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Preface

This thesis is written while visiting Arbeitsgruppe Datenbanken at the University of
Bremen. The group of AG Datenbanken works in the field of Data Science. Large
datasets from different domains like the eye-tracking data and the marine research
data are used for making predictions by applying machine learning methods. This
thesis works with the eye-tracking data in the project ’Schau mir in die Augen’.



Abstract

The study includes working with eye movements for user identification. The main
objective of the thesis is to improve the accuracy by modifying a pre-existing pipeline
to recognize and take advantage of outliers. For this goal, the reasons for outliers
and their particularities are investigated. Various methods are used and compared
for detecting the outliers. It is found that removing the outliers from the pipeline
decreases the accuracy. Instead, it is studied to include them in the pipeline. For this,
a new classifier is added into the pipeline along with fixations and saccades, which
deal with outliers. All the experiments are performed on the Bio-Tex dataset and lead
to an improvement of accuracy. The final pipeline is tried on the Bio-Ran dataset,
but there are no conclusive results, and more experiments need to be performed.
Two classifiers are used in the thesis, majorly is Random Forest, and the other is
Radial Basis Function Network. The Bio-Tex shows an improvement in accuracy by
considering the outliers for the two classifiers. For Bio-Ran, there are no conclusive
results obtained. Outliers play a vital role in eye movements and show the potential
to improve the accuracy in the user identification field with more research.
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1 Introduction

The thesis is based on using eye movement Biometrics in the field of User identi-
fication. There is already pre-existing work in the field of user identification, but
they come with drawbacks. Either some of the Biometrics used for user identification
can be forged, or some provide less accuracy. Eye movement is a comparatively new
biometric in the field of user identification. This is because of the advantages and
uniqueness of eye movement as a biometric that research is in the process of devel-
oping an algorithm that can work with eye movements for user identification. An
algorithm has been developed by the working group of AG Datenbanken, the Univer-
sity of Bremen, for using eye biometrics in user identification. Further research and
development need to be done in the project to improve the prediction accuracy. This
thesis includes research and work on outliers in eye movement data and improve the
prediction accuracy.

1.1 Background of Eye movement Biometrics

Biometric is a measure that is generally used to identify a person uniquely based on
individual traits or characteristics. Biometric data is specific and unique to each user.
The primary purpose of Biometrics is to authenticate the person or ensuring that the
person is who he claims to be. Thus identifying and authenticating the person is
one major task, and this can find applications in various fields. The best example of
authenticating the person or user identification is a mobile phone where the person is
recognized depending on his fingerprint. This is the most basic example of user iden-
tification using Biometrics. Research is being carried out on other biometric features
which can be used for user identification. One such feature is the eye movement of a
person.

Eye movement is an indication of behavioural and physiological aspects of a per-
son, and thus forging or replicating eye movements is difficult. The other popular
biometrics like fingerprint or iris recognition are based on physiological aspects only.
Therefore these characteristics can be replicated or forged and thus are not com-
pletely safe to use. Eye movements are mostly based on behavioural features, and
thus it is very difficult to forge such movements. Eye-tracking research focuses on
gaze point data for understanding user attention. Every individual has different scan
paths or eye movements for the same view. This scan path consists of fixations and
saccades. Fixations are movements of the eye during which eyes are relatively stable,



while saccades are rapid movements of the eye. The duration, position, number,
order of these fixations and saccades vary from user to user.

Eye movements are an indication of the relation between the eyes and mind of a
person. That is, when a person is looking at some object or an image, the location
of the gaze point on that image is an indication of what a person is thinking about.
It is proved that whatever a person is seeing is decided by the brain as nerves from
the eyes are connected with brain muscles [1]. However, in tasks like reading, visual
attention may lead to or lag.

There are various applications of eye movement Biometrics, but the main appli-
cations include identification and verification [2]. In identification, an input eye
movement pattern is compared with all the eye movements in the dataset, and then
the best comparison is searched for. In verification, the eye movement pattern is
compared and checked whether it is of the person who he claims to be.

1.2 Background of the thesis

The thesis is based on pre-existing work presented by the authors of [3]. The project
titled ’Schau mir in die Augen’, also referred to as SMIDA, was developed for the
purpose of user identification using a machine learning-based pipeline. In SMIDA,
initially, a trajectory of eye movements is considered for a set of users. Eye movement
trajectory is the point-wise movement of eyes while seeing an object/picture/video or
something similar. This trajectory is divided into fixations and saccades movement,
where fixations indicate points at which the eye movement is stable for a prolonged
period while saccades are rapid movements of eyes. There are various other eye
movements involved, but fixation and saccades are proven to be most informative
and easy to distinguish and are thus used in the experiments.

From these two types of eye movements, features are extracted and then trained
separately on two different classifiers. Hundreds of features can be evaluated from
the data like the duration, mean values, standard deviations, and a lot more, but
only a few are selected and worked on, which can be seen in detail in later chapters.
Each of the classifiers predicts a user at its output for a trajectory input. The output
of both of these classifiers is considered, and the final output is the average prediction
of both of these classifiers. An improvement to this pre-existing work can be made by
considering the outliers. Outliers are basically points that are away from the normal
distribution of data.

1.3 Objective of the thesis

The aim of the thesis is to work on the outlier points and try to improve the accuracy
achieved till now. The different objectives included in this thesis are mentioned below:



• To do research on outliers in eye movement trajectories. Study various reasons
involved due to which the outliers are present in trajectories.

• To detect outliers from eye movement trajectories. These outliers could be
present in the trajectories at different places and can be of different lengths.
To detect these outlier points correctly and not to include fixation and saccade
points into the outliers is the major task of the thesis.

• To remove outliers from the data and check the accuracy of the original pipeline.

• To add a new classifier in the pipeline to work with outliers. This classifier
should be able to work with random data size as few users can have a lot of
outliers, and some can have no outliers. So adding a classifier and selecting its
parameters correctly is again a major task.

• To compare the results at different stages as mentioned below:

1. Original accuracy

2. Accuracies after removing outlier points from fixation and saccade

3. Final accuracy that is accuracies after adding new classifier for outliers

This comparison is an indication of the behaviour of outliers on the performance
of the whole pipeline. So analyzing these accuracies and also studying the reason for
outliers in data is beneficial. The evaluation of the result is based on the mean and
standard error of the mean of accuracies for a fixed number of seeds. The standard
error of the mean tells how precise is the standard mean compared to the population
mean.

Evaluating the pipeline and analyzing the results for different conditions is a major
task in the thesis. More details about the implementation of each step, the possible
modifications to the original pipeline are mentioned in the thesis.

1.4 Thesis organization

The thesis is divided into a total of seven chapters. A short overview of each chapter
is mentioned below.

1. The Chapter 1 is the introduction that introduces the problem which is solved
or rather dealt with in this project.

2. Chapter 2 is the background of the thesis where eye movements, work in the
field of user identification based on eye movements is discussed, and also the
outlier detection approaches.



3. Chapter 3 is SMIDA which is an introduction to the already existing pipeline
and an overview of the methods used in the pipeline.

4. The Chapter 4 is an introduction to the outliers and the methods used in the
pipeline for outlier detection.

5. Chapter 5 shows the new proposed pipeline to deal with outliers and explains
modifications in each block of the pipeline.

6. The Chapter 6 presents the results for different methods, different pipelines,
and different classifiers. Reasons for the achieved results are discussed here.

7. The Chapter 7 is the conclusion to the thesis, possible future work to further
improve the accuracy and limitations of the work.



2 Thesis Background survey

In this chapter, initially, the basic types of biometrics are discussed and why it was
needed to do research on a new type of biometric. Then the pros of eye movement
biometrics are discussed along with different types of eye movements present. In the
next step, the current research in eye movement biometrics for user identification is
discussed. The thesis aims to work with the outliers, and thus, different approaches
to deal with outliers are discussed along with their pros and cons.

2.1 Biometrics

“The term biometrics refers to a measurable, physical characteristic or personal be-
havioural trait used to recognize the identity of a person” [4]. Authentication is done
in different ways. For example, by using some information particular to an individ-
ual like passwords or by some object, the person has like keys, or by something the
person is like the person’s fingerprints, voice. The following requirements [5] should
be satisfied to consider a human feature as biometric:

1. Any human feature can be considered as biometrics if it can be unique from
person to person.

2. The other requirement is that biometric should be recordable.

3. The third requirement is that these biometric features should be constant in a
person for an extended period.

Biometrics has several advantages [5] over the traditional system of passwords or
keys. Biometrics are very hard to fake or steal, like passwords. Biometrics is very
easy and convenient to use. Biometrics cannot be lost by a person like the keys.

But there are a few disadvantages [5] of using biometrics which needs to be dealt
with. It is not easy to set up the biometric system and make it run. If biometric data
is not recorded correctly, it can lead to false recognition. Also, biometric data can
be hacked and manipulated. It could create an issue if the biometric feature used by
the person is affected. For example, if the finger is injured, it is impossible to use the
fingerprint biometric system, which can create problems.

Many different types of biometric features can be used [6]. The selection of the
biometric feature entirely depends on the application. Biometrics can be divided into
two subgroups: the physiological and the behavioural groups [7]. This can be seen in



Figure 2.1. Behaviour biometrics are comparatively less expensive, while physiolog-
ical is more accurate. Physiological biometrics include fingerprint recognition, face
recognition, DNA, Palmprint, Hand Geometry, and Iris recognition.

Figure 2.1: Examples of Physiological and Behavioral biometrics [8]

1. Fingerprint recognition: It is one of the most popular methods present. The
epidermis and dermis are two layers of the human skin. The dermis again has
two layers papillary and reticulated layer. The papillary layer is unique from
person to person, and two humans can not have the same papillary pattern [9].

2. Face recognition: There are many different characteristics based on which hu-
man faces can be distinguished. There is a total of 80 nodal points on the
human face. Some of them are the distance between eyes, the nose’s width, the
depth of the eye sockets, and the length of the jawline [6].

3. DNA: It is a part of the cell that contains genetic information and is unique for
each person [6].

4. Iris recognition: Iris is unique for each person, and it does not change in the
complete lifetime [6].



5. Hand recognition: For hand recognition, palm print can be considered, which
is different for each person. There are different principle lines and intersection
points on the palm which are used to differentiate each palm [6].

Behavioural biometrics include the keystrokes rhythm, voice, or signature.

1. Keystrokes: The method of using the keyboard differs from person to person.
For example, some have fast typing speed, finger placement, pressure while
typing, etc.

2. Voice: People can be recognized using their voice. The form, tone, texture of
voice is different from person to person and depend on various factors.

3. Signature: Signature reveals the writing style, the pressure applied while writ-
ing, and many such factors unique for each person.

Applications [9] of biometrics are nowadays increasing in many sectors due to in-
creased demand for security. The field of biometrics application includes a criminal
department where a criminal can be detected based on his biometrics like face or fin-
gerprint. At airports, border entry recognition of a person based on his biometrics is
done. These days passports also have biometrics in them. While making government
documents, biometrics are recorded and saved. These biometrics play an important
role while identifying the user. These biometrics are also be used in financial ap-
plications where biometrics are needed to have access to financial statements. The
most popular and most used application of biometrics is in mobile phones. Where
fingerprint, face recognition can be used to unlock the device. Nowadays, all phones
have an in-built fingerprint sensor. With the increasing use of biometrics, more and
more research needs to be done to increase identification accuracy. Still, there are
many drawbacks with the biometrics mentioned above.

The fingerprint method can lead to failure if the papillary layer is damaged. In
the same way, face recognition needs proper lighting conditions for capturing data.
Also, change in hairstyle, use of spectacles can lead to problems. DNA is a compar-
atively expensive method, and the results of the DNA test need some time to come.
Hand recognition also needs a costly set up to scan the hand under proper lighting
conditions. For all the behavioural types of biometrics, accuracy is very low, and
they can be used in significantly fewer amount of applications [9]. So, seeing the
disadvantages of the biometrics used, more research is going on to develop some new
biometric feature that can give high accuracy and is of low cost. One such biometric
is the eye movements of a person.



2.2 Eye biometrics

In this section discussion about the working of an eye is present. Along with this,
different eye movements are discussed.

2.2.1 Oculomotor system

The coordination between eye movements is managed by the oculomotor system of
the human eye. The oculomotor has six muscles that support the horizontal and
vertical eye movements [10]. The two muscles, namely the medial rectus and lateral
rectus, are responsible for horizontal eye movements. Contraction of the medial rectus
leads to the movement of the eye towards the nose, while contraction of the lateral
leads to the eye’s movement away from the nose. The superior rectus is used for eye
elevation and medial rotation, while the superior oblique produces eye depression and
medial rotation. The inferior rectus is for eye elevation, while the inferior oblique
produces eye depression. Both are for lateral rotation of the eye. All of these can be
seen in the Figure 2.2.

With the help of this oculomotor system, the image seen by the eye is projected
onto the retina of the eye. The retina has light-sensitive cells which convert the
light into signals which are then given to the brain [11]. The light-sensitive cells are
not evenly distributed with maximum density at the centre. This area of maximum
density at the centre is called the fovea. A detailed vision for objects that fall on
this centre part or the fovea and vision decreases outside this region. Therefore, for
other objects which do not fall on the fovea, the eye movement needs to be adjusted.
Using this principle, a gaze trajectory can be defined.

2.2.2 Different eye movements

A gaze trajectory is the representation of the eye movement while seeing a particular
object of interest. A gaze trajectory consists of the number of fixations and the
number of saccades. A fixation is a point at which eye movement is stable for a
particular period. During this time, the object on the fovea is analyzed by the brain.
The standard duration for fixation can be between 200 ms to 300 ms [11]. Then there
is a rapid eye movement during which the eye moves from one fixation to another
fixation. This rapid eye movement is termed a saccade. A saccade is part of eye
movement, which is between two fixations. These saccadic movements are the fastest
movement in the human body with peak angular velocities of 900 ◦ per second [12].

Research in this field proves that eye movement biometrics can provide high ac-
curacies. Research is also going on in integrating eye movement along with iris
recognition system [13]. There are different eye movements along with the fixation
and saccades. During fixation, like already mentioned eye is not completely still, but



Figure 2.2: Oculomotor system of human eye showing 6 muscles that support hori-
zontal and vertical eye movements[10]

some movements are present. These movements are called tremors, drifts, and mi-
crosaccades [14]. Tremors are movements due to muscles; drifts are movements taking
eye movement away from the centre of fixation, while microsaccades are movements
bringing the eye back to the centre and compensating the drift. During the saccade,
there is a rapid eye movement from one point to other. The eye movement does not
stabilize exactly at the destination point but wobbles a little before stabilizing at the
destination point. These movements are called glissade or post-saccadic oscillations.
Smooth pursuit is another type of eye movement that is generated when eyes follow
an object like a bird. These are generally slow movements and are different from
saccades [14]. Typical duration for each of these eye movements can be seen in Ta-
ble 2.1. The duration of smooth pursuit is not given because it can differ depending
on object a person is seeing. Similary tremors depend on brainstem, therefore it may
vary from person to person and the duration varies depending on individuals.



Type
Duration

(ms)

Fixation 200-300

Saccade 30-80

Glissade 10-40

Smooth pursuit -

Microsaccade 10-30

Tremor -

Drift 200-1000

Table 2.1: Duration of various eye movements. Smooth pursuit duration is not fixed
and vary depending on objects. While tremor duration differ from person
to person [14]

2.3 Previous work on user identification using eye
movements

The most initial research in the field of eye movements was done by [15] who developed
the separation of eye movement trajectory into the fixations and saccades. After
further research in the field, a relation between eye movements and the way in which
the brain processes things was established. It is very important to study where and
when does eye movements take place. Where indicates the ending position of saccades
or where exactly fixations are placed. To study this concept [16] studied how the next
location is selected from the previous location.

Even though more and more research was carried on in the field of eye movements,
no one saw it as an application for identification until the study by [17, 18] proved
that individually developed similar scanpaths when exposed to similar environments.
In a study of 1000 participants, it was observed that individual characteristics of
eye movements are highly unique and persist over across various experimental ses-
sions [19]. Further research on the amount of data required to get unique eye move-
ment trajectories proves that approximately after reading ten lines of text, unique
data is generated [20].

Even research to use other micro-movements like the microsaccade or the tremor is
being carried out [21]. Even though microsaccades exist for all users but the amount
of drift and tremor which differentiates individuals is not clear [22], and thus more
study is required before using these movements for identification purpose. Detection
of these micro-movements is also not reliable [22], and the way these micro-movements
can be varied from each other is arbitrary [23, 24].

Few of the major initial research in the field of identification are mentioned in
Table 2.2. The table gives an overview of the used features and the used stimuli in



each of the methods. A competition was held in 2015 to develop an algorithm based
on eye movements for identification purposes. It has been described in paper [25],
the different pipelines that were used by the participants of the competition. One
participant directly used the trajectory for classification, while six participants di-
vided the trajectory into fixation and saccades. The ones who divided the trajectory
into fixation and saccade proved to get a higher accuracy compared to the others.
Various methods have been used for classification as well, like the neural networks,
SVM, weighted scores, KNN, but Neural networks proved to give the best result.
The pipeline used by [12] proved to be the best and achieved very high results, and
thus this method was used as a base pipeline in SMIDA.

2.4 Study on Outliers

Detecting outliers is a critical problem and needs to be dealt with. Outliers are
basically abnormal points present in the dataset. One major thing to remember
is that outliers and noise are not the same concepts. While noise is data that is
generated due to errors, but outliers are data that can be generated due to errors as
well as natural variations [42]. It can be seen from Figure 2.3 that noise are points
near to the data and are disturbing the data, while outliers are some surprising points
away from the data. These surprising data could be meaningful and important for

Figure 2.3: Difference between outliers and noise [43]

the study of the application.
Applications of outliers can be found in various fields as mentioned below:

1. Fraud detection: By analyzing the purchasing behaviour, abnormal use in the
card can be detected.



Authors Used features Visual stimuli

Kasprowski and
Ober, 2004[11]

Cepstrum transform jumping-point-
of-light

Bednarik et al.,
2005[26]

FFT/PCA on pupil diameter/variation,
eye distance , gaze velocity

Static cross

Silver and Biggs,
2006[4]

number of fixations, fixation duration, sac-
cadic velocity/duration, gaze position

Reading while
typing

Kinnunen et al.,
2010[27]

Gaussian mixtuure models on histograms
of velocity directions in short-term win-
dows

Text, video

Komogortsev
et al., 2010,
2012 [28][29]

characteristics of the Oculomotor Plant
Model

jumping-point-
of-light

Holland and Ko-
mogorstev, 2011,
2013 [30][31]

fixation number/duration, saccadic ampli-
tude/velocity, scanpaths

jumping-
point-of-light,
Rorschach im-
ages, cognitive
dot patterns,text

Cuong et al.,
2012[32]

Mel-frequency Cepstral Coefficients on
eye: position, difference, velocity

jumping-point-
of-light

Rigas et al.,
2012[33][34]

Wald-Wolfowitz runs test on graph-based
representations of fixation points

Face
images,jumping-
point-of-light

Liang et al.,
2012[35]

acceleration, geometric, and muscle prop-
erties of eye movements

Video clips of
a moving white
ball

Zhang and
Yuhola, 2012[36]

saccadic amplitude, accuracy, latency, ve-
locity and acceleration

jumping-point-
of-light

Holland and
Komogortsev,
2013[31]

fixation duration/position/velocity, sac-
cadic amplitude/duration

Text

Komogortsev
and Holland,
2013[37]

saccadic dysmetria, compound saccades,
dynamic overshoot, express saccades

jumping-point-
of-light

Rigas and Ko-
mogortsev,
2013[38]

probabilistic maps of attention- fixation
density maps

Video

Yoon et al.,
2014[39]

Hidden Markov models on gaze velocity Cognitive-dot
stimuli

Cantoni et al.,
2015[40]

Frobenious norm of graph representation
of fixation points using density/duration
weights

Faces images

Rigas et al.,
2015 [41]

Multi-source weighted fusion scheme using
different methods

jumping-point-
of-light, text,
video

Table 2.2: Prior art in eye movement biometrics [25]



2. Medicine: A sudden change in the value of some results or some unusual symp-
toms may indicate health problems.

3. Sports statistics: Various parameters of players are tracked to evaluate the
performance of the player. So players with values that differ from others could
be extraordinary players.

4. Measurement errors: While taking the reading from sensors or some instrument,
a sudden change in value could indicate measurement error.

5. Network performance: Detecting outliers in the network traffic could help to
detect attacks on servers.

Outliers arise because of various reasons like errors in the measurement device,
calibration errors, natural deviations in data, human error, or some application-
specific errors. It is very important to detect these outliers and to deal with them.
Sometimes it is beneficial to eliminate the outliers, or sometimes it is needed to
consider them with the original data. Incorrect handling of these outliers in machine
learning may lead to a longer training process of data, less accurate models, and
eventually degrading results [44]. In some techniques like [45, 46], it is preferred to
visualize the data initially to decide the impact of outliers. In some techniques [47],
a univariate technique is used to search for data that contain extreme values on just
a single variable. The rest use the multivariate techniques to search for outliers.
Once these outliers are detected, an important approach to follow is how to deal
with these outliers. In some cases, outliers may be needed to be included as part of
data [48]. In some cases, outliers need to be dealt with depending on their dimension
and application [49]. There are various approaches to detect outliers, and a few of
them are described below:

1. Global versus local approaches: In the global approach, all the data points are
considered, and outliers are detected by taking into consideration all the points.
In the local approach, outliers are searching for from a small subset of data and
not the whole dataset [50]. In the Figure 2.4, it can be seen that each cluster
group has its own outlier called a local outlier, and when the overall image is
taken into consideration, global outliers are obtained.

2. Labeling vs scoring: In labelling, the output is binary, indicating whether a
point is an outlier or not an outlier. While in scoring, an outlier score is
calculated for each point. An outlier score is a score indicating chances of a
point being an outlier, and the score is returned to the user [50]. That is, the
probability is returned, and not the decision if a point is an outlier.



Figure 2.4: Difference between Local and global outliers [50]

3. Modeling approach: In the model-based approach, a model is designed to repre-
sent normal working; points that don’t fit in this model are outliers. Proximity-
based approaches examine the spatial proximity of each point to detect outliers,
and if the proximity of a point deviates from the proximity of others, the object
is an outlier. In the angle-based approach, the angle is calculated for a point
with all other points, and if there are high fluctuations, then the point is an
outlier [50].

2.5 Most common methods to detect outliers

There are various methods to detect outliers. A few of the most common methods
are mentioned and discussed in this section.

2.5.1 Density based methods

The basic assumption of density-based methods is that outliers are found in low,
dense regions while non-outlier points are in high-density regions. The density of a
point is compared with the density of nearby points, and then a decision is made
whether a point is an outlier or not. There are many famous methods based on
density-based approaches. One of the most famous or the most used approaches is
the Local Outlier Factor(LOF) [51]. In this method, outliers are computed using
the K-nearest-neighbor. One another approach is the Connective based Outlier Fac-
tor(COF) [52]. It is based on LOF, but the only difference is that here chaining
distance is used to calculate the shortest path and detect outliers. One of the ap-
proaches mentioned by [53] named as Local outlier probabilities provides the outlier
score with a probabilistic and statistical oriented approach.

• Advantages: This method efficiently removes points near dense cluster areas,
and only a minimum of prior knowledge is required to implement this method.



• Disadvantages: For varying density regions, it is quite a complicated process
to get correct outliers. The runtime of these algorithms is very high due to the
high computational complexity

2.5.2 Statistical based methods

In the statistical methods, all the points are modelled using stochastic distributions,
and outliers are detected depending on their relationship with the distribution model.
There are two types of statistical-based approaches; the first one is the parametric
approach, where a comparison of the data points is made with some distribution
model, and the second is the non-parametric approach, and in this approach, there
is no model to be compared with. In the method introduced by [54], a maximum
likelihood estimate is done to get the mean and variance of the gaussian distribution
in the training stage, and in the test stage, mean-variance or box-plot tests are
done. In another method, a regression model is developed during the training stage
that fits the data, and in the testing stage, the data points are compared with this
model. At points where there is a high deviation, they are labelled as outliers as
mentioned by [55]. In the non-parametric method, a kernel density estimation is
done as mentioned by [56]. It is a type of unsupervised approach. Some of the most
common methods are histogram, Boxplot, Trimmed mean, etc.

• Advantages: The evaluation time is very less. They have improved performance
given to the previous method because of the probabilistic approach.

• Disadvantages: The results received are unreliable due to a lack of preceding
knowledge regarding the underlying distribution. They don’t perform effec-
tively in multivariate scenarios.

2.5.3 Distance based approaches

As the name suggests, in this approach, a distance is computed between the points,
and then the outliers are recognized. If the point is far from the nearest point, then it
is termed as an outlier. The most commonly used distance-based detection method
is the K-nearest neighbor [57]. They are mostly used to detect global outliers. There
are many variations based on K-nearest neighbour based on ranking the neighbours
as mentioned by [58] or to make a model learn about outlier behaviour from a dataset
and then find outliers for incoming dataset [59].

• Advantages: They don’t depend on any model and are easy to compute. Also,
they work well in multidimensional spaces.

• Disadvantages: In some algorithms, it is not possible to detect some complex
outlier points. It becomes complicated in high-dimensional space.



2.5.4 Clustering based approach

In this method, small size clusters are made, and then the density of clusters is
evaluated. Clusters with smaller densities are described as outliers. The formation
of clusters is a major task, and there are few methods describing how the clusters
can be formed.

1. Partitioning Clustering methods: They are also known as distance-based clus-
tering algorithms. Examples of this method are mentioned by [60, 61, 62].

2. Hierarchical Clustering methods: In this method, the points are classified into
groups of different levels, and a tree-like structure is formed. For this, usually,
the maximum number of clusters is mentioned, and clustering or splitting is
done until the desired number of clusters are achieved [63, 64].

3. Density-based Clustering methods: In this type of method, usually the radius
for clusters is given, and then clustering takes place [65, 66].

• Advantages: As they are an unsupervised method, they are highly popular and
used. They are robust to different data types

• Disadvantages: There is no quantitive indication of an outlier. Specifying the
number of clusters or the radius is a difficult task.

There are few other methods like the ensemble-based approach or learning-based
approach, but they are not much studied and used. They are complicated compared
to the previous algorithms and are usually used in machine learning [67].



3 SMIDA: Schau Mir In Die Augen

This chapter is an overview of the previous work done by the data group of AG
datenbanken, University of Bremen. The project ’Schau mir in die Augen’, also
referred to as SMIDA, is developed to work with the eye movement data for user
identification. In this chapter, an overview of the pipeline used in SMIDA is presented.
Different steps done to convert the original eye movement data to the desired form and
then to perform user identification using a machine learning pipeline are presented
in this chapter.

The pipeline for SMIDA is mentioned in Figure 3.1. The implementation of eye
movement as biometrics for user identification requires different steps to be per-
formed. The current project is based on the work of [12]. The various steps include:

1. Selection of Visual stimuli

2. Pre-processing the data from the dataset

3. Eye movement segmentation (Segmentation into fixations and saccades)

4. Feature extraction

5. Classification

The original raw data available is usually the viewing angle of the users recorded
using an eye-tracking device. Some of the datasets used in the SMIDA are explained
in Section 3.1. This raw data cannot be directly fed to the classifiers for user iden-
tification. Some pre-processing steps need to be performed to convert the data in
the correct form that can be feed to the classifier. These pre-processing steps are
explained in Section 3.2 After performing pre-processing, now from the trajectory
available, similar parts are grouped together. Grouping these similar parts makes
it easier to perform a machine learning algorithm on them. Grouping these similar
parts known as fixation and saccades is yet another important task, and details about
the same can be seen in Section 3.3. Then these fixations and saccades are feed for
the feature extraction. From a set of around 300 features, few are selected. The
selected features are described in Section 3.4 along with the different methodologies
used for feature selection. Then these features are fed separately into the classifiers.
Two different classifiers are used, one for the fixation and one for the saccade. The
classifiers and their parameters are mentioned in Section 3.5. All these fixation and
saccades can be visualized by a visualization tool developed by the members of the



data group. Different capabilities of the tool can be studied in Section 3.6 In the
end, an averaging method is used to merge the output from the two classifiers. The
final result is the predicted user. The resulting accuracy can be seen in Section 3.7.
These are the main steps involved in the project, and a detailed explanation of all
these steps will be discussed in this chapter.

Gaze Data
Eye Movement
Segmentation

Saccades

Fixation
Feature Ex-

traction

Feature Ex-
traction

Classifier 1

Classifier 2

Output
score fusion

Figure 3.1: Original Pipeline

3.1 Visual stimuli

Visual stimuli are basically the images or videos shown to the participants for record-
ing the eye movements. Therefore, the selection of visual stimuli is a very important
task as it is the representation of both physiological and cognitive characteristics.
The visual stimuli developed are made considering the oculomotor system of the eye.
For example, in images with text, the direction of eye movement is in the direction of
the text. While in images of surroundings, it reflects what a person thinks when he
observes an image and thus replicates his cognitive behaviour. It has been observed
that when training is done on one particular stimulus and testing is performed on
different stimuli, a very low level of accuracy is obtained. Such tasks are known as
strongly task-independent classification. While when training and testing are done
on similar but different images, then such tasks are called weakly task-independent
classification. Examples of the different visual stimuli can be seen in Figure 3.2

Different datasets indicating the visual stimuli used in the project are given below:

1. Bio-Tex and Bio-Ran

2. Where Humans Look

3. Visual search task

Among these experiments are performed only on Bio-Tex and Bio-Ran dataset, so
both of them are described below.

Bio-Tex and Bio-Ran dataset



Figure 3.2: Examples of different Visual stimuli [25]

The Bio-Tex dataset is based on text excerpts, while Bio-Ran is based on random
‘jumping’ points of light. In the Bio-Ran dataset, random points of light are shown
to the user each after a specific time interval. The example of Bio-Ran can be seen
in Figure 3.3. The text scripts contain a poem as shown in Figure 3.4. Both of these
datasets were used in bio-eye competition 2015 [25].

Figure 3.3: Example of Bio-Ran dataset. The point of light is visible at a different
location after a set time interval [68].



(a) Session 1

(b) Session 2

Figure 3.4: Bio-Tex Stimulus. Up: Stimuli used for training, Down: Stimuli used for
testing

The Bio-Ran dataset generates random points of light on the screen, thus giving a
brief overview of horizontal and vertical saccadic movements of the eye with varying
velocities. On the other hand, the Bio-Tex data set also gives horizontal and vertical
saccadic movements on eyes but in a guided manner as the reading direction is from
left to right and then onto the next line. The saccadic movements along with velocities
can be seen from Figure 3.5. It can be seen that there is random movement in the
horizontal and vertical directions. That is, from point 1 to point 2, the direction is
from left to right and top to bottom, while for points 2 to 3, it is from right to left
and bottom to top. On the other hand, for Bio-Tex, the main movement for all the
points is from left to right. The vertical change is small compared to the horizontal
until the user moves to the next line.



Figure 3.5: Velocity variations for both datasets. The velocity variations are for two
users. One on the right and the other on the left. The above two rows are
for the Bio-Ran dataset, and below two rows are of Bio-Tex dataset [25]

Eye Tracking data can be captured in a lab-controlled environment or an open
environment. Capturing in an open environment requires a lot of work to be done
on the datasets to compensate for the noise in the image due to external factors like
lighting conditions. A lab-based environment can be used to capture data with high-
quality [69]. For Bio-Tex and Bio-Ran, a lab-based environment is used with chin
rest and head-bar to avoid head movements. Eyelink 1000 [70] eye tracker is used to
capture eye movements. It has different options like the tower, primate, LCD Arm,
Desktop mount. Among these, the desktop mount is used as shown in Figure 3.6. It
has a spatial accuracy of 0.5 ◦ typical, a sampling rate of up to 2000 Hz depending on
the mount used. A spatial resolution of 0.1 ◦ for 1000 Hz and 0.2 ◦ for 2000 Hz. The
tracking distance, camera eye distance, allowed head movement depends on the mount



used for the device. More detailed information about the device can be obtained from
the manual [70]. Eyelink 1000’s is used in various experiments like [71, 72, 73]. For
the experiments, a monocular mode was used, and movements of the left eye were
captured.

(a) Desktop mount angle [70]
(b) Desktop mount level [70]

Figure 3.6: Desktop mount present in the eye tracker for recording eye movements [70]

The size of the dataset plays an important role. The dataset needs enough data to
be divided into train and test. The small size of the dataset could lead to overfitting.
Bio-Tex and Bio-Ran both have a high number of participants and thus are a big
enough dataset. To be specific, there are a total of 306 participants, among which
165 were male and 141 were female. 154 participants had corrected vision sight while
152 had an uncorrected vision. Among the corrected vision sight, 63 used glasses,
and 91 used contact lenses.

All these participants are shown some images on a screen. The images are of size
1680 × 1050 pixels, and the screen size is 474 mm × 297 mm. The distance between
the participant and the screen is 550 mm. The exact setup can be seen in Figure 3.7.
The above parameters lead to a horizontal viewing field of 46.6◦ and a vertical viewing
field of 30.2 ◦. For the RAN dataset, the points move within a range of ± 9 ◦ vertical
and ± 15 ◦ horizontal.

The duration of the dataset depends on the amount of information needed to
extract the features and the type of behaviour that needs to be studied. The RAN
dataset has a duration of 1 minute and 40 seconds, with the point of light changing
every 1 second. The TEX dataset has a duration of 1 minute. The recording for
participants was again taken after a particular time interval. Two-time intervals
were considered; a short time interval was for 19.3 and 19.6 minutes for two datasets,
while the long time interval was for 10.5 months. The second session is used for
testing purposes. So there are a total of 3 sessions. The first one is the initial session,



the second is the one taken after 20 minutes approximately, and the third one is the
one taken after 10.5 months. For the first session, a total of 306 participants were
considered; for the second session, all these 306 participants were again considered,
but for the third session, only 76 participants were considered. Therefore there are
four combinations present for performing the experiments:

Figure 3.7: Viewing setup [25]

1. Train on Bio-Tex (session 1) and test on Bio-Tex (session 2)

2. Train on Bio-Tex (session 1) and test on Bio-Tex (session 3)

3. Train on Bio-Ran (session 1) and test on Bio-Ran (session 2)

4. Train on Bio-Ran (session 1) and test on Bio-Ran (session 3)

Two different aspects were considered for analyzing the datasets. The first one was
the calibration accuracy, and the second was recording validity. For each participant,
before the main recording, a calibration test is performed. For calibration, 9 points
are shown on screen, and participants need to fixate on this point till the next point
arrives. A calibration map is derived for each user, and then this map is used during
the main recording. Calibration accuracy is important to be calculated to see the
possibility of error in the gaze trajectory. Due to some problems like the device-
specific problems or the user-specific problems (blinking, loss of attention), there
are high chances that the recording equipment is not able to record the data or
successfully capture the samples. Therefore recording validity is an indication of
successfully captured samples. Users with low recording validity were removed. From
the pool of 322 participants, 306 were registered.



3.2 Pre-processing of raw data

Before the data could be used further for extracting, these data need to be processed.
Different pre-processing steps like filtering, interpolation are explained in this section.
A flowchart of the steps can be seen in Figure 3.8

Raw data

Conversion of data

Filtering

Interpolation

Down sampling

Trajectory

Figure 3.8: Pre-processing steps

• The input data available is recorded at a frequency of 1000 Hz. This high-
frequency data is first downsampled to 250 Hz for Bio-Tex and Bio-Ran dataset.

• For the Bio-eye dataset, the data is available in terms of viewing angle. The
angle at which the eye moves from the center is available in the dataset. So it
is necessary to convert the angle to pixel values which can then be used to form
the trajectory. Angles are measured from the center viewpoint in the horizontal
and vertical directions. The formula used for this is:

xy = (
pixel

mm
)× (tan(viewing angle))× (screen distance) + (

screen resolution

2
)

(3.1)
where,



1. pixel/mm is the screen density in terms of x and y

2. viewing angle is the angle representing the eye movement

3. screen distance is the distance between the participant and screen

4. screen resolution is resolution in pixels

• The raw data available may contain noise. This noise is mainly due to high-
frequency components available in the dataset, and to overcome this, filtering is
done. These high-frequency components will affect the velocity and acceleration
profiles. A Savitzky-Golay filter [74] is used for this purpose. This is a digital
filter used for smoothing the data points. Smoothing is achieved by using the
convolution and linear least-squares method. They have high accuracy and
have very low least square error while fitting a polynomial to frames of noisy
data. The default value used for polynomial order is 6, and the frame size is
15.

• The next step is an interpolation that is adding the data points within the
trajectory. This is done to join two trajectory points placed away from each
other.

• After these steps, the trajectory is achieved, which can be used for detecting
fixation and saccades.

3.3 Eye movement segmentation

The trajectory generated from the steps described above needs to be divided into
fixations and saccades. Fixations are periods during which eyes are relatively stable
on a particular point, while saccades are rapid eye movements. Saccades can be
defined as movements between two fixations. Fixations have very low-velocity values,
while saccades have high-velocity values. The minimum duration for identifying
the fixation points is set to 0.1 seconds to avoid false identification during small
positive values of velocity. Differentiating the position values will return the velocities.
The most basic and most commonly used algorithm to differentiate between the
fixations and saccades is the I-VT(Velocity threshold identification) algorithm [75]. I-
VT algorithm uses threshold values for differentiating between fixations and saccades.
Many more complex algorithms are available for differentiating between fixations and
saccades, but I-VT is proven to give significant results [25]. Other algorithms for this
task are:

1. Hidden Markov model identification (I-HMM) algorithm [76]

2. Kalman filter identification (I-KF) algorithm [77]



3. Dispersion-threshold identification (I-DT) algorithm [78]

4. Minimal spanning tree identification (I-MST) algorithm [79]

The first two are based on velocity characteristics, while the rest two are based on
dispersion characteristics. IV-T algorithm is given in 1.

Algorithm 1: IVT algorithm [12]

Result: Res
Constants: VT= Velocity threshold, MDF= Minimum duration for fixation
States = [FIXATION; SACCADE] ;
fixationStart = 1;
Velocity = smoothDiff(data);
N ← Number of samples of data;
for index← 1 to N do

if V elocity[index] < V T then
currentState = FIXATION
if lastState 6= currentState then

fixationStart = index
end

else
if lastState = FIXATION then

duration = data(index,1)- data(fixationStart,1)
if duration < MDF then

for i← fixationStart to index do
res[i] = SACCADE

end

end

end
currentState = SACCADE

end
lastState = currentState res[index]=currentState

end
Res ← res

The algorithm is quite simple, but it takes quite a few things into consideration,
like the minimum duration of fixation and the threshold value. The algorithm has
two stages, the current state and the last state indicating the previous state. This
state can be either Fixation or Saccade. N is the number of samples present in the
dataset. Velocity is taken by differentiation as described above. For each sample, if
the velocity is less than the threshold value, then it is considered to be a fixation. For
each time consecutive fixations occur, the value of the first index for fixation is saved.
When there are changes from fixation to saccade, the duration of previous consecutive
iterations of fixation is calculated. If this duration is less than the minimum duration



of fixation, then the index values for these fixations are replaced with saccades. If
this duration is more than the minimum duration of fixation, then the fixation values
are kept as it is. At the end of every iteration, the last state is replaced with the
current state, and the value is appended in a list. This output list contains the
starting point for each fixation and saccade and contains the duration for fixation
and saccades. There are some post-saccadic oscillations that can be removed. This
is done by removing saccades with a duration of fewer than 12 milliseconds. In this
way, fixations and saccades are extracted from the trajectory in a very easy way.

3.4 Feature extraction

This step is the most important step in the pipeline. After the extraction of fix-
ation and saccades, features can be extracted from both. It is possible to directly
extract features from the trajectory, but usually, fixations and saccades are extracted
as they give information about the specialized characteristics in the similar parts in
the trajectory. Fixations and saccades have their respective amplitude, velocity, and
acceleration profile. From these profiles, more features can be calculated, like the av-
erage velocity between two fixation/saccade and so on. It is generally observed that
saccades have more information compared to fixations [31]. The vertical and hori-
zontal saccadic movements correspond to the cognitive behavior [80]. The Table 3.1
indicates features extracted from fixations and saccades for Bio-Tex and Bio-Ran. A
total of 51 features are used for both fixations and saccades. All the features are
described below:

1. Duration: It is the time for which a single fixation or saccade lasts or is present.
It is obtained from the result of I-VT.

2. Standard deviation: It is the dispersion value for the dataset relative to its
mean value.

3. Path length: It is the total length of the path traveled on the screen. It is given
by formula Equation 3.2

Path length =
∑

N − 1i = 1
√

(xi+1 − xi)2 + (yi+1 − yi)2 (3.2)

4. Angle with the previous fixation: It is the angle formed by the centroid of
current fixation with the previous fixation.

5. Angle with the previous saccade: It is the difference between the saccadic angle
of current and previous saccade.



6. Saccadic angle: It is the angle obtained from the first and last point in a saccade.
It can be given by formula Equation 3.3.

Saccadic angle = tan−1
yN − y1
xN − x1

(3.3)

7. Saccadic ratio: It is given by the formula Equation 3.4.

Saccadic ratio = max
(Angular Velocity)

(Saccadic duration)
(3.4)

8. Saccadic amplitude: It is given by the formula Equation 3.5.

Saccadic amplitude =
√

(xN − x1)2 + (yN − y1)2 (3.5)

9. Distance from previous fixation/saccade: It is the euclidean distance between
current and the previous fixation or saccade respectively.

10. Skewness: Skewness is the distortion of the data points from the expected
distribution (for exam bell shape) of the data points. It is the indication of
whether data points are symmetrical that is equal on the left and right side of
the center point.

11. Kurtosis: Kurtosis is a measure of how much amount of data is present at the
tail compared to the normal distribution .

12. Dispersion: Dispersion is a measure of the statistical spread of the values from
a particular point. It can be given by Equation 3.6.

Dispersion = (max(X)−min(X)) + (max(Y )−min(Y )) (3.6)

13. Average velocity: It is the average distance traveled in particular time duration.
It can be given by Equation 3.7.

Average velocity =
Path Length

Duration
(3.7)

14. Acceleration: It is the average rate of change of velocity for a particular time
duration

Different methods used in the project
Various methods are used to extract features. Originally there are approximately 300
features from which the above-mentioned features are used for the Bio-eye dataset.
These 51 mentioned features are extracted using the method mentioned by [12]. All
the methods available are mentioned below:



Skewness(X) M3S2K(Angular Velocity) Saccadic ratio

Skewness(Y) M3S2K(Angular Acceleration) Saccadic angle

Kurtosis(X) Standard Deviation(X) Saccadic amplitude

Kurtosis(Y) Standard Deviation(Y) M3S2K(Velocity X direction)

Average Velocity Path length M3S2K(Velocity Y direction)

Saccadic/ Fixation duration Angle with previous saccadic M3S2K(Acceleration X direction)

Dispersion Distance with previous saccadic M3S2K(Acceleration Y direction)

M3S2K-Statistical features:
Mean, Median, Max,Std,Skewness,Kurtosis

Table 3.1: Total 51 features used for both fixations and saccades

1. Score level Evaluation: In a total, 40 features were extracted from saccades,
and 9 features were extracted from fixation for the Bio-Ran dataset. In a
similar way, 43 saccadic features and 9 fixation features were extracted from
the Bio-Tex dataset.

2. Our-append method: In this method, the calculation is done for all the available
features that are for approximately around 300 features.

3. Paper-append method: In this method, all the 51 features considered for Bio-
Tex in the table above are considered for all the datasets.

In all the experiments, the paper-append method is used; that is, all the 51 features
are used.

3.5 Classifiers

Various classifiers are used in the project. The input to the classifier is, in this case,
the fixation and saccade features. Based on these features, the classifier is trained to
predict the correct class at the output. Therefore, the classifier plays a major role in
the pipeline. All the four classifiers that are Random Forest, Radial Basis function
network, Naive Bayes, Support Vector machine, along with their parameters, are
mentioned in this section.

3.5.1 Random Forest

Random forest [81] is built on the principle of decision-making tress. Various decision-
making trees are used to predict the final output of the classifier. A decision-making
tree works on the principle of classifying the classes based on some feature. When
multiple decision-making trees are taken into consideration for calculating the final
result, then the algorithm is called the Random Forest classifier. Each individual
tree in Random Forest makes a prediction and classifies the output as one of the



predicted users. The final output is based on voting from each of the decision trees.
The user with maximum votes is the final output of the classifier. All the trees are
uncorrelated and therefore perform differently and give a different set of output. For
example, if there are a total of 4 features given to the input of the classifier then, all
the decision trees will be trained on a different set of these features, and therefore the
final output of all the decision trees will be different. Each tree based on a feature
further splits and classifies itself until it reaches a conclusion where it can predict a
final user. Therefore as it further splits and each tree has a different set of features
based on which it works, therefore the correlation between these trees is very less.
The biggest advantage of less correlation is that even if one tree is making a wrong
prediction, it does not affect the result of the other. Parameters of RF are described
below:

1. n estimators: These are the number of trees in the forest. This has been set to
200 for most of the experiments.

2. max depth: It is the max depth of the tree. If None, then nodes are expanded
until all leaves are pure or until all leaves contain less than min samples split
samples.

3. max features: These are the number of features to be considered while splitting.
This has been set to sqrt that is sqrt of n number of features is taken.

4. min samples leaf: The minimum number of samples required to be at a leaf
node. A split point at any depth will only be considered if it leaves at least
min samples leaf training samples in each of the left and right branches.

5. min samples split: minimum number of samples required to split an internal
node.

3.5.2 Radial Basis Function Network

An RBFN [82] consists of 3 layers defined as the input layer, the hidden layer, and
the output layer. This can be seen in the Figure 3.9



Figure 3.9: RBFN architechture showing 3 layers [83]

The input layer consists of the training data, which in this case are the feature
vectors. These feature vectors are then given to the hidden layer. The hidden layer
consists of a radial basis function centred on a point with the same dimensions as
the predictor variables. The output layer consists of the weighted sum of the output
from the hidden layer. Each new training item’s target value is calculated depending
on its distance from nearby items. K means clustering is used along with RBFN
to calculate the centres of the neurons. Euclidean distance is calculated for each
new incoming point. The gaussian activation function of each neuron is given by
Equation 3.8.

ϕ(x) = e−β‖x−µ‖
2

(3.8)

A radial basis function is applied to this distance to calculate the weight for each
classifier. The main parameter of RBFN is n clusters which indicates the number of
clusters as well as the centroids to be generated. The cluster size selected is 32.

3.5.3 Naive-Bayes

Naive bayes algorithm is based on the Bayes theorem [84]. Bayes thorem can be
explained from the Equation 3.9,Equation 3.10.

P (Ck | X) =
P (X | Ck)P (Ck)

P (X)
(3.9)



P (Ck | X) = P (X1 | Ck)× P (X2 | Ck × .........× P (Xn | Ck)× P (Ck) (3.10)

Here, P (Ck | X) is the posterior probability, P (X | Ck) is the likelihood, P (Ck) is
the prior probability of a class, and P (X) is the prior probability of the predictor.
Here P (Ck | X) means that the probability of Ck to be true when X is true. In
Naive Bayes, the assumption is that the features are independent of each other, and
thus one feature is taken at a time [85]. A common decision rule is used to select the
final prediction, for example, a maximum a posteriori decision rule [86]. It has the
advantage that it works well even when the data size is small, and it is a very simple
and fast algorithm.

3.5.4 Support Vector Machine

SVM [87] is a supervised machine learning algorithm used for classification and re-
gression. Each data point is plotted in the n-dimensional space with its value to
be the feature value. Then the classification is done based on the hyperplane. A
linear hyperplane does the work of dividing the points into classes as shown in the
Figure 3.10. Selecting the correct hyperplane plays a major role in SVM. Two crite-
ria need to be considered in selecting the correct hyperplane; first are all the points
getting divided correctly, and the second is to check the margin or the distance to
the nearest data point to the hyperplane for each class. In cases where the linear
hyperplane doesn’t work, a kernel function is used. The incoming data is then con-
verted using the kernel function to higher-level data as shown in Figure 3.11b and
then classification is done as shown in Figure 3.11c. The complete functionality can
be seen in Figure 3.11

Figure 3.10: Support vectors and hyper plane [88]



(a) Distribution of data points [88]
(b) Kernel function applied on data

points [88]

(c) Hyperplane for SVM [88]

Figure 3.11: Working of Support Vector Machine [88]

3.6 Visualization

A visualization tool was developed by the data group of AG Datenbanken. The pur-
pose of creating the visualization tool was to be able to view the complete trajectory
on the image area as shown in Figure 3.12a. Along with this, fixation and saccade
position can be viewed on the image frame Figure 3.12b, Figure 3.12c. Along with the
fixation, its count can also be seen in the visualization. This enables to understand
what objects exactly the user sees on the image area. Various options are available
in this visualization tool. A button is available for viewing the trajectory, viewing
fixation/saccade, or cropping the trajectory. Various other options like selecting the



dataset, selecting a particular session, a particular participant are available. Such
options make it very easy to change the dataset or the user and easy to use for any
one. This makes the visualization a very strong tool.

(a) Complete Trajectory

(b) Only fixations (c) Only saccades

Figure 3.12: Different options to view trajectory in the visualization tool

3.7 Results

This section explains the previous results achieved in the SMIDA yet for the Bio-Tex
and Bio-Ran datasets. The results presented are for 100 users for both datasets. The



Bio-Tex Bio-Ran

RF 91.8 0.58 94.4 ± 0.4

RBFN 92.4 ± 0.49 95.6 ± 0.76

Table 3.2: Original accuracy

results are excellent and prove that the use of eye movements for user identification
is a promising field of research. More detailed research and work in this field can
lead to better results. This thesis aims to increase the prediction accuracy for user
identification. Table 3.2 describes the results achieved using SMIDA. The results for
user identification can be seen for RF and RBFN classifiers as these two classifiers
perform best among all. Equal weights have been given to both fixation and saccade
classifiers as both of these features are of equal importance.

Results for cross-evaluation have also been calculated that is training on Bio-Tex
and testing on Bio-Ran and vice-versa. But in both cases, the results are not signifi-
cant. Therefore a user trained on a particular stimulus may have a different approach
to viewing objects on different stimuli. More research needs to be done here.



4 Outlier Detection

In this chapter, a discussion about what are outliers, why they are present in eye
movement data, and how they can be dealt with is presented. Various methods to
overcome outliers and the procedure implemented in this thesis are discussed.

4.1 Outliers

There are many definitions for outliers. One states outliers as data points that are
far away from the mean or from clusters of data. Another definition is as given by
Hawkins [89], which states“outlier as an observation that deviates so much from other
observation as to arouse suspicion that it was generated by a different mechanism”.
To explain it with an example, in Figure 4.1 most of the data follow a linear line of
increase and are close to each other. But there is a single point that is far away from
this set of data. This data point can be termed as an outlier. Outliers can be added to
the data because of various reasons like errors in measurement, problems in sampling
the data, or similar reasons [90]. But these outliers can affect your algorithm as there
can be a change in the mean value or the standard deviation of data. They can
also affect the classification accuracy and are therefore not a desirable input to the
algorithm.

Figure 4.1: A outlier point visible in data away from all other points [90]



4.2 Anamolies in eye movement trajectories

Anomalies in eye movement trajectory exist because of various reasons like calibration
errors, faults in the eye-tracking device, blinking, and so on. The reasons for outliers
can be divided into two sections, the first one can be the reasons due to machine
failure. The second one can be reasons due to natural causes. A few of the reasons
will be discussed in this section in detail and possible approaches to counter this type
of problem.

4.2.1 Outliers due to faults in device

These outliers are due to problems with the eye-tracking device. Sometimes the eye
tracking device is not able to properly detect the eye position, and this leads to the
generation of outliers in the data. Systematic or variable errors could be generated,
which are due to inaccurate eye-tracking devices, or sometimes outliers are generated
due to problems with calibration. The same errors are explained in the below sections.

4.2.1.1 Variable and Systematic errors

Variable errors are the dispersion that occurs in the data points around the fixation.
Ideally, the fixation points need to be at a single position because that indicates the
stability of the eye, but sometimes these points are spread due to the lack of precision
of the eye tracking device. Variable errors can be treated by averaging the nearby
gaze points to calculate the fixation. Systematic errors are a drift in the data points
from the original fixation point. Systematic errors are due to the loss of calibration
of the eye tracking device, which leads to a drift in the data point. Systematic errors
can be observed to follow the same pattern throughout the data. Examples of both
are given in Figure 4.2.

4.2.1.2 Eye tracker accuracy deteriorates

Sometimes the calibration is lost when the track of the pupil or the corneal reflec-
tion is lost. This may lead to data points generated outside of the image area, even
though the participants are looking at the screen [92]. There are various experiments
performed to address this type of error. Besides others things, authors suggest re-
moving such points from the trajectory [93, 94], do calibration at the start of every
session [95] or do recalibration in midsession [92].

4.2.2 Outliers due to natural reasons

Sometimes the outliers are generated due to some natural human movements, which
are very difficult to avoid, like the head or body movements, blinking, and so on.



Figure 4.2: Left: Variable error showing spread of points Right: Systematic error
showing points are shifted [91]

Errors generated due to such reasons are explained in this section.

4.2.2.1 Blinking

Blinking is a phenomenon in the human body that leads to the closing of the eyelid
automatically after a particular time interval. Blinking can be divided into three
types [96], the first one is a spontaneous blink in which the eyelid closes automatically
without any internal effort or external reason. The second one is reflex blink; this
usually happens due to some external reason, like when water is flashed on the face
or touching the cornea. The third one is the voluntary blink, where a person closes
the eyelid because of their own wish. These are usually for more time than the first
two blinks. The blinking rate differs from person to person; for children, it is very
less compared to that of adults. It usually increases throughout childhood.

To study the motion of the eye during a blink, a study has been made by [97]. It
suggests that during the closing phase of blink, the eyes rotate downwards for an angle
of 1-2 degrees. The eye movements during blinking are also faster than the original
movements. Till the leads are closed, the downward rotation of eye movement is
completed, and when blinking is finished, it again starts at its primary position. The
upward rotation of the eye to get back to the primary position is usually missing.
The downward rotation usually leads to extreme values and the closer time leads to
missing values. Thus blinking leads to missing points or some extreme values in the
data.



Usually, during eye-tracking, only the first and third types of blinking are visible
because, as such, there is no external reason for blinking. The first type of blink-
ing that is the voluntary blink can be recognized by studying the behaviour of a
participant, like the missing data points or extreme values that may occur at a fixed
frequency. These frequencies may vary from user to user. So a blinking rate calculated
for one person can not be used for another. It is also not possible to predetermine
the blinking rate without studying the trajectory.

Modern eye-tracking devices compensate for the blinking values, and many meth-
ods are available to deal with these blinking values like the extrapolation as mentioned
in paper [98]. For the missing values in blinking, the neighbouring values are consid-
ered, that is, values before and after the missing points. Then these missing points
are replaced with an average of the neighbouring points. Another effect can be ex-
treme values, and to compensate them, taking mean or median is suggested. That is,
extreme values can be either for the x-axis, y-axis, or both. So the axis with extreme
value, mean of other values for that axis is calculated, and then the extreme value is
replaced with this mean value.

These extreme values generated by the blink can be treated as outliers. Also, one
significant research in blinking is that the extreme values or the missing data would
be the same for both of the eyes as blinking occurs similarly for both eyes [99]. But
it is very difficult to differentiate these extreme values due to blinking as such values
can be generated because of head movements or system errors also. If blinking could
be measured from the eye movement data, it would be great progress as each user
has a different blinking rate, and this would help in user identification.

4.3 Eye movement segmentation

This section presents how the outliers are implemented in the existing eye movement
segmentation algorithm. A modification of the previously used algorithm mentioned
in 1 is necessary to classify outliers along with fixations and saccades. As can be
seen in the Figure 4.3, the outliers can be divided into two parts. Outliers which are
present outside the image area or outside the stimuli, and outliers that are present in
the area of stimuli as shown in Figure 4.3. Both of these steps are explained in detail
in the sections below. The newly made algorithm is called Outlier IVT. The input to
this algorithm is the offset values, border point values, and the trajectory. Initially,
the outlier positions are obtained, and then from these outlier positions, we get the
final output in the form of sample start and sample type. After complete processing
Figure 4.3 can be understood in more detail in the coming sections.
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Figure 4.3: Outlier IVT

4.3.1 Outliers outside the image area

For outlier detection, the complete trajectory is considered as shown in the Figure 4.3.
Initially, the outlier position needs to be calculated as depending on the position, the
sample is decided to be part of fixation or saccade. If the outlier point is part of
fixation in the original trajectory, then it is labelled as outlier fixation, and if the
outlier point is part of the saccade in the original trajectory, it is labelled as outlier
saccade. The three different inputs for detecting the outlier outside the image area
are described below:

1. From the original trajectory, using the basic IVT algorithm, as mentioned in 1,
fixation and saccades are calculated.

2. Offset values are values indicating how much the image needs to be shifted to



align with the trajectory on the axis. Offset values are different for all users,
and they are provided in the dataset itself.

3. A small value is added to the image size to ignore the border points. Some
points are present at border whose some part is present inside the image, and
some part is present outside the image. For these points, a border value needs
to be added so that these values are considered as part of the image.

Considering an image size of 1020×1680 as an example, then if any point on the y-
axis is more than 1020 or less than 0, then it will be considered an outlier. Similarly,
if the x-axis point is greater than 1680 or less than 0, then it will be considered an
outlier. For example, the offset value and border values are not considered.

An explanation for each point in Figure 4.4 can be seen below:

• Point A is less than 0 for the x-axis; therefore, it is an outlier.

• Point B is less than 0 for the y-axis; therefore, it is an outlier.

• In the same way, point C is more than 1680; therefore, it is an outlier.

• Point D is greater than 1020 and so an outlier.

• Points I and J are within the region and satisfy all the conditions and therefore
are not outliers

• Ponts E, F is also not outliers outside the image area. These points are maybe
outliers inside the image area, and an explanation about the same can be seen
in the Subsection 4.3.2

• Points G and H are exactly on the border and thus are also inside the image
and also outside the image. To work with such points previously mentioned,
border value is added. After adding the value, these points are now inside the
image area.

So the new axis limits after adding the border value of 15 become from -15 to 1035
for the y-axis and -15 to 1695 for the x-axis. Similarly, considering the offset of 100
for both x-axis and y-axis, the new axis limit for the y-axis would be -115 to 935,
and for the x-axis would be -115 to 1595. An illustration of the same can be seen in
Figure 4.5.

4.3.2 Outliers within the image area

Detecting the outliers within the image is quite a challenging task. Precautions need
to be taken to avoid detecting points within the range of interest. False detections
could lead to false predictions and thus decreasing the accuracy. These points could



Figure 4.4: Points indicating outliers. Blue points: Outliers. Orange points:Border
points. Green points: Maybe outliers inside the image. Pink points: Are
not outliers

be generated because of various reasons, which are already mentioned in Section 4.2.
For the extreme values, if a proper complete path is present as shown in Figure 4.6
by the colour yellow, then the person may be actually looking beyond the expected
range of values. But if some random extreme points are present, then these points
could be because of reasons like blinking shown by red colour in Figure 4.6. Such
values should be considered as outliers.

Different types of algorithms can be used for outlier detection as mentioned in
Section 2.5. But, from Figure 4.6, it is clear that the statistical algorithm will not
work here as the major factor that needs to be considered is the nearby points. So
different algorithms to find outliers using the density in nearby areas in mentioned
in Subsubsection 4.3.2.1. Also, after using these algorithms, limits need to be added
to avoid outlier detection in the main region of interest. Different methods to add
limits are mentioned in Subsubsection 4.3.2.2.

4.3.2.1 Clustering algorithms

To check whether a path is present or not, the density of nearby points should be
considered. It can be seen from Figure 4.6 that when a proper path is present, the
density of nearby points is more. Therefore clustering algorithm like K-means, LOF,
DBScan or OPTICS needs to be used which checks the density of nearby points.



Figure 4.5: Changes in Image size. Left: Original size. Center: After adding border
values of 15. Right: After adding offset of 100.

Figure 4.6: Differentiating outliers inside the image. Red: Random point outside
indicating outlier. Yellow: Proper path present

K-means needs the number of clusters to be defined, and this cannot be done in the
case of detecting outliers. Therefore density-based clustering [100] like LOF, DBScan,
and OPTICS algorithm are studied further for finding the outliers.

DBScan Clustering
The DBScan (Density-Based Spatial Clustering of Applications with Noise) algo-
rithm [65] considers the distance of data points from other data points. It forms a
cluster of data points and then considers the density of the cluster. Initially, a cluster
is formed for each data point. Then the number of samples in that particular clus-
ter is calculated, and then it is decided whether the data point is an outlier or not.
The main advantage of this algorithm is that it can form clusters in any shape like
a circle, oval, concave, etc. The main parameters of the DBScan algorithm are the



min samples and the eps (epsilon region). The epsilon is the distance to be consid-
ered around each data point to form a cluster, and the min samples is the minimum
number of data points that should be present in the cluster to classify the data point.
If the eps value is kept too low, everything will be considered as a cluster, and if it
is too high, everything will be considered as noise. Euclidean distance is calculated
in the DBScan clustering[101]. All the data points present in the trajectory can be
classified into three types:

1. Core point: If there is a minimum number of samples in the epsilon region,
then the point is classified as the core point

2. Border point: If there are no minimum number of samples in the epsilon region,
but a single core point is present, then the data point is classified as a border
point.

3. Outlier: If there are no minimum number of samples in the epsilon region and
neither is there any core point in the epsilon region, then the data point is
considered to be an outlier.

It can be seen in Figure 4.7 the differentiation between core points, border points,
and the outliers.

Figure 4.7: DBScan method showing core and border points [101]

OPTICS
Optics (Ordering Points To Identify the Clustering Structure) [102] is an extension
to the DBScan algorithm present in the sklearn library. The difference between the
two is that in Optics, only one parameter is needed: the minimum samples. It is
very difficult to calculate the epsilon value. The epsilon value is calculated using
the algorithm itself. These values are varied depending on the input. This type of
algorithm is suitable for large datasets. The epsilon value may vary from user to
user, depending on the type of data. Therefore it is necessary to select the correct



value. Two new concepts are added to the Optics that is the core distance and
the reachability distance. Both of these concepts can be explained with the help of
Figure 4.8

Figure 4.8: Core distance and reachability distance for OPTICS [102]

1. Core distance: Core distance is the minimum distance to a core point within
the cluster, or it can be defined as the minimum value of epsilon that is needed
to make a point as a core point. If there are no core points within the epsilon
region, then these values stay undefined.

2. Reachability distance: For a point p in the dataset, its reachability distance
to another core point in dataset O is the smallest distance between the points,
which cannot be smaller than the core distance. This can be understood from
the distance to points q1 and q2 from point p in the Figure 4.8.

Once clusters are formed, the reachability plot is calculated. The first step is the
core distances are calculated, and then the reachability distances for each point. In
this way, clusters are kept close to each other, and in this way, the Optics algorithm
works. Optics has the major advantage that it automatically selects and varies the
value of eps according to the data. The only major disadvantage of optics is that it
doesn’t have a well-defined concept of noise like the DBScan, and therefore it can fail
sometimes.

Local Outlier Factor(LOF)
In LOF [103], the calculation is based on the reachability distance, which is the same
as the one mentioned in OPTICS. So in LOF, also reachability distance is calculated
for the nearby points. The average reachability distance tells how far are the nearby
points from a particular object. The more the reachability distance, the farther are



the points from the object. That is, the average reachability distance is an indication
of how far is the nearby cluster. Local reachability distance is the inverse of average
reachability distance. LOF uses the concept of local reachability distance (LRD). A
low value of LRD is an indication that the closest cluster is far away from the point.
The formula for local outlier factor is given by Equation 4.1 which defines LOF as
the ratio of average LRD of the K neighbours of a point X to LRD of X.

LOFk(A) =
sumxj ∈ Nk(A)LRDk(Xj)

‖ Nk(A) ‖
× 1

LRDk(A)
(4.1)

To explain how these formula works are quite simple, if the average of LRD of neigh-
bours is equal to LRD of point, then it is not an outlier. But if the average LRD of
neighbours is more than that of the point, then it is an outlier. So if LOF is greater
than one, then it is an outlier. Even sometimes, points close to the cluster are con-
sidered as outlier. This can become an advantage as well as a drawback, depending
on the application.

4.3.2.2 Limits

By using just clustering algorithms, there are few outliers in the range of interest,
that is, the area of the poem for Bio-Tex. Outlier detection should happen only
outside this range. The probable reason for this is that during extremely fast eye
movements, the path formed has points a little far from each other. Therefore, some
limits should be added to exclude the range of the poem, and this may affect the
accuracy. Various such limiting algorithms like adding manual limits, using standard
deviation, using absolute deviation, using box plot method or percentile can be seen
in this section.

Manual limits
Initially, manual limits were added that is points only outside the range of the poem
will be considered for outlier detection. The range decided was outside 450 and 1250
as shown in the Figure 4.9. The limits have only been decided for the x-axis as for
the y axis, the end of the poem is the end of the image, so the points become outside
the image area. For other datasets, the y-axis range also needs to be defined.

Adding manual limits leads to making the code specific to a particular dataset.
Limits should be added using some generalized method. This method could be some
statistical method that can find points outside the range of interest. A few of the
methods are discussed below.

Standard deviation method
Mean and standard deviation values are calculated for the complete set of data,
and then data points in the range of more than standard deviation or twice the



Figure 4.9: Image boundary after adding manual limits

standard deviation are considered as outliers. It can be seen from the Figure 4.10,
points outside twice the value of standard deviation (5% of data approximately) as
mentioned by authors of [104] can be considered as outliers. Or, in some cases,
thrice the value of standard deviation (0.3% of data) as mentioned in [105], can be
considered as outliers. So the choice actually varies depending on the application
and data [106]. The main problem of using this approach is that the assumption is
that the distribution is normal considering the outliers. Secondly, outliers affect the
mean and standard deviation, and thus false detections can take place. Therefore for
outlier detection, it is not a good choice as the basic consideration of mean value is
itself affected. In this case, the standard deviation of 2 or 3 to be used will also vary
depending on the user to user. Therefore, it is not a good indicator of the outliers.

Absolute deviation
Absolute deviation from the median is a methodology suggested by [107]. The reason
for using the deviation value around the median is due to the fact that outlier values
may affect the mean value. If an infinite value is present in the calculation, then the
mean also becomes infinite, but the median remains unchanged. This is the reason for
using deviation around the median values and not the mean. Median values will be
affected if more than 50% values are infinite. The median absolute deviation(MAD)
is not affected by the sample size. These properties made MAD suitable for detecting
outliers [108]. The median absolute deviation works very well when used as median
plus or minus 2.5 times the standard deviation for outlier detection [106]. In a similar



Figure 4.10: Standard Deviation method showing that after taking 2 standard devi-
ation 5% data is excluded. After taking 3 standard deviation 0.3% data
is excluded [106]

fashion, results can be calculated for mean absolute deviation [109]. It is similar to a
median absolute deviation, with the only difference is that in the final step mean is
calculated. Both of these are then taken around the median that is Median ± Mean
absolute deviation or Median ± Median absolute deviation.

Box plot method
Box plot method is the one in which the interquartile method is used [110]. All the
data is divided into 3 points and 4 intervals. The 3 quartile points are the lower
quartile, the second one being the median of data, and the upper quartile. The lower
and upper whiskers can be multiple of the interquartile point. Any data outside these
whiskers are outliers Figure 4.11 explains the box plot method. The main advantage
of this method is that it is simple, and it only takes the median into account, and
the rest is calculated from the median. One problem with this approach is that
points outside the whiskers need not be an outlier, but it can be a point that behaves
differently from the majority of data [111, 112]. Another problem is that the quartile
range cannot be tailored according to the requirement [113].

Percentile
The percentile of data can be calculated, which is the same as the quartile. 25 quartile
is equal to 0.25 percentile. Percentile shows how much percentage of data lies below a
particular score. For example, a score of 90 out of 100 may stand as 85th percentile as
85% of people lies below a score of 90. Thus percentile indicates the data distribution,
that is, the amount of data below a particular score, and thus it is different from the
percentage value. 50% percentile is the median value for that particular dataset.
Therefore percentile can be a good indicator to calculate the limits. The formula for



Figure 4.11: Box plot method showing quartiles and whiskers [111, 112]

percentile is given in Equation 4.2, but for applying the formula, the data must be
sorted first, and then the formula must be applied.

Value =
Percent

100
∗ Total number of values (4.2)



5 Implementation

This chapter describes the different methodologies used to achieve the results. One
of the important tasks of the thesis is to detect outliers from the data and to segment
these outliers into a new classifier along with the existing classifiers mentioned in
Chapter 3. To achieve this, various methods have been implemented in each step of
the pipeline mentioned in Figure 3.1. In this chapter, how the outliers are visualized
will be studied in Section 5.1. There are two new proposed pipelines, one with the
addition of one classifier and another with the addition of two classifiers. Details
about the same can be seen in Section 5.2. Then the implementation part of the
previously discussed Outlier IVT will be seen in Section 5.3. After this, the data
augmentation part Section 5.4 will be discussed where details about dealing with
users with missing outliers are discussed. Then the final part Section 5.5 is the
evaluation where how the results from different classifiers can be merged is discussed.

5.1 Visualization

In the eye-tracking trajectory, outliers could be because of various reasons, like if a
person is looking outside the image area, faults in the eye tracking device, or blinking.
These outliers need to be viewed in the visualization along with the fixation and
saccades. This section is an overview of how exactly these outliers are visualized. An
additional option has been added in the visualization tool to view outliers as shown
in Figure 5.3. It can be seen from Figure 5.1 that the dotted line is indicating the
outliers. A similar visualization of outliers as part along with fixation and saccades
can be seen in the heat map, too, as shown in Figure 5.2. The red color indicates the
outliers. The red color outliers can be seen in the orange circle. Now the visualization
indicates fixation with a solid line, saccade with a dashed line and outliers with a dot
dash line.

For visualization, only the fixation points are considered. For viewing the fixation,
directly the fixation points are available, but for viewing the saccade, a straight line
is drawn between two consecutive fixation points. This makes the complete process
quite simple of viewing the fixation and saccades. In the case of outliers, the only
option to view outlier saccade has been added. So for viewing outlier saccade, outlier
fixation points need to be joined with each other. The flowchart for the same can be
seen in Figure 5.6.

The first step is to check if any outliers are present or not. If not, then print “no



Figure 5.1: Outlier in Visualization

outliers present” in the text window. The next step is to check whether the first or
the last element in the list is outlier fixation or not. If not, then as can be seen from
step 2 of Figure 5.5 the fixation values needs to be replaced with nan values as we
don’t want to visualize the fixation. It is considered that fixation and saccade appear
alternately. Therefore if the first outlier fixation is at ten, then we should add four
nan values at positions 2,4,6,8. So each alternate position of fixation should consist
of a fixation value if outlier fixation is present or then the nan. In the next step,
for each fixation start, the previous value should be considered as shown in step 3 of
Figure 5.5. If it is not considered, then the trajectory will be as shown in Figure 5.4.
Here the points from which the outliers originate within the trajectory are not visible.
Similarly, one future value should also be considered for the last fixation from the
set. This can be seen from step 3 in the figure. This is the final vector available.
The trajectory will now have its originating points from within the image as shown
in Figure 5.4



Figure 5.2: Outliers in heatmap indicated by red color in orange circle

Figure 5.3: Mark Outlier button added along with option to mark fixation and out-
liers
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Figure 5.6: Flow chart for Outlier visualization



Figure 5.4: left:trajectory without considering the previous values, right:trajectory
with considering the previous values

Figure 5.5: Examples of vectors after each step in visualization. f-fixation,of-outlier
fixation

5.2 Proposed pipelines

This section consists of the two proposed pipelines for implementing the outlier de-
tection by adding new classifiers into the pipeline for outliers. The basic blocks have
been explained in Chapter 3. The two pipelines mainly differ in terms of the number
of classifiers.

5.2.1 Three classifiers

In this method, one classifier is added to the pipeline as shown in Figure 5.7. This
new classifier deals with the outlier fixation and outlier saccade in the single classifier
itself. The output is, therefore, the average from all the three classifier results.
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Figure 5.7: Proposed pipeline with 3 classifiers

5.2.2 Four classifiers

In this method, two more classifiers are added to the pipeline as shown in Figure 5.8.
One classifier is for the outlier fixation, and the other classifier is for the outlier
saccade. So now the output is the average of results from all the four classifiers.
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Figure 5.8: Proposed pipeline with 4 classifiers

5.3 Eye movement segmentation

The Outlier Ivt algorithm explained in Section 4.3 returns the positions of outliers
using various algorithms. So it is necessary to find from these positions whether a
particular outlier point belongs to outlier fixation or outlier saccade. Section 4.3 ex-
plains the theoretical part of various algorithms used. But the actual implementation
of these algorithms will be studied in this section.



5.3.1 Classification of outliers into outlier fixation and outlier saccade

In this section, how exactly outlier fixation and outlier saccade can be extracted is
discussed using the Figure 5.9. Fixation and saccades can be generated from the
trajectory using the logic used in 1. For each position of an outlier, the position
value needs to be searched in the available matrix of fixation and saccade. If the
position value is in fixation, the particular outlier belongs to outlier fixation, and if
the position value belongs to the saccade, then it is part of the outlier saccade. For
example if fixation vector is as [1 2 5 6 10] and saccade vector is like [3 4 7 8 9]. Then
if outlier position is 2 then it belongs to fixation. So the outlier fixation matrix will
have a value 2 and original fixation matrix would be [1 5 6 10].

Trajectory

Check for outliers using
the

method explained in the
Figure 4.3?

Eye
movement

Segmentation

Fixation Saccade

Is the outlier position
originally

in fixation or saccade?

Classification Classification
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Outlier
Fixation

Saccade
Outlier
Saccade

Figure 5.9: Outlier IVT algorithm



5.3.2 Implementation of different methods

This section gives an overview of implementing the methods explained in Section 4.3.
This includes finding outlier outside the image area and also for the methods discussed
to find outliers within the image area using clustering algorithm and limits. Most of
the mentioned algorithms are directly available in the scikit learn library [114]. Scikit
learn library is open source and available for all, and it is specially designed to deal
with machine learning.

5.3.2.1 Outlier outside the image area

As already discussed, outliers outside the image area can directly be detected by
considering the size of the image. A code snippet can be seen in Figure 5.10 where
offset values (x offset value, y offset value) are added, and a border compensation
value (15) is added to the image size (fov). The multiple loops are for working with
positive and negative offset values. Once the position of outlier points is detected,
these points are checked whether they belong to fixation or saccade. If they belong to
fixation, then they are added to a new group called outlier fixation, and if they belong
to the saccade group, then they are added to the outlier saccade group. In each of
these cases, when these points are added to the outlier fixation or outlier saccade
group, they are popped out from their original fixation or saccade group. In this
way, the total number of points in the trajectory remains the same. Later a similar
process is done in calculating the sample start and duration for outlier fixation and
outlier saccade as it is done for fixation and saccade.

Figure 5.10: Code showing how offset values and border points are added



5.3.2.2 Outliers inside the image area

This section consists of two major parts the first is the clustering algorithm, and the
second is the limits. The implementation for both is very easy. Any of the algorithms
can easily be replaced using others in the code as only one or two lines need to be
changed.

Clustering algorithms
For all the code snippets in this section, li1 indicates the trajectory, and a is the
number of outlier points present, b is the position of outliers. DBScan algorithm can
be used from the sklearn.clusters module [115]. As mentioned before, two parameters
need to be set: eps and min samples. A few other parameters which can also be
configured are mentioned in [115]. For training, a complete trajectory is given, and
the algorithm returns the positions with -1 where outliers are present. Therefore the
positions need to be computed for the values with -1. The algorithm is quite simple
to implement, and its snippet can be seen in Figure 5.11. The code implementation
of OPTICS is as same as DBScan and can be seen in Figure 5.12. The only difference
is that here only one parameter needs to be feed, that is, the min samples as the eps
is constant. The implementation of LOF is also the same, just the parameter here to
be set is n neighbors.

Figure 5.11: Code snipet explaining DBScan algorithm

Figure 5.12: Code snippet for implementation of OPTICS

Limits
For limits, 4 values are needed, two for the minimum and maximum of the x-axis
and two for the minimum and maximum of the y axis. The code for this is also quite



Figure 5.13: Code snippet for implementation of LOF

simple. For manual limits, directly the values are added. The standard deviation is
usually taken around the mean. The formula for mean and standard deviation can
be seen in the Equation 5.1,Equation 5.2. The python implementation of the same
can be seen in Figure 5.14.

Standard deviation =

√∑
(xi − µ)2

N
(5.1)

Mean =
Sum of all elements

Number of elements
(5.2)

The next is the Median absolute deviation, and steps for calculating the same are

Figure 5.14: Code snipet for calculating mean and standard deviation

given below:

1. Sort the dataset and find the median

2. Find the median from each data point

3. Find the absolute value of each number

4. Sort the numbers

5. Find the median for the new dataset

The python implementation can be seen in Figure 5.15. The box plot methods usually
requires the calculation of the quartiles for the dataset. So 25th and 75th quartile



Figure 5.15: Code snipet for median absolute deviation

Figure 5.16: Code snipet for box plot method

needs to be calculated and the python implementation for the same is given in the
Figure 5.16. The calculation of percentile is also easy and 98th and 2nd percentile of
the data is calculated to set the range. Therefore values of 0.02 and 0.98 are used.
The python implementation can be seen in Figure 5.17. The nanpercentile is used to
ignore the nan values.

Figure 5.17: Code snipet for percentile

5.4 Data augmentation

Data augmentation is a method in which original data can be altered or modified to
increase or decrease the size of the dataset. The problem with the current pipeline is
that there may be users for whom there are no outliers. In this case, there will be no
input given to the outlier classifier. This will result in an error being produced at the
output. To avoid this problem, data augmentation must be done. For users with no
outliers, a dummy vector needs to be created to give some value to the classifier. This
value could be zero, mean value, or any other random value. More complex methods
are also available to deal with such cases, but in this case, two basic methods that
are giving zero value or giving mean value are studied.

Along with this, after adding a dummy vector, the data is still imbalanced and thus,



to balance the data, some technique should be used. There could also be cases where
outliers are present in training and absent in testing and vice versa. A technique to
solve this problem should also be implemented. All this can be seen in the sections
below.

5.4.1 Dummy vector with zero

To deal with this problem of users with missing outlier values, a dummy vector of
zeros is added. This is the most basic method. This dummy vector is added after the
feature extraction stage. If the feature list is missing for any classifier, then a dummy
vector is added for that user. By doing this, successful training and evaluation are
done. The algorithm for the same is given below:

1. Check for available sample types for a user, which can be a fixation, saccade,
or outlier. If a user has no outlier, then the sample type would be just fixation
and saccade.

2. Check if an outlier is present in sample type. If yes, get out of the loop, and if
no, go to the next step

3. Check for the feature values one by one

4. If feature name is sample type then this values cannot be zero, then add the
value to be an outlier, and for all other features add values to zero

5. Add the new values to the feature list

5.4.2 Dummy vector with mean

Another approach to solving this problem is to add mean values [116]. Mean has
the disadvantage that it reduces the variability of data, but again using a more
complicated algorithm is not required here until and unless the results are quite bad.
To implement this, nan values need to be added for the missing users, which is done
by default. Then finally, when all features are gathered for all the users, the algorithm
mentioned below needs to be executed.

1. Consider the first feature to be checked

2. Check if any value in the list for the feature name is missing

3. If there are no nan values, then just go to the next feature

4. If nan values are present, calculate the mean of values and just replace the nan
values with the mean for that particular feature

5. Repeat the same for all features



5.4.3 Data balancing

It has been already discussed previously that the data presented to the outlier clas-
sifier is highly imbalanced. A few users have no outlier points, and a few users have
many data points considered as outliers. Therefore data balancing could be the way
to improve the accuracy. A few of the most common ways are to oversample or
under-sample the data. In undersampling, the amount of data size for the majority
class is reduced. In this case, undersampling will reduce the data points for users
with more outliers. The other possible way is to resample the data. In this case,
random points are added to the data to increase the size of the data. Adding random
data points for users with fewer outliers may increase the accuracy. One more way
is to do both undersampling and oversampling. This can be done by adding the
oversampling for users with less number of outliers and undersampling for users with
more number of outliers. This is the most effective way that can be used, but it has
the same disadvantages as mentioned for under and oversampling. Data balancing
could be done before presenting the data to the classifiers.

5.5 Evaluation

The final step in the pipeline is to combine the results from all the classifiers. All
the classifiers at their output give a probability for each user. These probabilities are
then multiplied by some weights, and then the final predictions are made. The two
methods that can be used are averaging and weighting. In averaging, equal weights
are given to all the classifiers, and in weighting, weights are given depending on the
performance of each classifier.

5.5.1 Averaging

This method is originally used in SMIDA and is inspired by the work of [12]. In this
paper, they have mentioned the formula for calculating the weights. The formula
depends on the number of features used for fixation and saccades, and this decides
the ratio of weighting for fixation and saccade. But as the number of features are the
same length, the formula can be given as

weight =
1

Number of classifiers
(5.3)

The final result is, therefore, an average of the single results

5.5.2 Weighting

The main disadvantage of averaging is the assumption that all classifiers perform in
the same manner and predictions of all classifiers are equal and the same. But this



is not the case. After taking into consideration the probability estimation of each
classifier, it proves that the prediction accuracy is different for each classifier, and
therefore same weights cannot be given to all the classifiers. As the data size given to
the outlier classifier is very low compared to that of fixation and saccade, therefore the
prediction accuracy for these classifiers is also low. Therefore less weight should be
given to this classifier. Experiments with different weights can be seen in Chapter 6.



6 Results and Discussion

In Chapter 5, all the different methodologies used in the implementation of the
pipeline are explained. In this chapter, results produced by all the methods are
compared and evaluated. All the results are discussed, and the final comparison of
the results is presented in this chapter. All the results are the representation of ac-
curacy in percentage. The results are for user identification. All the experiments
are performed for five seeds with a user limit of 100. The reason for selecting these
parameters was the time limitation and memory limitations. All the experiments are
performed on the Bio-Tex dataset. In the final results, a comparison for the Bio-
Ran dataset is available. Initially, the results are compared for the original pipeline
with the outliers removed from the data in Section 6.1. In the next section, results
for two proposed pipelines are compared in Section 6.2. In the next section, results
for different clustering algorithms and different limiting algorithms are compared in
Section 6.3, and the best method is then selected. Then the results for different data
augmentation methods are compared in Section 6.4. In the next step, results for
different classifiers are compared in Section 6.5. Then the results for averaging and
different weights are seen and studied in Section 6.6. Finally, the achieved results by
the pipeline are analysed and compared with the original results in Section 6.7.

6.1 Result for the original pipeline with outliers removed

Initially, the first task for the thesis was to detect the outliers in the data using
the algorithms discussed in Chapter 4. These detected outliers were then removed
from the data, and the accuracies were calculated for the pipeline with two classifiers
(fixation and saccade). The results for the Bio-tex dataset can be seen in Table 6.2.
The accuracies after removing the outliers got reduced for RF by 0.4% but increased
for RBFN by 1.2% approximately. But for getting a more clear idea, experiments
need to be performed on more number of seeds. The results for the same are present in
Section 6.7 The reason for the decrease in accuracy is that training data was reduced
considerably compared to the previous one. This can be seen from Table 6.1, where
the count of fixations and saccades have reduced after removing the outliers. It can
be seen from Table 6.1 that there are many outliers even in the image area because
of some extreme trajectory values in the image itself. Table 6.1 are the count of
fixation, saccade and outlier for 100 users. The results show that the maximum of
outliers are within the image area, and mostly the outliers outside the image area



Original Outliers outside the image removed All Outliers removed

Fixation 21825 21119 20001

Saccade 16330 15051 13356

Outliers - 1985 4798

Table 6.1: Number of outliers for 100 users

are saccades. So we cannot conclude here whether it is an ideal choice to remove
the outliers or not. Therefore in the next steps, we will add the new classifier which
works with outliers, and in the end of the thesis, again, the results will be compared
by removing the outliers.

Comparision after removing the outliers
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Figure 6.1: Comparision of accuracies after removing the outliers from training.
Number of users used:100. Dataset: Bio-Tex

6.2 Results for newly introduced pipeline

In this section, a comparison of results for the two new pipelines that is one with three
classifiers and the other with four classifiers, is presented. These classifiers are to deal
with the outlier data present in the trajectory. As it can be seen from the Table 6.3



Outliers outside the image removed All Outliers removed Original accuracy

RF 89.2% ± 0.7% 91.4% ± 0.2% 91.8% ± 0.6%

RBFN 92.2% ± 0.3% 93.6% ± 0.4% 92.4% ± 0.5%

Table 6.2: Comparision after removing the outliers from the pipeline. Number of
users used:100. Dataset: Bio-Tex

RF RBFN

Pipeline with 3 classifiers 67% ± 0.5% 87% ± 0.8%

Pipeline with 4 classifiers 45% ± 0% 54.6% ± 0.4%

Table 6.3: Bio-tex accuracies for pipeline with 3 and 4 classifiers. 3 classifiers include
fixation,saccade and outliers. 4 classifiers contain fixation,saccade, outlier
fixation and outlier saccade. The results are for 100 users.

both the pipelines, don’t seem to perform very well in the initial stages. But after
comparing the results of both the pipelines, the pipeline with three classifiers seems
to perform better. The results have such a low accuracy because of equal weights
used for all classifiers. The concept of weighting is discussed in Section 6.6. Outlier
classifier for RF does not perform well and decreases the accuracy. The reasons for
the failure of pipeline with 4 classifiers are given in below:

• It has been observed that for most of the users, the outliers are in the form of
saccades, and therefore the classifier which works on fixations has a less amount
of input data. For 100 users, there are 1824 outlier fixations, while there are
2974 outlier saccades.

• Addition of dummy vector for missing values is reducing the variability of data,
and mean values are present for many users.

• The data is highly imbalanced, for some users, there are many outliers present,
and for some users, there are no outliers present.

The pipeline with 3 classifier also doesn’t seem to perform very well, but it performs
better than the one with 4 classifiers.

6.3 Results for Outlier IVT

All the methods used for Outlier detection are mentioned in Chapter 4. A compara-
tive study of the clustering methods used and the limiting methods used can be seen
in this section. All the outliers and detected and considered for experiments in this
section. The clustering methods are compared, and then one is finalized to be used



RF RBFN

DBScan 93.6% ± 0.2% 93.2% ± 0.5%

Optics 89.2% ± 0.6% 92.8% ± 0.2%

LOF 92.4% ± 0.2% 92.6% ± 0.2%

Table 6.4: Accuracies for clustering algorithms on Bio-Tex dataset with a user limit
of 100

for further experiments. Once the clustering method is selected, different limiting
algorithms are used in combination with the clustering method, and one is selected.

6.3.1 Different methods for outlier detection

The main methods compared are DBScan, LOF, and Optics. As mentioned above,
Optics is an improvement to the DBScan clustering algorithm. The main advantage
of Optics is that only one parameter needs to be set, that is, the min samples, while
for the DBScan, two parameters need to be set that is the min samples and the eps.
Eps is automatically calculated in the Optics algorithm. A comparison of all of these
algorithms can be seen in the Figure 6.2. Table 6.4 shows the accuracies achieved for
all of these algorithms.

The results for all the three clustering algorithms have been discussed below:

• DBScan: DBScan considers the outliers in its calculation as mentioned in
Subsubsection 4.3.2.1, it does a better prediction and classification of points
to be outliers. So even though Optics may be a better clustering algorithm,
DBScan performs better for outliers.

• OPTICS: It can be seen that accuracies decrease significantly for Optics.
These results are concluded after doing a comparative study for different values
of min samples from very small values of 1 to larger values of even 100. The
main reason here for the decrease in accuracy is that Optics does not consider
the noise as mentioned in Subsubsection 4.3.2.1. It just clusters the incoming
data based on the density. Therefore not all outliers are detected, or it may
happen that some false outliers are detected.

• LOF: While in the case of LOF, some points close to the cluster of fixation
and saccade are also considered as outliers. Due to this, there are some false
predictions for outliers, and this decreases the accuracy.

Hence for further experiments, the DBScan algorithm is used. To further select
the parameters of the DBScan algorithm, experiments were performed by changing
the values of min samples and eps. The Table 6.5 shows that the value of 3 for
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Figure 6.2: Comparision of accuracies for DBScan,OPTICS, LOF and original accu-
racies for 100 users

min samples and 2 for eps gives best results. The values for min samples and eps
are decided by trial and error method. A value for epsilon region more than this may
lead to some distinct points getting detected, and values less than this may lead to
some points not getting detected and points getting falsely labelled as outliers. So
these values were used for further experiments.

6.3.2 Different methods for adding limits

As discussed in Subsubsection 4.3.2.2 limits can be added to where exactly the DB-
Scan algorithm should be applied. Various methods have been discussed along with
their pros and cons in Subsubsection 4.3.2.2. Results for all these algorithms have
been discussed and compared in this section. The different values tried for different
parameters of each of the algorithm are given below:

• Manual limits: For manual limits, limits of between (450,1250), (500,1300),
(400,1200), (400,1300), (500,1200) were tried and the results shown in Table 6.6
are for the range of (450,1250).

• Standard Deviation: For Standard deviation ranges of (Mean ± sd), (Mean



DBScan parameters Classifier

eps min pts RF RBFN

2 3 93.6% ± 0.2% 93.2% ± 0.5%

4 4 87.8% ± 0.7% 92% ± 0.5%

2 2 88.8% ± 0.6% 93.2% ± 0.4%

3 2 87.8% ± 0.4% 93.2% ± 0.4%

Table 6.5: Accuracies for different DBScan parameters that is min samples and eps
for 100 users on Bio-Tex dataset

RF RBFN

Manual limits 89.6% ± 0.2% 92.6% ± 0.2%

Standard deviation 91.2% ± 0.6% 92.2% ± 0.4%

Absolute deviation 92.4% ± 0.2% 93.4% ± 0.5%

Box plot 92.8% ± 0.2% 92.6% ± 0.4%

Percentile 93.6% ± 0.2% 93.2% ± 0.4%

Table 6.6: Accuracies for RF and RBFN for different limiting methods after using
DBScan algorithm with them. Results are for Bio-Tex dataset for 100
users.

± 1.5×sd), (Mean ± 2×sd) were experimented, and the best results were given
by Mean ± 1.5×sd.

• Absolute Deviation: The same limits of standard deviation were used for
absolute deviation.

• Box plot: For the box plot, the interquartile range(IQR) was calculated by
taking the difference between 25 and 75 quartile and then (Median ± IQR),
(Median ± 1.5×IQR), (Median ± 2×IQR) and the best results were received
while multiplying the IQR with 1.5.

• Percentile: For percentile also ranges of (2,98),(1,99),(3,97), and few other
random values were tried, but (2,98) provided the best results.

Table 6.6 shows the comparison of the different limiting algorithms. Here the
results are for RF and RBFN based on the DBScan clustering algorithm. A graph of
the comparison can be seen in Figure 6.3. It can be seen from the results mentioned
in Table 6.6 that the Percentile and median absolute deviation tends to perform much
better than the rest. Results for all the methods have been individually discussed
below:
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Figure 6.3: Comparision for different limiting algorithm with original accuracy for
100 users

• Manual limits: The manual limits have the biggest disadvantage that it does
not take into the consideration the distribution of data. So it may happen that
there are many data points outside the limits, and they all may be considered
for outlier detection for DBScan, which is not necessary. Therefore the limits
may need to vary for each user. Another problem with using this method is
that the limits can be used only for this dataset. For all other datasets, these
limits may be different. So this is not the right approach to go forward with.

• Standard Deviation: For the standard deviation method and absolute devi-
ation method, the mean is considered, and as already discussed, the value of
the mean is largely affected by the presence of outliers. For the scenario where
the number of outliers is less, this may still work well, but when outliers are
more, this method tends to fail.

• Absolute Deviation: The absolute deviation performs better for the RBFN
than all other methods, but for RF, it fails to perform better than the rest.

• Box plot: The box plot method uses the quartile range as discussed previously.
It performs again well but still is less good than the percentile method.



RF RBFN

Dummy vector with zero 92.6% ± 0.2% 92% ± 0.4%

Dummy vector with mean 93.6% ± 0.2% 93.2% ± 0.5%

Table 6.7: Comparision for dummy vector with mean and zero values for 100 users
for Bio-Tex dataset

• Percentile: The percentile method shows very good results, and also the stan-
dard error of the mean of results for this method is not so high, and this is thus
the best method among all. The reason for good performance is that only the
data points outside the range of interest are considered.

6.4 Data augmentation

In this section, various methods to deal with missing users are discussed. One way
of dealing with missing users is to add a dummy vector. The next thing is the
imbalance in the dataset. One way to deal with this imbalance is balancing the data
using resampling or undersampling. A few other experiments were also performed to
deal with missing users or to deal with users with fewer outliers. All these things are
explained in the section below.

6.4.1 Dummy vectors

Dummy vectors are needed to compensate for the users with no outliers. Because
a user with missing features cannot be given to the classifier. Dummy vectors first
with zero value were added, and then with mean value were added to the pipeline.
Table 6.7 shows the difference in values for both these dummy vectors. The dummy
vector with the mean value tends to perform better. The results are for both classifiers
RF and RBFN. In Table 6.6 also dummy vector with mean value is used.

6.4.2 Data balancing

Data balancing was performed using different methods like resampling, downsam-
pling, or a combination of both. But none of these worked. The most probable
reason for this type of performance is that resampling the data for users whose out-
lier is absent is just like resampling the mean value, and thus, it does not work, and
in the same way, downsampling will reduce the already fewer data available for train-
ing. And because of these two reasons, the combination of both also didn’t work.
It has been stated and proven that resampling fails when there is very low data to
resample, which is true in this case [117]. Therefore data balancing was not added
into the pipeline.



Accuracy for IVT
after removing users

Accuracy for Outlier IVT
after removing the users

RF 84.8% ± 0.2% 86% ± 0.6%

RBFN 88.2% ± 0.2% 89% ± 0.3%

Table 6.8: Accuracies after removing the users with fewer outliers for 100 users for
Bio-Tex dataset

6.4.3 Removing users with less/no outliers

In the initial stages, when the new pipeline didn’t perform well, one obvious guess for
the reduction in the accuracy was that users with fewer outliers reduced the efficiency
of training, and thus, one possible approach to confirm this assumption was to remove
these users from the pipeline. There were few users with no outliers in training but
outliers present in testing data or the users with outliers in testing but no outliers
in training. These users lead to the false prediction of other users. The assumption
was proven to be correct that when these users were removed, the performance of
the pipeline was improved. The Table 6.8 shows a comparison for a new set of users
(users with fewer outliers replaced with the new one). The comparison is for IVT
and Outlier IVT for this new set of users.

6.4.4 Training users with no outliers on only two classifiers

After it is proven that the users with fewer/no outliers affect the training, the next
possible step could have been to train these users on only two classifiers that is
fixation and saccade. The assumption was that as these users are not considered in
the outlier classifier group, the performance of the outlier classifier will improve. But
surprisingly, this didn’t happen. The performance remained the same. Therefore this
step was not added to the pipeline.

6.5 Classifiers

There are two classifiers used in the initial pipeline, one for fixation and one for
saccade. A third classifier is added to the pipeline for outliers. The parameter
rbfn k, which defines the cluster size, should have the inputs equal to or more than
the cluster size. That is, if the cluster size is set to the default value of 32, each user
should have a minimum of 32 samples for each classifier. A cluster size of 32 will
divide the whole set of data into different cluster groups, and each group will have
a similar type of data. But this is not the case; there may be some users with no
outliers or fewer outliers. So, it is not possible to train the classifier with a cluster
size of 32. So the solution for this problem is that cluster size could be set to 1.



RF RBFN RF+RBFN SVM Naive-bayes

Accuracies 93.6% ± 0.2% 94.4% ± 0.2% 93.6% ± 0.2% 18.8% ± 0.6% 13% ± 0.0%

Table 6.9: Accuracies for different classifiers for 100 users for Bio-Tex dataset

Clusters are important to place similar data in a single cluster group but setting
the cluster size to 1 lead to all types of data into a single group which reduces the
accuracy. Therefore cluster size of 1 is used for the outlier classifiers, and for fixation
and saccade classifier, the default value of 32 will be maintained.

It has been observed in the initial stages that the RBFN classifier performs better
on the outliers than that of RF as seen in Table 6.3. RF produced very bad results
while working with outliers. Due to this, an experiment was performed in which RF
was used to train fixation, and saccade classifier and RBFN were used to train the
outlier classifier.

Along with this, to see the working of different classifiers on the current pipeline,
few other classifiers like Naive Bayes and SVM were also tried. A comparison of all
the results can be seen in the Figure 6.4.

Accuracies for different classifiers
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Figure 6.4: Comparision of different classifiers for 100 users for Bio-Tex dataset

It can be seen in Table 6.9 that RBFN performs best among all the classifiers. The
reason for the poor performance of classifiers are discussed below:



• SVM: As it can be seen, SVM performs very badly. The data present in the
dataset is highly imbalanced in some cases. In these cases, the ratio between
positive and negative support vectors also becomes imbalanced and thus leads
to false predictions. Also, as mentioned by the authors of [118], SVM is highly
sensitive to the presence of outliers, and thus it performs badly. SVM also
suffers when the training size is small, as mentioned by [119]. SVM is mainly
used for binary classification, that is when output can be only two classes, but
in this case, SVM is used for multiclass classification, and thus it fails. This
may be some of the reasons for really poor performance.

• Naive-Bayes: On the other hand, Naive-Bayes is also producing very poor
results. This may be due to the fact that it considers each feature independently
and assumes that features are independent of each other, which is not the
case [120]. It is also observed that it is a bad estimator, and thus, probability
output is not accurate for consideration.

• RF+RBFN: RF+RBFN was considered in the initial stages of experiments
when both RF and RBFN didn’t perform considerably well. At this time,
RF+RBFN performed better than the rest. But in the later stages, bot RF
and RBFN performed really well, so there is no more need to consider this
classifier because both RF and RBFN individually perform better than this
combination.

RF and RBFN are highly accurate, and thus both of these classifiers are considered
for most of the experiments.

6.6 Evaluation

In an evaluation in the first case, weights for all classifiers are kept the same, and
in the second case, weights are varied for each classifier. When weights were varied
for classifiers, the accuracy was highly improved, the reason being that all classifiers
don’t perform in the same manner.

It is very difficult to decide which weights should be assigned to each classifier.
To solve this problem, the weights of fixation, saccade, and outliers were varied over
a range, and the best weights were calculated. The addition of fixation weight and
saccade weight at each point gives the outlier weight, as can be seen on the graph.
The addition of fixation weight of 40 and saccade weight of 40 gave an outlier weight
of 20. In the plots in Figure 6.5,Figure 6.6 the performance of RF and RBFN for
different weights can be seen. It can be seen that for RBFN, saccade weight in the
range of 50-60 and fixation weight in the range of 30-40 performs better. Similarly,
for RF, saccade weight in the range of 30-40 and fixation weight in the range of 45-55
shows better performance than others. So this range must be explored more. It can



be seen that the performance of RF is better on fixation than on a saccade, and for
RBFN, performance is better on saccade than fixation. Therefore weights should be
calculated accordingly.

A calculation was done for over 20 seeds for this range, and it was found that for
RF, the weights of 35 for saccade, 52 for fixation, and 13 for outliers achieved the
best results. On the other hand, for RBFN, the weights of 52 for saccade, 36 for
fixation, and 12 for outliers gave the best results. It can be seen that less weights are
assigned to the outlier classifier, but their presence is significant and improves the
performance.

A comparison of values by giving equal weights to all classifiers and giving the
above-mentioned weights for all classifiers is made in Table 6.10. A comparison of
the results for both of these with the original accuracy can also be seen in Figure 6.7.

Figure 6.5: Results for different weights used for three classifiers for Bio-Tex for 100
users for RF. Color map indicates the accuracies. Fixation weight +
Saccade weight + Outlier weight = 1

6.7 Final results

Initially, the experiments were performed by removing the outliers from the calcu-
lation. Then in the next step, the two proposed pipelines were used, one with 3



Figure 6.6: Results for different weights used for three classifiers for Bio-Tex for 100
users for RBFN. Color map indicates the accuracies. Fixation weight +
Saccade weight + Outlier weight = 1

classifiers and one with 4 classifiers. The pipeline with 3 classifiers was seen to out-
perform the pipeline with 4 classifiers. This shows that dividing outliers into fixation
and saccade doesn’t provide any added valuable information. Instead, using them
together is a better option. Then for detecting the outliers, different methods were
tried and compared. Among the methods used for clustering, DBScan provided the
best results due to its ability to consider outliers. Among the limiting algorithms,
percentile was the best algorithm as it is very less affected by the presence of noise.
In the data augmentation part, various methods to deal with users with no outliers
were discussed. Among the methods for data augmentation, adding a dummy vector
with a mean value for users with no outliers was used. Then different classifiers were

RF RBFN

Same weights to all 89.4% ± 0.2% 92.8%± 0.2%

Different weights to all 94% ± 0% 95% ± 0.3%

Table 6.10: Comparison of accuracies for averaging and weighting method for Bio-Tex
dataset for 100 users



Accuracies for same and different weights for all classifiers
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Figure 6.7: Comparision of accuracies for same and different weights. Same weights:
0.33 for all. Different weights(Saccade, Fixation, Outlier): Bio-Tex
RF-35,52,13, Bio-Tex RBFN-52,36,12, Bio-Ran RF-37,41,22,Bio-Ran
RBFN:50,44,06

compared for their performance on the outliers, and it was found that RF and RBFN
perform better than the others. Therefore the final results presented are for both
of these classifiers. Then in the final step, weights were calculated for all the three
classifiers that give the best results. The received weights were then used in the final
results.

The comparison of results for this final pipeline with the original pipeline and the
pipeline with outliers removed can be seen in Table 6.11 and Figure 6.8. It can be
seen in the results that for Bio-Tex, there is an improvement in accuracy by 1.75%
for RF and for RBFN, the accuracy is improved by 1% after considering the outliers.
This proves that outliers play a vital role in the identification process. Even when
outliers are removed, the accuracy decreases slightly by 0.5% for RF but increases for
RBFN. This shows that outliers are affecting the prediction for fixation and saccade
classifier for RBFN. But in the case of Bio-Ran, the accuracies have not improved
and are approximately the same as the original accuracies. In fact, for RF, the
accuracies have decreased by approximately 6%. So for both the datasets, removing
the outliers is decreasing the accuracy for RF. The reason may be that in Bio-Tex,



RF RBFN

Original Outlier removed New Original Outlier removed New

Bio-Tex 92% ± 0.2% 91.45% ± 0.2% 93.75% ± 0.1% 92.4% ± 0.1% 93.35% ± 0.2% 93.4% ± 0.2%

Bio-Ran 93.8% ± 0.2% 87.7% ± 0.2% 93.6% ± 0.1% 95.9% ± 0.2% 94.95% ± 0.2% 95.1% ± 0.2%

Table 6.11: Final results for RF and RBFN for Bio-Tex and Bio-Ran dataset

there is comparatively a relatively stable path followed by each user of following the
text. But in Bio-Ran, the path is very random and thus the position of an outlier.
So probably, chances of false outliers being detected or outliers not getting detected
may happen. So after adding outliers, there is a slight decrease in the accuracy. It
can also be seen that RBFN performs better than RF. This is due to the factor that
RBFN can generalize well for patterns not present in training.

The same weight calculation technique as mentioned in Section 6.6 has been used
for the Bio-Ran dataset. The best weights for RF are 37 for saccade, 41 for fixation,
and 22 for outliers. Similarly, for RBFN, the best weights are 50 for saccade, 44 for
fixation, and 6 for outliers. The result for the original accuracy and the results using
the new pipeline can be seen in Table 6.11,Figure 6.8.

Results were also calculated for cross-evaluation. That is training the classifier on
Bio-Tex and testing on Bio-Ran, but this doesn’t provide good results. The results
received were in the range of 15-20%. This shows that the classifier training is very
much task-specific, and thus classifier trained on one stimulus will not perform well
on other stimuli.

So, the final pipeline for Bio-Tex and Bio-Ran is completely the same except for
the weights. The pipeline with 3 classifiers is used for both. Outlier detection is done
using clustering algorithm DBScan with values of min samples is 3 and eps is 2. The
percentile values for adding limits are 0.2 and 0.98. The best accuracies for Bio-Tex
are obtained using RF with weights of 35,52,13 for saccade, fixation and outliers.
The best accuracies for Bio-Ran are obtained for the new pipeline using RBFN with
weights of 50,44,6 even though this accuracy is less than the original one.
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Figure 6.8: Comparision of final accuracies for Bio-Tex and Bio-Ran dataset for 20
seeds with original accuracies



7 Conclusion

In this thesis, the importance of outliers in eye moment trajectories is discussed.
Along with fixations and saccades, a new classifier of outliers was added to the pre-
existing pipeline. Outliers can be present outside the image area as well as inside
the image area due to various reasons mentioned in this thesis. This new classifier
is introduced to deal with outliers present outside the stimulus and also within the
stimulus. A final comparison of accuracies is done for three different scenarios. The
first one is the original pipeline, the second one is after removing the outliers, and
the third one is after adding a new classifier into the pipeline. All the experiments
were mainly performed on the Bio-Tex dataset, and then the final pipeline was tried
on the Bio-Ran dataset also. As expected, a pipeline with three classifiers tends to
improve the accuracy of the Bio-Tex dataset. Also, there is no conclusive result for
the Bio-Ran dataset as the results after including a new classifier for outliers are
approximately the same as the original accuracies. More experiments need to be
performed to see the effects of outliers on the Bio-Ran dataset.

One of the objectives of the thesis is to detect outliers. It is very difficult to treat
which points to be treated as outliers and which as fixation/saccade. An observation
is that outliers outside the image area are mostly saccades, while outliers inside the
image area have an equal ratio of fixation and saccades. Along with these outliers is
random data that is it does not appear at a fixed interval or a fixed duration. The
only thing is that the pattern of outliers that is the trajectory of outliers for a user
is quite similar. Thus the inclusion of outliers into a separate classifier is beneficial.
More research can be done on the pattern and occurrence of outliers in the data.

The next objective of the thesis was to remove the outliers from the pipeline and
check the accuracy The results signify that removing the outliers does not improve
the accuracy for RF for both of the datasets. For RBFN, the accuracy is improved
for the Bio-Tex dataset but not for the Bio-Ran dataset. Therefore, it is not a good
idea to work by removing the outliers.

Therefore the other way to deal with outliers is to include the outliers. This can be
done by adding one classifier for all outliers or two classifiers, one for outlier fixation
and the other for outlier saccades. One significant observation is that segmenting
outliers into fixation and saccade leads to decreased accuracy. This is because of the
small data size present after segmenting the outliers and the imbalance present in the
data. Working with outliers into a single group is much more useful and gives better
results.

A few of the points can be improved and worked on and are mentioned below. In



Bio-Tex, the eye movement is directed by the text. So there is a relatively stable and
directed movement of the eye and here, adding outliers into the pipeline improves the
results. In Bio-Ran, where the path is completely random, there is no improvement in
accuracy. Experiments need to be performed on more datasets to see the performance
of outliers on the data. This may help to understand more the pattern in which
outliers occur. It can also help to understand does the outlier frequency remain the
same for users irrespective of the stimuli.

One more approach which can be used is by classifying further the outliers group
based on their reasons. As discussed before, blinking may occur at approximately the
same interval and in a similar pattern. So if it is possible to classify outliers based
on blinking, it will be helpful to classify users, and each user has a different blinking
pattern. But currently, it is very difficult to separate blinking points from the data
as there is no information about the blinking rate for the users. The new eye trackers
usually compensate for most of the blinking points. One more approach that could
be used is to classify outliers into outlier fixation and outlier saccade and then to
use a classifier that can deal with small data size and highly imbalanced data. Or a
method to appropriately balance the outlier data for all users can be used.

In the future, experiments may be tried to perform on more users and for more
seeds. Due to hardware and time restrictions, it was not possible in this thesis. But
increasing the users and runs will definitely give a clearer idea about the results,
mainly for the Bio-Ran dataset where there are no conclusive results obtained.

Thus, it can be stated that outliers play a significant role in eye movement. The
improvement in accuracy for one dataset proves that with more work and research
on outliers, accuracy can be further increased. The uniqueness of outliers from user
to user is an important observation, and it can be further explored for improving the
results. More research in this direction would definitely be helpful in the field of user
identification.
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