virtual machines running on 
top of two physical machines. Each TCP application that is run inside a virtual machine communicates to the other 
TCP application using the WAN. In this figure, the arrows show the path of packet communication. Solid arrows 
show the path of unmodified packets and dashed arrows show the path of compressed packets. This shows that 
packet compression network service compresses outgoing packets that are going through WAN and decompresses 
the packets that are coming from WAN.  

Fig. 2. Packet compression network service installed inside Dom0 of two physical machines. 

WAN

Dom0 

Physical Machine 1 NIC

              Xen 

DomU
Guest 

TCP
Application Packet Compression Service

Frontend Driver

Shared Memory 

Backend 
Driver 

Real Driver

Bridging, Routing 

Dom0 

Physical Machine 2 NIC

              Xen 

DomU
Guest 

TCP
Application Packet Compression Service

Frontend Driver

Shared Memory 

Backend 
Driver 

Real Driver

Bridging, Routing 

404 A. Hamidi et al. / Procedia Computer Science 3 (2011) 401–407



Ali Hamidi / Procedia Computer Science 00 (2010) 000–000 

4. Evaluation 

To measure the performance of the implemented packet compression network service, we have built a testbed 
like  the  one  shown in  Fig  2.  Each physical  machine  was  equipped with  an  Intel  Core™ 2 Quad Q6600 2.4  GHz 
processor, 4GB of main memory, and a Realtek RTL-8029(AS) 100Mb/s NIC. The Xen hypervisor (version 3.2) 
was installed on one of these nodes. The Dom0 operating system of this environment was a CentOS 5.3 operating 
system with the kernel version 2.6.18-128-Xen.  

We have used Iperf [27] benchmark to evaluate network performance of TCP connection between two 
applications. Iperf offers several parameters to change the test conditions. We have used Iperf parameters to evaluate 
the network performance in three different tests. We ran the client version of Iperf in DomU of the first machine and 
the server version of Iperf in DomU of the second machine. In each test, we calculated the network performance in 
two modes: (1) Existence of packet compression network service and (2) without packet compression network 
service. 

We did three different tests by configuring parameters of Iperf. In the first test, we ran Iperf with its default 
parameters. Using these parameters it calculates the network bandwidth based on number of bytes that could be 
transferred in ten seconds. In the second test, we executed Iperf with a 30-second execution time and in third test we 
configure Iperf to calculate the network bandwidth for transferring about 200MB of data. Fig 3 shows the results of 
these tests. 

Fig. 3. Evaluation results of packet compression network service. 

A. Hamidi et al. / Procedia Computer Science 3 (2011) 401–407 405



Ali Hamidi / Procedia Computer Science 00 (2010) 000–000 

The results show that in all of the three tests we can achieve approximately 25% improvement in network 
performance. In addition, we have measured the saved sent bytes in the case of using our service. These 
measurements that are shown in Table 1 show the amount of transmitted bytes that have been saved using packet 
compression service. Based on these statistics, we can conclude that using packet compression service it is possible 
to reduce the transmitted bytes over a congested or high cost link.  

Table 1. Statistics of packet compression service about the amount of transmitted bytes have been saved. 

Test Saved transmitted bytes in the case of 
using packet compression service 

Iperf (default parameters) 9.61 MB 

Iperf (a 30-second execution time) 18.30 MB 

Iperf (transferring 200 of data)  32.31 MB 

5. Conclusion 

In this paper, we showed how virtualization technology, could help implementing a useful network service for 
compressing network packets. Other similar approaches to implement the packet compression technique either need 
to alter the application or the operating system's kernel. In addition, they may bring extra overhead due to 
transferring network packets upwards, compress them and then send them back to the kernel. To avoid these pitfalls, 
we proposed to implement such a network service inside the virtual machine monitor and using a configurable 
kernel module. To proof the feasibility of the proposed approach, we implemented this service and installed it on a 
Xen-based virtual environment. Evaluation results show that not also implementing and deploying of such a service 
is possible in a virtual environment but also it helps the compression process to perform faster according to the lack 
of unnecessary upcalls. The measured also results showed that using this service may lead to 25% increase in 
network bandwidth.   

References 

1. C. Shen Tye and G. Fairhurst, A review of IP packet compression techniques, in PostGraduate Networking Conference, (2003). 
2. M. Degermark, B. Nordgren, and S. Pink, IP Header Compression, RFC 2507, (1999). 
3. A.I. Sundararaj, A. Gupta, and P.A. Dinda, Increasing application performance in virtual environments through run-time inference and 

adaptation, in Proc. of the 14th IEEE Int. Symp. on High Performance Distributed Computing (HPDC), (2005) 47-58. 
4. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen and the art of virtualization, in Proc. 

of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP'03), (2003) 164-177. 
5. VMWare Corporation, http://www.wmware.com. 
6. W. Huang, J. Liu, B. Abali, and D. K. Panda, A case for high performance computing with virtual machines, in Proc. of the 20th Annual 

international Conference on Supercomputing (ICS '06), (2006) 125-134. 
7. R. J. Figueiredo, P. A. Dinda, and J. A. Fortes, A case for Grid computing on virtual machines, in Proc. of the 23rd International Conference 

on Distributed Computing Systems (ICDCS), (2003) 550-561. 
8. L. Rudolph, A virtualization infrastructure that supports pervasive computing,IEEE Pervasive Computing, vol. 8, no. 4, (2009) 8-13. 
9. R. L. Grossman, The case for cloud computing, IT Professional, vol. 11, no. 2, (2009) 23-27. 
10. M. A. Vouk, Cloud computing - issues, research and implementations, in Proc. of the International Conference on Information Technology 

Interfaces (ITI'08), (2008) 31-40. 
11. A. Gupta and P. A. Dinda, Inferring the topology and traffic load of parallel programs running in a virtual machine environment, in 10th 

Workshop on Job Scheduling Strategies for Parallel Processing (JSPPS 2004), (2004). 

406 A. Hamidi et al. / Procedia Computer Science 3 (2011) 401–407



Ali Hamidi / Procedia Computer Science 00 (2010) 000–000 

12. A.  Gupta  ,  M.  Zangrilli  ,  A.  I.  Sundararaj  ,  A.  I.  Huang  ,  P.  A.  Dinda  and  B.  B.  Lowekamp,  Free  network  measurement  for  adaptive  
virtualized distributed computing, in 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS), (2006). 

13. S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, Antfarm: tracking processes in a virtual machine environment, in Proc. of the 
Annual Conference on USENIX '06 Annual Technical Conference, (2006) 1. 

14. S. Kumar and K. Schwan, Netchannel: a VMM-level mechanism for continuous, transparentdevice access during VM migration, in Proc. of 
the Fourth ACM SIGPLAN/SIGOPS international Conference on Virtual Execution Environments (VEE '08), (2008) 31-40. 

15. A.  Hamidi,  H.  Salimi,  and  M.  Sharifi,  Network  Service  Provisioning  using  System-Level  Virtualization,  in  The  First  Workshop  on  
Provisioning and Management of Service Oriented Architecture and Cloud Computing (PROMASC 2010), In conjunction with the 
NOTERE’2010 Conference, (2010). 

16. A. Shacham, B. Monsour, R. Pereira, and M. Thomas, IP payload compression protocol (IPComp), Network Working Group, RFC 3173 
(2001). 

17. S. Kent and R. Atkinson, Security architecture for the internet protocol, Network Working Group, RFC 2401 (1998). 
18. HP Company, HP Case Study: WAN Link Compression on HP Routers, (1995). 
19. V. Jacobson, Compressing TCP/IP Headers for Low-Speed Serial Links Status, Network Working Group, RFC 1144 (1990). 
20. C. Bormann, et al, RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed, RFC 3095, 

(2001). 
21. M. Engan, S. Casner, and C. Bormann, IP header compression over PPP, Network Working Group, RFC 2509 (1999). 
22. M. Degermark, M. Engan, B. Nordgren and S. Pink, Low-loss TCP/IP header compression for wireless networks, Wireless Networks, vol. 3, 

no. 5 (1997) 375–387. 
23. M. Lee, H. Jin, I. Kim and T. Kim, Improving TCP Goodput over Wireless Networks Using Kernel-Level Data Compression, in Proc. of the 

18th international Conference on Computer Communications and Networks, (2009) 1-6.  
24. WANProxy - A multi-platform open source WAN-optimizing proxy server, http://wanproxy.org. 
25. A. Jones, Netfilter and IPTables – a structural examination, SANS Institute Reading Room site (2004). 
26. P. J. Salzman, M. Burian, and O. Pomerantz, The Linux kernel module programming guide. (2007). 
27. Iperf: Measuring Maximum TCP and UDP Bandwidth Performace, http://iperf.sourceforge.net. 

A. Hamidi et al. / Procedia Computer Science 3 (2011) 401–407 407


