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PREFACE 
 
 

 
 
   
 
 
In biological and medical research areas, the first wave of 
computational analysis had focused on sequence analysis. 
However, this role has been dramatically improved since the 
increasing needs of solving more complex problems in biology 
especially during this post-genomics era. Advances in high-
throughput  experiments which had producing massive biological 
data such as microarray gene expression and protein-protein 
interaction provide a lot of information about life which mostly are 
not been fully understand yet. Therefore, computational approach 
has become completely necessary in experimental designs, results 
processing and interpretation in order to discover more information 
in the biology data.  
    The used of huge size databases of biological information are 
insufficient for the researchers to discover the mysteries in 
biology. Thus, computational tools for identifying genes and 
proteins homologous similarities, classifying cancerous genes and 
predicting protein structures and functions have become major 
component in the research process which is essential in 
understanding the biological behaviors from the molecular to 
genome level. Furthermore, the improvement of searching and 
processing algorithms with in advance of artificial intelligence and 
machine learning have truly show high potential in giving the 
researchers a lot of further opportunities.  
    By learning the theory from the data autonomously through 
inference process, the large amount of data with high possibility of 
unintended noise and insignificant information can be processed 
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with more reliable methods. In addition, the used of artificial 
intelligence and machine learning can also give advantages in 
intensive computation and progressive speed. Hence, we present 
this book as a compilation of recent researches and findings to 
solve diverse biological issues using artificial intelligence and 
machine learning techniques.  
 
 
 

Safaai Deris 
Mohd Saberi Mohamad 
Afnizanfaizal Abdullah 
Faculty of Computer Science and Information Systems 
Universiti Teknologi Malaysia 
2008 
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1 
PREDICTING PROTEIN-PROTEIN 

INTERACTIONS FROM SEQUENCE 
FEATURES USING SUPPORT VECTOR 

MACHINES 
Hany Alashwal  

Safaai Deris  
Razib M. Othman 

 
 
 
 

1.1    INTRODUCTION  

 
 
Identifying protein-protein interactions represents a crucial step in 
understanding proteins functions. This is due to the fact that 
proteins work in the context of many other proteins and rarely 
work in isolation. However, the available interactions data that 
have been identified by high-throughput technologies like the yeast 
two-hybrid system are known to yield many false positives. As a 
result, methods for computational prediction of protein-protein 
interactions based on sequence information are becoming 
increasingly important.  

Over the past few years, several computational approaches 
to predict protein-protein interaction have been proposed. Some of 
the earliest techniques were based on the similarity of expression 
profiles to predict interacting proteins (Marcotte et al., 1999), 
coordination of occurrence of gene products in genomes, 
description of similarity of phylogenetic profiles (Pellegrini et al., 
1999) or trees (Pazos and Valencia, 2001), and studying the 



2 Advances in Bioinformatics 

 

patterns of domain fusion (Enright et al., 1999). However, it has 
been noted that these methods predict protein–protein interactions 
in a general sense, meaning joint involvement in a certain 
biological process, and not necessarily actual physical interaction 
(Eisenberg et al., 2000).   

These methods which are based on genomic information 
are not universal because the accuracy and reliability of these 
methods depend on information of protein homology or interaction 
marks of the protein partners. For instance, computational methods 
such as phylogenetic profiles, predict protein-protein interactions 
by counting for the pattern of the presence or absence of a given 
gene in a set of genomes (Marcotte et al., 2000; Craig and Liao, 
2007). The main limitation of these approaches is that they can be 
applied only to completely sequenced genomes, which is the 
precondition to rule out the absence of a given gene. Similarly, 
they cannot be used with the essential proteins that are common to 
most organisms (Shen et al., 2007).  

Consequently, predicting protein-protein interactions based 
only on protein sequence features has a significant importance for 
computational methods. The advantage of such a method is that it 
is much more universal. This can be done by developing 
computation methods that predict protein-protein interactions by 
associating experimental data on interacting proteins with 
annotated features of protein sequences using machine learning 
approaches, such as support vector machines (SVM) (Bock and 
Gough, 2001; Chung et al., 2004) and data mining techniques, 
such as association rule mining (Oyama et al., 2002).  

The most common sequence feature used for this purpose is 
the protein domains structure. The motivation for this choice is 
that molecular interactions are typically mediated by a great 
variety of interacting domains (Pawson and Nash, 2003). It is thus 
logical to assume that the patterns of domain occurrence in 
interacting proteins provide useful information for training PPI 
prediction methods.  

A recent approach based on domain-domain interactions 
information has been presented in (Gomez et al., 2003). They 
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developed a probabilistic model to predict protein interactions in 
the context of regulatory networks. Using the Database of 
Interacting Proteins (DIP) (Xenarios et al., 2002), as the standard 
of truth and the Protein Families Database (PFAM) domains as 
sequence features, the authors built a probabilistic network of yeast 
interactions and reported an ROC score of 0.818. 

Another sequence feature that has been used to 
computationally predict protein-protein interactions is the 
hydrophobicity properties of the amino acid residues. Chung et al., 
(2004) used SVM learning system to recognize and predict 
protein-protein interactions in the yeast Saccharomyces cerevisiae. 
They selected only the hydrophobicity properties as sequence 
feature to represent the amino acid sequence of interacting 
proteins.  
Therefore, in this research we proposed a better and more realistic 
method to construct the negative interaction set. Then we 
compared the use of domain structure and hydrophobicity 
properties as the protein features for the learning system. The 
choice of these two features is motivated by the above discussed 
literature. 
 
 
 
 
1.2    FEATURE SELECTION AND REPRESENTATION 
 
 
In order to compare two protein sequence features for the 
prediction of protein-protein interactions, we applied the same 
process on both features, as shown in Figure 1. This process starts 
by generating a dataset of interacting and non-interacting proteins 
pairs. For the interacting pair, it is simply obtained from the 
Database of Interacting Protein (DIP).  
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However, there is no dataset of experimentally identified 
non-interacting proteins. Therefore we use a random method to 
generate proteins pairs, and then delete all pairs that appear in the 
DIP. This is acceptable for the purposes of comparing the feature 
representation since the resulting inaccuracy will be approximately 
uniform with respect to each feature representation. The Support 
Vector Machines have been used as the learning system. It has 
been trained to distinguish between interacting and non-interacting 
protein pairs using domain and hydrophobicity training sets. 

 
 
 

Figure 1 The framework of comparing protein sequence features. 
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The construction of an appropriate feature space that 
describes the training data is essential for any supervised machine 
learning system. In the context of protein-protein interactions, it is 
believed that the likelihood of two proteins to interact with each 
other is associated with their structural domain composition (Kim 
et al., 2003; Pawson and Nash, 2003; Ng et al., 2003). It is also 
assumed that the hydrophobic effects drive protein-protein 
interactions (Chung et al., 2004; Uetz and Vollert, 2005). For these 
reasons, this study investigates the applicability of the domain 
structure and hydrophobicity properties as protein features to 
facilitate the prediction of protein-protein interactions using the 
support vector machines. 

 The domain data was retrieved from the database of 
protein families (PFAM) database. PFAM is a reliable collection 
of multiple sequence alignments of protein families and profile 
hidden Markov models (Bateman et al., 2004). The current version 
10.0 contains 6190 fully annotated PFAM-A families. PFAM-B 
provides additional PRODOM-generated alignments of sequence 
clusters in SWISSPROT and TrEMBL that are not modeled in 
PFAM-A.  

When the domain information is used, the dimension size 
of the feature vector becomes the number of domains appeared in 
all the yeast proteins. The feature vector for each protein was thus 
formulated as: 

 
 
              ( ) { }1 2, , , , ,i nx p d d d d= … …                      (Eq. 1) 

 
 
where id m= when the protein p has m pieces of domain id , and 

0id =  otherwise.  
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This formula allows the effect of multiple domains to be 
taken into account. Another representation is by using domain 
scores that is calculated by PFAM. In this case id  can be 
calculated as following:  

 
 

                             ,
1

k

i i j
j

d S
=

= ∑                          (Eq. 2) 

 
 
where ,i jS  is the score of the domain i in the location j, and k is 
the number of the occurrence of domain i in the protein p. In order 
to scale the feature value to the interval [-1,1], we use the 
following formula. 

 
 

      ,
1

( ( ln ( 0 .1))
k

i i j
j

d M S
=

= − +∑                        (Eq. 3) 

    
   
where M is the largest number of domain appearance in a protein. 
For example if domain D appears six times in protein P and no 
other domains appears more than six times in any proteins, then in 
this case M = 6.   

In the same manner, the amino acid hydrophobicity 
properties can be used to construct the feature vectors for SVM. 
The amino acids hydrophobicity properties are obtained from 
(Hopp and Woods, 1981). The hydrophobicity features can be 
represented in feature vector as: 

 
 
             ( ) { }1 2, , , , ,i rx p h h h h= … …                        (Eq. 4) 

 
 



Predicting PPI From Sequence Features Using SVM 7 

 

where r is the number of amino acid in the protein p, 1ih =  when 
the amino acid is hydrophobic and 1ih =  when the amino acid is 
hydrophilic. We also consider the case where the hydrophobicity 
scale can be included in the feature vector by replacing the amino 
acid with its correspondent hydrophobicity value obtained from 
(Hopp and Woods, 1981). 
  Using the above described four feature representations, we 
constructed four training set (domains, domains with scores, 
hydrophobicity, and hydrophobicity with scale). Each training 
example is a pair of interacting proteins (positive example) or a 
pair of proteins known or presumed not to interact (negative 
example). 
 
 
 
 
1.3    THE SUPPORT VECTOR MACHINES 
 
 
The support vector machine (SVM) is a binary classification 
algorithm. Thus, it is well suited for the task of discriminating 
between interacting and non-interacting protein pairs. The support 
vector machine was proposed by Boser et al., (1992). A detailed 
analysis of SVMs can be found in (Vapnik, 1995 and Shawe-
Taylor and Cristianini, 2000). The SVM is based on the idea of 
constructing the maximal margin hyperplane in the feature space. 
Suppose we have a set of labeled training data {xi, yi}, i = 1,…, n, 
yi∈{1,-1}, xi∈Rd, and have the separating hyperplane (w . x) + b = 
0, where feature vector: x ∈ Rd, w∈ Rd and b∈ R. In the linear 
separable case the SVM simply looks for the separating hyperplane 
that maximizes the margin by minimizing ||w||2/2 subject to the 
following constraint: 
 
 
                     yi(w . xi + b) ≥ 1 ∀i , i = 1,…, n   (Eq. 5) 
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In the linear non-separable case, the optimal separating hyperplane 
can be found by introducing slack variables ξi, i = 1,…, n and user-
adjustable parameter C and then minimizing ||w||2/ 2 + C Σi ξi , 
subject to the following constraints: 
 
 
                     yi(w . xi + b) ≥ 1 - ξi,   ξi ≥ 0,  i = 1,…, n         (Eq. 6) 
 
 
The dual optimization is solved here by introducing the Lagrange 
multipliers αi for the non-separable case. Because linear function 
classes are not sufficient in many cases, we can substitute Φ(xi) for 
each example xi and use the kernel function K such that K(xi,xj) = 
Φ(xi).Φ(xj). We thus get the following optimization problem: 
 
 

                        ),(
2
1max

1,1
jijij

n

ji
i

n

i
i xxKyyααα

α ∑∑
==

−       (Eq. 7) 

subject to     ,0 Ci ≤≤ α .,...,1 ni =  & 0
1

=∑
=

i

n

i
i yα    (Eq. 8) 

 
 
 
 
1.4    MATERIALS AND IMPLEMENTATIONS 
 
 
The performance of our technique will be tested on dataset 
obtained from the database of interacting proteins (DIP) (Xenarios 
et al., 2002). In the following subsections, we will describe the 
dataset used in this research as well as the data preparation 
process. 
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1.4.1    Data Sets 
 
 
The DIP database was developed to store and organize information 
on binary protein–protein interactions that was retrieved from 
individual research articles. At the time of experiments, DIP 
contains 4749 proteins involved in 15675 interactions for which 
there is domain information. DIP also provides a high quality core 
set of 2609 yeast proteins that are involved in 6355 interactions 
which have been determined by at least one small-scale experiment 
or at least two independent experiments and predicted as positive 
by a scoring system (Deane et al., 2002).  

The proteins sequence information is needed in this 
research in order to elucidate the domain structure of the proteins 
involved in the interaction and to represent the amino acid 
hydrophobicity in the feature vectors. The proteins sequences files 
were obtained for the Saccharomyces Genome Database (SGD) 
(Hong et al., 2005). 
 
 
 
 
1.4.2    Data Preprocessing 
 
 
Since proteins domains are highly informative for the protein-
protein interaction, we used the domain structure of a protein as 
the main feature of the sequence. We focused on domain data 
retrieved from the PFAM database which is a reliable collection of 
multiple sequence alignments of protein families and profile 
hidden Markov models (Bateman et al., 2004). In order to 
elucidate the PFAM domain structure in the yeast proteins, we first 
obtain all sequences of yeast proteins from SGD. Given that 
sequence file, we then run InterProScan (Mulder et al., 2003) to 
examine which PFAM domains appear in each protein. We used 
the stand-alone version of InterProScan.  
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From the output file of InterProScan, we list up all PFAM 
domains that appear in yeast proteins and index them. The order of 
this list is not important as long we keep it through the whole 
procedure. The number of all domains listed and indexed in this 
way is considered the dimension size of the feature vector, and the 
index of each PFAM domain within the list now indicates one of 
the elements in a feature vector. Figure 2 shows an example of 
protein domains that appears in yeast genome. The first column 
represents a protein whereas the following columns represent the 
domains that appear in the protein. 

The next step is to construct a feature vector for each 
protein. For example, if a protein has domain A and B which 
happened to be indexed 12 and 56 respectively in the above step, 
then we assign "1" to the 12th and 56th elements in the feature 
vector, and "0" to all the other elements. Next we focus on the 
protein pair to be used for SVM training and testing. The 
assembling of feature vector for each protein pair can be done by 

 
 
 

Figure 2 Part of the protein domains structure for the yeast
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concatenating the feature vectors of proteins constructed in the 
previous step. When hydrophobicity is used, each amino acid will 
be replaced by 1 if it is hydrophobic and 0 if it is hydrophilic. Two 
separate training sets for domain and hydrophobicity features have 
been constructed. The hydrophobicity scale information can be 
incorporated in the feature vector by replacing the amino acid with 
its correspondent hydrophobicity scale value obtained from (Hopp 
and Woods, 1981).  Figure 3 shows part of the final file where the 
feature vectors are in SVM format. 
 
 
1.5    RESULTS AND DISCUSSION 
 
 
We developed programs using Perl for parsing the DIP databases, 
control of randomization and sampling of records and sequences, 
and replacing amino acid sequences of interacting proteins with its 
corresponding feature. To make a positive interaction set, we 
represent an interaction pair by concatenating feature vectors of 
each proteins pair that are listed in the DIP-CORE as interacting 
proteins. For the domain feature we include only the proteins that 
have structure domains. The resulting positive set for domain 
feature contains 1879 protein pairs. But when using 
hydrophobicity feature, all protein in DIP-CORE were included 
which yielded 3002 protein pairs.  

Constructing a negative interaction set is not an easy task. 
This is due to the fact that there are no experimental data in which 
protein pairs have confirmed to be non-interacting pairs. As a 
result, using a random approach to construct the negative data set 
is an avoidable at this moment. Furthermore, for the purposes of 
comparing prediction algorithms or feature representation, the 
resulting inaccuracy will be approximately uniform with respect to 
each computational method or feature representation. For these 
reasons, the negative interaction set was constructed by generating 
random protein pairs. Then, all protein pairs that exist in DIP were 
eliminated.  
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This random approach can generate as many as 20202318 
potentially negative candidates. Hence, the number of positive 
protein pairs is quite small compared to that of potentially negative 
pairs. The excessive potentially negative examples in the training 
set may lead to yield many false negatives because many of the 
positive examples are ambiguously discriminative from the 
negative examples in the feature space. For this reason, a negative 
interaction set was constructed containing the same number of 
protein pairs as for the positive interaction set for domain and 
hydrophobicity features.       

In this study, we used the LIBSVM software (Chang and 
Lim, 2001) as a classification tool. The standard radial basis 
function (RBF) as available in LIBSVM was selected as a kernel 
function. Different values of γ for the kernel K(x, y) = exp(-γ ||x-
y||2 ), γ>0 were systematically tested to optimize the balance 
between sensitivity and specificity of the prediction. Ten-fold 
cross-validation was used to obtain the training accuracy. The 
entire set of training pairs was split into 10 folds so that each fold 
contained approximately equal number of positive and negative 
pairs. Each trial involved selecting one fold as a test set, utilizing 
the remaining nine folds for training our model, and then applying 
the trained model to the test set. Then the cross-validation 
accuracy is calculated in each run as the number of corrected 
prediction divided by the total number of data 
((TP+TN)/(TP+FP+TN+FP)). Then the average is calculated for 
the 10 folds. 

The receiver operating characteristic (ROC) is also used to 
evaluate the results of our experiments. It is a graphical plot of the 
sensitivity (fraction of true positives - TP) vs. 1-specificity (the 
fraction of false positives - FP) for a binary classifier system as its 
discrimination threshold is varied. The sensitivity can be defined 
as: TP / (TP + FN) where TP and FN stand for true positive and 
false negative, respectively. The specificity can be defined as: TN /  
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(TN + FP) where TN and FP stand for true negative and false 
positive, respectively. The area under the ROC curve is called 
ROC score.  

The results of our experiments are summarized in Table 1. 
All experiments reported in this work, run in Redhat Enterprise 
Linux AS release 3.2 on 1.8 GHz SMP CPUs with 2 GB of 
memory.  

When only domain structure was considered as the protein 
feature without information on domain appearance score, the 
cross-validation accuracy and ROC score were respectively 
79.4372% and 0.8480. When domain scores were included the 
cross-validation accuracy and ROC score were decreased to 
76.397% and 0.8190 respectively. These results indicate that it is 
not important to include the domains score information to the 
feature representation of the protein pairs. It is informative enough 
to consider only the existence of domains structure in the protein 
pairs. It is important here to note that the performance of the 
prediction algorithm is far better than an absolute random approach 
which has ROC score of 0.5. This indicates that the difference 
between interacting and non-interacting protein pairs can be 
learned from the available data. 

Table 1 The overall performance of SVM  
 
 

Feature Accuracy  ROC score Running time 

Domain 79.4372 % 0.8480 34 seconds 

Domain Scores 76.397 % 0.8190 38 seconds 

Hydrophobicity 78.6214 % 0.8159 20,571 seconds (5.7 hours) 

Hydrophobicity Scales 79.1375 % 0.7716 34,602 seconds (9.6 hours) 
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In the case of hydrophobicity dataset, the cross-validation 
and ROC score were respectively 78.6214% and 0.8159. We can 
see from these results that both domain dataset and hydrophobicity 
dataset have little difference in terms of cross-validation accuracy. 
On the other hand, ROC score indicates that domain structure is 
noticeably better than hydrophobic properties (see Figure 4). 
Another aspect is the running time for both features. Clearly, when 
domain structure used, the data set is much smaller than the data 
set for the hydrophobic properties. Consequently, the running time 
required for domain structure training data is much less than the 
running time required for the hydrophobic training data as shown 
in Table 1.  

These results are better and came aligned with the results 
that have been obtained by (Gomez et al., 2003) who reported 
ROC score of 0.818. Whereas our predictor achieved ROC score of 
0.848 for domains feature dataset. However, Chung et al. (2004) 
reported accuracy of 94% by using hydrophobicity as the protein 
feature. The reason behind this big difference between our result 
and their results lies in the approach of constructing the negative 
interaction dataset. They assign random value to each amino acid 
in the protein pair sequence. This leads to get new pairs that 
considered negative interacting pairs and greatly different from the 
pairs in the positive interaction set. This leads to simplify the 
learning task and artificially raise classification accuracy for 
training data. There is no guarantee, however, that the generalized 
classification accuracy will not degrade if the predictor is 
presented with new, previously unseen data which are hard to 
classify. In our work we constructed the negative interactions set 
by randomly generating non-interacting protein pairs which would 
be more difficult to distinguish from the positive set than entirely 
randomizing features values. This makes the learning problem 
more realistic and ensures that our training accuracy better reflects 
generalized classification accuracy. 
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1.6    RESULTS AND DISCUSSION 
 
 
The prediction approach explained in this chapter generates a 
binary decision regarding potential protein-protein interactions 
based on the domain structure or hydrophobicity properties of the 
interacting proteins. In conclusion the result in this chapter 
suggests that protein-protein interactions can be predicted from 
domain structure with reliable accuracy and acceptable running 
time. Consequently, these results show the possibility of 
proceeding directly from the automated identification of a cell’s 
gene products to inference of the protein interaction pairs, 
facilitating protein function and cellular signaling pathway 
identification. 

The most challenging task in this research as discussed in 
this chapter is to find negative examples of interacting proteins, 
i.e., to find non-interacting protein pairs. For negative examples of 
SVM training and testing, we use a randomizing method. But we 
believe this method is only suitable for comparison of features or 
algorithms. However, finding proper non-interacting protein pairs 
is important to ensure that prediction system reflects the real 
world. In the next chapter, we address the unavailability of non-
interaction data by predicting protein-protein interactions as a one-
class classification problem. 
 
 
 
 
 
 
 
 
 
 
 
 



16 Advances in Bioinformatics 

 

REFERENCES 
 
 
 
Bateman A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., 

Griffiths-Jones, Khanna, S., Marshall, A.,  Moxon, S.E., 
Sonnhammer, L.L., Studholme, D.J., Yeats, C. and Eddy 
S.R. 2004. The Pfam: Protein Families Database. Nucleic 
Acids Research Database Issue. 32:D138-D141. 

Bock, J.R. and Gough, D.A. 2001. Predicting protein-protein 
interactions from primary structure. Bioinformatics. 
17(5):455-60. 

Boser, B.E., Guyon, I.M., and Vapnik, V.N. 1992. A training 
algorithm for optimal margin classifiers. In Haussler, 
D.(editor) Proceedings of the 5th Annual ACM Workshop 
on Computational Learning Theory. Pittsburgh, PA, 
ACM:144-152. 

Chang, C.-C. and Lim, C.-J. 2001. LIBSVM: a library for support 
vector machines. Software available at http://www.csie. 
ntu.edu.tw/~cjlin/libsvm. 

Chung, Y., Kim, G., Hwang, Y. and Park, H. 2004. Predicting 
Protein-Protein Interactions from One Feature Using SVM. 
In IEA/AIE’04 Conf. Proc.  May 17-20. Ottawa, Canada. 

Craig, R.A. and Liao, L. 2007. Phylogenetic tree information aids 
supervised learning for predicting protein-protein 
interaction based on distance matrices. BMC 
Bioinformatics. 8:6. 

Eisenberg, D., Marcotte, E. M., Xenarios, I. and Yeates, T.O. 
2000. Protein function in the post-genomic era.  Nature. 
405: 823-826. 

Enright, A.J., Iliopoulos, I., Kyrpides, N.C., and Ouzounis, C.A. 
1999. Protein interaction maps for complete genomes based 
on gene fusion events. Nature. 402:86–90. 

Gomez, S. M., Noble, W.S. and Rzhetsky, A. 2003. Learning to 
predict protein-protein interactions from protein sequences. 
Bioinformatics.19(15):1875-1881. 



Predicting PPI From Sequence Features Using SVM 17 

 

Hong, E.L., Balakrishnan, R., Christie, K.R., Costanzo, M.C., 
Dwight, S.S., Engel, S.R., Fisk, D.G., Hirschman, J.E., 
Livstone, M.S., Nash, R., Oughtred, R., Park, J., et al., 
2005. Saccharomyces Genome Database. 
http://www.yeastgenome.org/ (16/2/2006). 

Hopp, T.P. and Woods, K.R. 1981. Predicting of protein antigenic 
determinants from amino acid sequences. Proc. Natl Acad. 
Sci. USA. 7 8(6): 3824-3828. 

Kim, W.K., Park, J., and Suh, J.K. 2002. Large scale statistical 
prediction of protein-protein interaction by potentially 
interacting domain (PID) pair. Genome Informatics. 13:42-
50. 

Marcotte, E.M., Pellegrini, M., Ng, H., Rice, D.W.,  Yeates, T.O., 
and Eisenberg, D. 1999. Detecting Protein Function and 
Protein-Protein Interactions from Genome Sequences. 
Science. 285(5428):751–753. 

Marcotte, E.M., Xenarios, I., van Der Bliek, A.M. and Eisenberg, 
D. 2000. Localizing proteins in the cell from their 
phylogenetic profiles, Proc. Natl. Acad. Sci. USA 
97:12,115–12,120. 

Mulder, N.J., Apweiler, R., Attwood, T. K., Bairoch, A., Barrell, 
D., Bateman, A., Binns, D., et al., 2003. The InterPro 
Database brings increased coverage and new features. 
Nucleic Acids Research. 31:315-318. 

Ng, S., Zhang, Z. and Tan, S. 2003. Integrative approach for 
computationally inferring protein domaininteractions. 
Bioinformatics. 19:923-929. 

Oyama, T., Kitano, K., Satou, K. and Ito, T. 2000. Mining 
association rules related to protein-protein interactions. 
Genome Informatics. 11:358–359. 

Pawson, T. and Nash, P. 2003. Assembly of cell regulatory 
systems through protein interaction domains. Science. 
300:445–452. 

Pawson, T. and Nash, P. 2003. Assembly of cell regulatory 
systems through protein interaction domains. Science. 
300:445–452. 



18 Advances in Bioinformatics 

 

Pazos, F. and Valencia, A. 2001. Similarity of phylogenetic trees 
as indicator of protein-protein interaction. Protein 
Engineering, 14(9), pp: 609-614. 

Pellegrini, M., Marcotte, E., Thompsom, M.J., Eisemberg, D. and 
Yeates, T.O. 1999. Assigning protein functions by 
comparative genome analysis: Protein phylogenetic 
profiles. Proc. Nat. Acad. Sci. 96:4285-4288. 

Shawe-Taylor, J. and Cristianini, N. 2000. An Introduction to 
Support Vector Machines and Other Kernel-based 
Learning Methods. Cambridge University Press. 

Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., Li, Y., and 
Jiang, H. 2007. Predicting protein–protein interactions 
based only on sequences information. PNAS. 104:4337-
4341. 

Uetz, P. and Vollert, C.S. 2005. Protein-Protein Interactions. 
Encyclopedic Reference of Genomics and Proteomics in 
Molecular Medicine (ERGPMM), Springer Verlag. 
16:1548-1552. 

Vapnik V.N. 1995. The Nature of Statistical Learning Theory. 
Springer. 

Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., and 
Eisenberg, D., 2002. DIP: the Database of Interacting 
Proteins: a research tool for studying cellular networks of 
protein interactions. Nucl. Acids. Res.  30(1):303- 305. 

 
 
 
 
 
 
 
 
 
 
 



20 Advances in Bioinformatics 

 

2 
PREDICTING PROTEIN-PROTEIN 

INTERACTIONS FROM SEQUENCE 
FEATURES USING SUPPORT VECTOR 

MACHINES 
Hany Alashwal 

Safaai Deris  
Razib M. Othman 

 
 
 
 

2.1    INTRODUCTION 

 
 
Identifying protein-protein interactions represents a crucial step in 
understanding proteins functions. This is due to the fact that 
proteins work in the context of many other proteins and rarely 
work in isolation. However, the available interactions data that 
have been identified by high-throughput technologies like the yeast 
two-hybrid system are known to yield many false positives. As a 
result, methods for computational prediction of protein-protein 
interactions based on sequence information are becoming 
increasingly important.  

Over the past few years, several computational approaches 
to predict protein-protein interaction have been proposed. Some of 
the earliest techniques were based on the similarity of expression 
profiles to predict interacting proteins (Marcotte et al., 1999), 
coordination of occurrence of gene products in genomes, 
description of similarity of phylogenetic profiles (Pellegrini et al., 
1999) or trees (Pazos and Valencia, 2001), and studying the 
patterns of domain fusion (Enright et al., 1999). However, it has 
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been noted that these methods predict protein–protein interactions 
in a general sense, meaning joint involvement in a certain 
biological process, and not necessarily actual physical interaction 
(Eisenberg et al., 2000).   

These methods which are based on genomic information 
are not universal because the accuracy and reliability of these 
methods depend on information of protein homology or interaction 
marks of the protein partners. For instance, computational methods 
such as phylogenetic profiles, predict protein-protein interactions 
by counting for the pattern of the presence or absence of a given 
gene in a set of genomes (Marcotte et al., 2000; Craig and Liao, 
2007). The main limitation of these approaches is that they can be 
applied only to completely sequenced genomes, which is the 
precondition to rule out the absence of a given gene. Similarly, 
they cannot be used with the essential proteins that are common to 
most organisms (Shen et al., 2007).  

Consequently, predicting protein-protein interactions based 
only on protein sequence features has a significant importance for 
computational methods. The advantage of such a method is that it 
is much more universal. This can be done by developing 
computation methods that predict protein-protein interactions by 
associating experimental data on interacting proteins with 
annotated features of protein sequences using machine learning 
approaches, such as support vector machines (SVM) (Bock and 
Gough, 2001; Chung et al., 2004) and data mining techniques, 
such as association rule mining (Oyama et al., 2002).  

The most common sequence feature used for this purpose 
is the protein domains structure. The motivation for this choice is 
that molecular interactions are typically mediated by a great 
variety of interacting domains (Pawson and Nash, 2003). It is thus 
logical to assume that the patterns of domain occurrence in 
interacting proteins provide useful information for training PPI 
prediction methods.  

A recent approach based on domain-domain interactions 
information has been presented in (Gomez et al., 2003). They 
developed a probabilistic model to predict protein interactions in 
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the context of regulatory networks. Using the Database of 
Interacting Proteins (DIP) (Xenarios et al., 2002), as the standard 
of truth and the Protein Families Database (PFAM) domains as 
sequence features, the authors built a probabilistic network of yeast 
interactions and reported an ROC score of 0.818. 

Another sequence feature that has been used to 
computationally predict protein-protein interactions is the 
hydrophobicity properties of the amino acid residues. Chung et al., 
(2004) used SVM learning system to recognize and predict 
protein-protein interactions in the yeast Saccharomyces cerevisiae. 
They selected only the hydrophobicity properties as sequence 
feature to represent the amino acid sequence of interacting 
proteins.  

Therefore, in this research we proposed a better and more 
realistic method to construct the negative interaction set. Then we 
compared the use of domain structure and hydrophobicity 
properties as the protein features for the learning system. The 
choice of these two features is motivated by the above discussed 
literature. 
 
 
 
 
2.2    FEATURE SELECTION AND REPRESENTATION 
 
 
In order to compare two protein sequence features for the 
prediction of protein-protein interactions, we applied the same 
process on both features, as shown in Figure 1. This process starts 
by generating a dataset of interacting and non-interacting proteins 
pairs. For the interacting pair, it is simply obtained from the 
Database of Interacting Protein (DIP).  

However, there is no dataset of experimentally identified 
non-interacting proteins. Therefore we use a random method to 
generate proteins pairs, and then delete all pairs that appear in the 
DIP. This is acceptable for the purposes of comparing the feature 
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representation since the resulting inaccuracy will be approximately 
uniform with respect to each feature representation. The Support 
Vector Machines have been used as the learning system. It has 
been trained to distinguish between interacting and non-interacting 
protein pairs using domain and hydrophobicity training sets. 

The construction of an appropriate feature space that 
describes the training data is essential for any supervised machine 
learning system. In the context of protein-protein interactions, it is 
believed that the likelihood of two proteins to interact with each 

 
 

Figure 1 The framework of comparing protein sequence features. 
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other is associated with their structural domain composition (Kim 
et al., 2003; Pawson and Nash, 2003; Ng et al., 2003). It is also 
assumed that the hydrophobic effects drive protein-protein 
interactions (Chung et al., 2004; Uetz and Vollert, 2005). For these 
reasons, this study investigates the applicability of the domain 
structure and hydrophobicity properties as protein features to 
facilitate the prediction of protein-protein interactions using the 
support vector machines. 

The domain data was retrieved from the database of protein 
families (PFAM) database. PFAM is a reliable collection of 
multiple sequence alignments of protein families and profile 
hidden Markov models (Bateman et al., 2004). The current version 
10.0 contains 6190 fully annotated PFAM-A families. PFAM-B 
provides additional PRODOM-generated alignments of sequence 
clusters in SWISSPROT and TrEMBL that are not modeled in 
PFAM-A.  

When the domain information is used, the dimension size 
of the feature vector becomes the number of domains appeared in 
all the yeast proteins. The feature vector for each protein was thus 
formulated as: 
 
 

( ) { }1 2, , , , ,i nx p d d d d= … …                      (Eq. 1) (1) 
 
 

where id m= when the protein p has m pieces of domain id , and 
0id =  otherwise.  

This formula allows the effect of multiple domains to be 
taken into account. Another representation is by using domain 

scores that is calculated by PFAM. In this case id  can be 
calculated as following:  
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where ,i jS  is the score of the domain i in the location j, and k is 
the number of the occurrence of domain i in the protein p. In order 
to scale the feature value to the interval [-1,1], we use the 
following formula. 
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where M is the largest number of domain appearance in a protein. 
For example if domain D appears six times in protein P and no 
other domains appears more than six times in any proteins, then in 
this case M = 6.   

In the same manner, the amino acid hydrophobicity 
properties can be used to construct the feature vectors for SVM. 
The amino acids hydrophobicity properties are obtained from 
(Hopp and Woods, 1981). The hydrophobicity features can be 
represented in feature vector as: 
 
 

( ) { }1 2, , , , ,i rx p h h h h= … …                      (Eq. 4) (4) 
 
 

where r is the number of amino acid in the protein p, 1ih =  when 

the amino acid is hydrophobic and 1ih =  when the amino acid is 
hydrophilic. We also consider the case where the hydrophobicity 
scale can be included in the feature vector by replacing the amino 
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acid with its correspondent hydrophobicity value obtained from 
(Hopp and Woods, 1981). 
  Using the above described four feature representations, we 
constructed four training set (domains, domains with scores, 
hydrophobicity, and hydrophobicity with scale). Each training 
example is a pair of interacting proteins (positive example) or a 
pair of proteins known or presumed not to interact (negative 
example). 
 
 
 
 
2.3    SUPPORT VECTOR MACHINES 
 
 
The support vector machine (SVM) is a binary classification 
algorithm. Thus, it is well suited for the task of discriminating 
between interacting and non-interacting protein pairs. The support 
vector machine was proposed by Boser et al., (1992). A detailed 
analysis of SVMs can be found in (Vapnik, 1995 and Shawe-
Taylor and Cristianini, 2000). The SVM is based on the idea of 
constructing the maximal margin hyperplane in the feature space. 
Suppose we have a set of labeled training data {xi, yi}, i = 1,…, n, 
yi∈{1,-1}, xi∈Rd, and have the separating hyperplane (w . x) + b = 
0, where feature vector: x ∈ Rd, w∈ Rd and b∈ R. In the linear 
separable case the SVM simply looks for the separating hyperplane 
that maximizes the margin by minimizing ||w||2/2 subject to the 
following constraint: 
 
 
                        yi(w . xi + b) ≥ 1 ∀i , i = 1,…, n             (Eq. 5) 
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In the linear non-separable case, the optimal separating hyperplane 
can be found by introducing slack variables ξi, i = 1,…, n and user-
adjustable parameter C and then minimizing ||w||2/ 2 + C Σi ξi , 
subject to the following constraints: 
 
 
                     yi(w . xi + b) ≥ 1 - ξi,   ξi ≥ 0,  i = 1,…, n            (Eq. 6) 
 
 
The dual optimization is solved here by introducing the Lagrange 
multipliers αi for the non-separable case. Because linear function 
classes are not sufficient in many cases, we can substitute Φ(xi) for 
each example xi and use the kernel function K such that K(xi,xj) = 
Φ(xi).Φ(xj). We thus get the following optimization problem: 
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2.4    MATERIALS AND IMPLEMENTATIONS 
 
 
The performance of our technique will be tested on dataset 
obtained from the database of interacting proteins (DIP) (Xenarios 
et al., 2002). In the following subsections, we will describe the 
dataset used in this research as well as the data preparation 
process.  
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2.4.1    Data Sets 
 
 
The DIP database was developed to store and organize information 
on binary protein–protein interactions that was retrieved from 
individual research articles. At the time of experiments, DIP 
contains 4749 proteins involved in 15675 interactions for which 
there is domain information. DIP also provides a high quality core 
set of 2609 yeast proteins that are involved in 6355 interactions 
which have been determined by at least one small-scale experiment 
or at least two independent experiments and predicted as positive 
by a scoring system (Deane et al., 2002).  

The proteins sequence information is needed in this 
research in order to elucidate the domain structure of the proteins 
involved in the interaction and to represent the amino acid 
hydrophobicity in the feature vectors. The proteins sequences files 
were obtained for the Saccharomyces Genome Database (SGD) 
(Hong et al., 2005).  

 
 
 
 

2.4.2    Data Preprocessing 
 
 
Since proteins domains are highly informative for the protein-
protein interaction, we used the domain structure of a protein as 
the main feature of the sequence. We focused on domain data 
retrieved from the PFAM database which is a reliable collection of 
multiple sequence alignments of protein families and profile 
hidden Markov models (Bateman et al., 2004). In order to 
elucidate the PFAM domain structure in the yeast proteins, we first 
obtain all sequences of yeast proteins from SGD. Given that 
sequence file, we then run InterProScan (Mulder et al., 2003) to 
examine which PFAM domains appear in each protein. We used 
the stand-alone version of InterProScan.  
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From the output file of InterProScan, we list up all PFAM 
domains that appear in yeast proteins and index them. The order of 
this list is not important as long we keep it through the whole 
procedure. The number of all domains listed and indexed in this 
way is considered the dimension size of the feature vector, and the 
index of each PFAM domain within the list now indicates one of 
the elements in a feature vector. Figure 2 shows an example of 
protein domains that appears in yeast genome. The first column 
represents a protein whereas the following columns represent the 
domains that appear in the protein. 

 
 
 
 

 
 
 

Figure 2 Part of the protein domains structure for the yeast genome. 
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The next step is to construct a feature vector for each 
protein. For example, if a protein has domain A and B which 
happened to be indexed 12 and 56 respectively in the above step, 
then we assign "1" to the 12th and 56th elements in the feature 
vector, and "0" to all the other elements. Next we focus on the 
protein pair to be used for SVM training and testing. The 
assembling of feature vector for each protein pair can be done by 
concatenating the feature vectors of proteins constructed in the 
previous step. When hydrophobicity is used, each amino acid will 
be replaced by 1 if it is hydrophobic and 0 if it is hydrophilic. Two 
separate training sets for domain and hydrophobicity features have 
been constructed. The hydrophobicity scale information can be 
incorporated in the feature vector by replacing the amino acid with 
its correspondent hydrophobicity scale value obtained from (Hopp 
and Woods, 1981).  Figure 3 shows part of the final file where the 
feature vectors are in SVM format.  
 
 
 
 

 
 
 

Figure 3 Part of the training data file 
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2.5    RESULTS AND DISCUSSION 
 
 
We developed programs using Perl for parsing the DIP databases, 
control of randomization and sampling of records and sequences, 
and replacing amino acid sequences of interacting proteins with its 
corresponding feature. To make a positive interaction set, we 
represent an interaction pair by concatenating feature vectors of 
each proteins pair that are listed in the DIP-CORE as interacting 
proteins. For the domain feature we include only the proteins that 
have structure domains. The resulting positive set for domain 
feature contains 1879 protein pairs. But when using 
hydrophobicity feature, all protein in DIP-CORE were included 
which yielded 3002 protein pairs.  

Constructing a negative interaction set is not an easy task. 
This is due to the fact that there are no experimental data in which 
protein pairs have confirmed to be non-interacting pairs. As a 
result, using a random approach to construct the negative data set 
is an avoidable at this moment. Furthermore, for the purposes of 
comparing prediction algorithms or feature representation, the 
resulting inaccuracy will be approximately uniform with respect to 
each computational method or feature representation. For these 
reasons, the negative interaction set was constructed by generating 
random protein pairs. Then, all protein pairs that exist in DIP were 
eliminated.  

This random approach can generate as many as 20202318 
potentially negative candidates. Hence, the number of positive 
protein pairs is quite small compared to that of potentially negative 
pairs. The excessive potentially negative examples in the training 
set may lead to yield many false negatives because many of the 
positive examples are ambiguously discriminative from the 
negative examples in the feature space. For this reason, a negative 
interaction set was constructed containing the same number of 
protein pairs as for the positive interaction set for domain and 
hydrophobicity features.       

In this study, we used the LIBSVM software (Chang and 
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Lim, 2001) as a classification tool. The standard radial basis 
function (RBF) as available in LIBSVM was selected as a kernel 
function. Different values of γ for the kernel K(x, y) = exp(-γ ||x-
y||2 ), γ>0 were systematically tested to optimize the balance 
between sensitivity and specificity of the prediction. Ten-fold 
cross-validation was used to obtain the training accuracy. The 
entire set of training pairs was split into 10 folds so that each fold 
contained approximately equal number of positive and negative 
pairs. Each trial involved selecting one fold as a test set, utilizing 
the remaining nine folds for training our model, and then applying 
the trained model to the test set. Then the cross-validation 
accuracy is calculated in each run as the number of corrected 
prediction divided by the total number of data 
((TP+TN)/(TP+FP+TN+FP)). Then the average is calculated for 
the 10 folds. 

The receiver operating characteristic (ROC) is also used to 
evaluate the results of our experiments. It is a graphical plot of the 
sensitivity (fraction of true positives - TP) vs. 1-specificity (the 
fraction of false positives - FP) for a binary classifier system as its 
discrimination threshold is varied. The sensitivity can be defined 
as: TP / (TP + FN) where TP and FN stand for true positive and 
false negative, respectively. The specificity can be defined as: TN / 
(TN + FP) where TN and FP stand for true negative and false 
positive, respectively. The area under the ROC curve is called 
ROC score.  

The results of our experiments are summarized in Table 1. 
All experiments reported in this work, run in Redhat Enterprise 
Linux AS release 3.2 on 1.8 GHz SMP CPUs with 2 GB of 
memory.  

When only domain structure was considered as the protein 
feature without information on domain appearance score, the 
cross-validation accuracy and ROC score were respectively 
79.4372% and 0.8480. When domain scores were included the 
cross-validation accuracy and ROC score were decreased to 
76.397% and 0.8190 respectively. These results indicate that it is 
not important to include the domains score information to the 
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feature representation of the protein pairs. It is informative enough 
to consider only the existence of domains structure in the protein 
pairs. It is important here to note that the performance of the 
prediction algorithm is far better than an absolute random approach 
which has ROC score of 0.5. This indicates that the difference 
between interacting and non-interacting protein pairs can be 
learned from the available data. 

In the case of hydrophobicity dataset, the cross-validation 
and ROC score were respectively 78.6214% and 0.8159. We can 
see from these results that both domain dataset and hydrophobicity 
dataset have little difference in terms of cross-validation accuracy. 
On the other hand, ROC score indicates that domain structure is 
noticeably better than hydrophobic properties (see Figure 4). 
Another aspect is the running time for both features. Clearly, when 
domain structure used, the data set is much smaller than the data 
set for the hydrophobic properties. Consequently, the running time 
required for domain structure training data is much less than the 
running time required for the hydrophobic training data as shown 
in Table 1.  

These results are better and came aligned with the results 
that have been obtained by (Gomez et al., 2003) who reported 
ROC score of 0.818. Whereas our predictor achieved ROC score of 
0.848 for domains feature dataset. However, Chung et al. (2004) 
reported accuracy of 94% by using hydrophobicity as the protein 

Table 1 The overall performance of SVM  
 
 

Feature Accuracy  ROC score Running time 

Domain 79.4372 % 0.8480 34 seconds 

Domain Scores 76.397 % 0.8190 38 seconds 

Hydrophobicity 78.6214 % 0.8159 20,571 seconds (5.7 hours) 

Hydrophobicity Scales 79.1375 % 0.7716 34,602 seconds (9.6 hours) 
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feature. The reason behind this big difference between our result 
and their results lies in the approach of constructing the negative 
interaction dataset. They assign random value to each amino acid 
in the protein pair sequence. This leads to get new pairs that 
considered negative interacting pairs and greatly different from the 
pairs in the positive interaction set. This leads to simplify the 
learning task and artificially raise classification accuracy for 
training data. There is no guarantee, however, that the generalized 
classification accuracy will not degrade if the predictor is 
presented with new, previously unseen data which are hard to 
classify. In our work we constructed the negative interactions set 
by randomly generating non-interacting protein pairs which would 
be more difficult to distinguish from the positive set than entirely 
randomizing features values. This makes the learning problem 
more realistic and ensures that our training accuracy better reflects 
generalized classification accuracy. 
 
 

 
 

Figure 4 ROC curves and scores for predicting protein-protein 
interactions. 
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2.6    SUMMARY  
 
 
The prediction approach explained in this chapter generates a 
binary decision regarding potential protein-protein interactions 
based on the domain structure or hydrophobicity properties of the 
interacting proteins. In conclusion the result in this chapter 
suggests that protein-protein interactions can be predicted from 
domain structure with reliable accuracy and acceptable running 
time. Consequently, these results show the possibility of 
proceeding directly from the automated identification of a cell’s 
gene products to inference of the protein interaction pairs, 
facilitating protein function and cellular signaling pathway 
identification. 
 

The most challenging task in this research as discussed in 
this chapter is to find negative examples of interacting proteins, 
i.e., to find non-interacting protein pairs. For negative examples of 
SVM training and testing, we use a randomizing method. But we 
believe this method is only suitable for comparison of features or 
algorithms. However, finding proper non-interacting protein pairs 
is important to ensure that prediction system reflects the real 
world. In the next chapter, we address the unavailability of non-
interaction data by predicting protein-protein interactions as a one-
class classification problem. 
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SELECTS GENES FOR CANCER 
CLASSIFICATION 
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Sigeru Omatu 
Safaai Deris 

Michifumi Yoshioka 
 
 
 
 

3.1    INTRODUCTION  

 
 
Gene expression is a process by which mRNA and eventually 
protein are synthesised from the DNA template of each gene. 
Recent advances in microarray technology allow scientists to 
measure the expression levels of thousands of genes 
simultaneously and determine whether those genes are active, 
hyperactive, or silent in normal or cancerous tissues. This 
technology finally produces gene expression data. Current studies 
on the molecular level classification of tissue have produced 
remarkable results and indicated that gene expression data could 
significantly aid in the development of an efficient cancer 
classification (Mohamad et al., 2005). However, classification 
based on the data confronts with more challenges. One of the 
major challenges is the overwhelming number of genes relative to 
the number of samples in a data set. Many of the genes are also not 
relevant to the classification process. Hence, the selection of genes 
is the key of molecular classification, and should be taken with 
more attention. 
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The task of cancer classification using gene expression data 
is to classify tissue samples into related classes of phenotypes, e.g., 
cancer versus normal (Mohamad et al., 2007). A gene selection 
process is used to reduce the number of genes used in classification 
while maintaining an acceptable classification accuracy. Gene 
selection methods can be classified into two categories. If gene 
selection is carried out independently from the classification 
procedure, the methods belong to the filter approach. Otherwise, it 
is said to follow a wrapper (hybrid) approach. Most previous 
works have used the filter approach to select genes since it is 
computationally more efficient than the hybrid approach. 
However, the hybrid approach usually provides greater accuracy 
than the filter approach (Mohamad et al., 2005). The application of 
hybrid approaches using genetic algorithm (GA) with a classifier 
has grown in recent years. From the previous works, the GA 
performed well but only on data that have a number of features 
that is less than 1,000.  

Multi-objective optimisation (MOO) is an optimisation 
problem that involves multiple objectives or goals. Generally, the 
objectives may estimate very different aspects of solutions. Being 
aware that gene selection is a MOO problem in the sense of 
classification accuracy maximisation, and gene subset size 
minimisation. 

Therefore, this research proposes a multi-objective 
approach in a hybrid of GA and support vector machine classifier 
(GASVM) for genes selection and classification of gene 
expression data. It is known as MOGASVM. 
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3.2    A MULTI-OBJECTIVE APPROACH IN GA 
 
 
MOGASVM is developed to improve the performance of GASVM 
that uses single-objective (Mohamad et al., 2005). All information 
of GASVM such as flowchart, algorithm, chromosome 
representation, fitness function, and parameter values are available 
in Mohamad et al. (Mohamad et al., 2005). 

In the sense of classification accuracy maximisation and 
gene subset size minimisation, a gene selection can be viewed as a 
MOO problem. Formally, each gene subset (a solution) is 
represented by x  (n-dimensional decision vector). It is associated 
with a vector objective function ( )f x : 

1 2( ) ( ( ), ( ),..., ( ))mf x f x f x f x=  (Eq. 1) 

with 1 2( , ,..., ) ,nx x x x X= ∈  where X  is the decision space, i.e., the 
set of all expressible solutions.  
 
 
 
 
 
 
 
 

 

Figure 1 The n-dimensional decision space maps to the m-
dimensional objective space 

z1x1 

xn zm

X, the decision space 

x2 z2

Z, the objective space 
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The vector objective function ( )f x  maps X into mℜ , 
where ℜ  is the objective space and 2m ≥  is a number of 
objectives. if  is the thi  objective. The vector ( )z f x=  is an 
objective vector. The image of X  in the objective space is the set 
of all attainable points, z  (see Fig. 1). If all objective functions are 
for maximisation, a subset x  is said to dominate than another x  
( x∗ ) if and only if: 
x x∗>  if  

 
1.. , ( ) ( ) 1.. , ( ) ( )i i j ji m f x f x j m f x f x∗ ∗∀ ∈ ≥ ∧∃ ∈ >  

 
 
A solution (gene subset) is said to be Pareto optimal if it is 

not dominated by any other solutions in the decision space. A 
Pareto optimal solution cannot be improved with respect to any 
objective without worsening at least one other objectives. The set 
of all feasible non-dominated solutions in X  is referred to as the 
Pareto optimal set, and for a given Pareto optimal set, the 
corresponding objective function values in the objective space are 
called as the Pareto front (Handl et al., 2007).  

Pareto front in this research is defined as the set of non-
dominated gene subsets. MOGASVM is one of promising 
approaches to find or approximate the Pareto front. The role of this 
approach is guided with the search towards the Pareto front and 
preserving the non-dominated solutions as diverse as possible. 
Therefore, original GASVM is customised to accommodate multi-
objective problems by using a specialised fitness function. The 
ultimate goal of MOGASVM is to identify a non-dominated gene 
subset Pareto front. This subset (individual) is evaluated by its 
accuracy on the training data and the number of genes selected in 
it. These criteria are denoted as 1f  and 2f  separately, and used in 
the fitness function. Therefore, the fitness of an individual is 
calculated such equation (4): 
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1 1 ( )f w A x= ×  (Eq. 2) 

2 2 (( ( )) / )f w M R x M= × −  (Eq. 3) 

1 2( )fitness x f f= +  

 
 

(Eq. 4) 
 
 

where ( ) [0,1]A x ∈  is the leave-one-out-cross-validation (LOOCV) 
accuracy on the training data using the only expression values of 
the selected genes in a subset ,x ( )R x  is the number of selected 
genes in x . M  is the total number of genes. 1w  and 2w  are two 
priority weights corresponding to the importance of accuracy and 
the number of selected genes, respectively, where 1 [0.1,0.9]w ∈  and 

2 11w w= − . 2f  is calculated such above in order to support the 
maximisation function of minimisation of gene subset size. In this 
paper, the accuracy is more important than the number of selected 
genes (gene subset size). 

Ambroise and Mclachlan (2002) have indicated that testing 
results could be overoptimistic, caused by the “selection bias”, if 
the test samples were not excluded from the classifier building 
process in a hybrid approach (Ambroise and McLachlan, 2002). 
Therefore, the proposed MOGASVM is totally excluded the test 
samples from the classifier building process in order to avoid the 
influence of bias. 
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3.3    EXPERIMENTAL RESULTS 
 
 
 
 
3.3.1    Data Sets 
 
 
One gene expression data set is used to evaluate the proposed 
approach, namely the Mixed-Lineage Leukemia (MLL) cancer. 
The MLL cancer data set is a multi-classes data set. It has three 
leukemia classes: acute lymphoblastic leukemia (ALL), acute 
myeloid leukemia (AML), and MLL. The training set contains 57 
samples, while the testing set contains 19 samples. There are 
12,582 genes in each sample. This data set can be downloaded at 
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 
 
 
 
 
3.3.2    Experimental Setup 
 
 
Three criteria following its important are used to evaluate 
MOGASVM performances: the test accuracy, the LOOCV 
accuracy, and the number of selected genes. 

The experimental results presented in this section pursue 
two objectives. The first objective is to show that gene selection 
using MOGASVM is needed for reducing the number of genes and 
achieving better classification of gene expression data. The second 
objective is to show that MOGASVM is better than the original 
version of GASVM (Mohamad et al., 2005) that use a single-
objective approach. To achieve these objectives, several 
experiments are conducted 10 times using different values of 1w  
and 2w  ( 1 [0.1,0.9]w ∈  and 2 11w w= − ). The subset that produces 
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the highest LOOCV accuracy with the lowest number of selected 
genes is chosen as the best subset. SVM, GASVM (single-
objective), and GASVM-II (Mohamad et al., 2005) are also 
experimented in this research as a comparison with MOGASVM. 
 
 
 
 
3.3.3    Result Analysis and Discussion 
 
 
Table 1 displays results of the experiments for the MLL cancer 
data set using different values of 1w  and 2.w A value of the form 
x y±  represents an average value x  with a standard deviation .y  
Overall, classification accuracy and the number of selected genes 
sets were fluctuated because of the diversity of the solutions based 
on adjusted weights ( 1w  and 2w ). Moreover, multiple objectives 
search simultaneously in a run and consequently populations tend 
to converge to the solutions which are superior in one objective, 
but poor at others. The highest averages of LOOCV and test 
accuracies were 94.74% and 90.00%, respectively, using 1 0.7w =  
and 2 0.3.w =  

4,465.2 average genes in a subset were finally selected to 
obtain the highest accuracies (LOOCV and test) of the data set. 
This subset was being chosen as the best subset. It is called best-
known Pareto front because it is close to the true Pareto front. 
MOGASVM could obtain the best subsets since it distributed 
successfully diverse gene subsets over a solution space. 
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Table 1 Classification accuracies for different gene subsets using 
MOGASVM (10 runs on average) 

 
 

Weight Average for the MLL Data Set 
Accuracy (%) 

1w  2w  
LOOCV Test 

Number of Selected 
Genes 

0.1 0.9 94.74 ± 0 88.67 ± 5.49 4,472.1 ± 29.40 
0.2 0.8 94.74 ± 0 89.33 ±  4.66 4,470.6 ± 16.54 
0.3 0.7 94.74 ± 0 88.67 ± 7.06 4,466.9 ± 21.25 
0.4 0.6 94.74 ± 0 89.33 ± 4.66 4,471.4 ± 19.50 
0.5 0.5 94.74 ± 0 89.33 ± 5.62 4,465.3 ± 24.60 
0.6 0.4 94.74 ± 0 88.67 ± 3.22 4,479.2 ± 21.73 
0.7 0.3 94.74 ± 0 90.00 ± 3.51 4,465.2 ± 18.34 
0.8 0.2 94.74 ± 0 88.00 ± 6.13 4,479.3 ± 22.24 
0.9 0.1 94.74 ± 0 88.00 ± 6.13 4,468.4 ± 16.03 
Note: Best result shown in shaded cells. 

 
 
 
 

Table 2 The result of the best subset in 10 runs (using 1 0.8w =   and 

2 0.3w = ) 
 
 

Data set LOOCV (%) Test (%) Experimen
t  

Number 

Number of  
Selected 
Genes 

MLL 94.74 93.33 7 4,437 
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Table 2 shows that the best performances (LOOCV and test 
accuracies) were 94.74% and 93.33%, respectively using 4,437 
genes. The best performances have been found in the seventh 
experiment. 

In table 3, the LOOCV accuracy, the test accuracy, and the 
number of selected genes are written in the parenthesis; the first 
and second parts are the average result and showcased the best 
result, respectively. This table shows that the performance of 
MOGASVM was better than GASVM and SVM in terms of 
LOOCV accuracy, test accuracy, and the number of selected genes 
on average and the best results. In general, MOGASVM has 
reduced about three-quarters of the total number of genes, whereas 
about a half of GASVM. This is due to the ability of MOGASVM 
to simultaneously search different regions of a solution space and 
therefore it is possible to find a diverse set of solution in a high-
dimensional space. Moreover, it may also exploit structures of 
good solutions with respect to different objectives to create new 
non-dominated solutions in unexplored parts of the Pareto optimal 
set. This suggests that gene selection using the multi-objective 
approach is needed for disease classification of gene expression 
data. 
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Table 3 The benchmark of MOGASVM with GASVM (single-objective) 
and SVM 

 
 

MLL Data Set (Average; The Best) 
Accuracy (%) Method Number of  

Selected Genes LOOCV Test 

MOGASVM (4,465.2 ± 
18.34; 4,437) 

(94.74 ± 
0; 94.74) 

(90.00 ± 
3.51; 93.33) 

GASVM  
(single-
objective) 

(6,298.8 ± 
51.51; 6,224) 

(94.74 ±  
0; 94.74) 

(87.33 ± 
2.11; 86.67) 

SVM (12,582 ±  
0; 12,582) 

(92.98 ±  
0; 92.98) 

(86.67 ±  
0; 86.67) 

Note: Best result shown in shaded cells. 
 
 
3.4    CONCLUSION 
 

 
MOGASVM has been proposed, developed, and analysed to solve 
the gene selection problems. By performing experiments, this 
research found that classification accuracy and the number of 
selected genes were more fluctuating and not equal when using 
different values of 1w  and 2.w  This result concludes that there are 
many irrelevant genes in gene expression data and some of them 
act negatively on the acquired accuracy by the relevant genes. 

Generally, MOGASVM achieved significant the LOOCV 
accuracy, the test accuracy, and the number of selected genes, and 
were better than GASVM (single-objective) and SVM since the 
multi-objective approach in it can find a diverse solution in Pareto 
optimal set. However, MOGASVM did not achieve the higher 
accuracy, and the number of selected genes was still higher. 
MOGASVM can also be extended to other applications such as 
pattern recognitions, computer visions, and cognitive sciences. 
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4.1    INTRODUCTION 

 
 
The traditional cancer diagnosis relies on a complex and inexact 
combination of clinical and histopathological data. This classic 
approach may fail when dealing with atypical tumours or 
morphologically indistinguishable tumour subtypes. Advances in 
the area of microarray-based expression analysis have led to the 
promise of cancer diagnosis using new molecular-based approaches 
(Wang et al., 2007). A microarray machine is used to measure the 
expression levels of thousands of genes simultaneously in a cell 
mixture, and finally it produces microarray data. The task of cancer 
classification using microarray data is to classify tissue samples into 
related classes of phenotypes, e.g., cancer versus normal (Mohamad 
et al., 2007). 

Given N  tissue samples and expression of M  genes, 
microarray data are stored in a matrix as shown in Figure 1. Cancer 
classification using these data poses a major challenge because of 
the following characteristics: 
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• M >> .N M  is in the range of 2,000-20,000, while N  is 

in the range of 30-200. 
• Most genes are not relevant for classifying different 

tissue types. 
• These data have a noisy nature. 

 
 
 
 
 
 

 
 

 

 
Figure 1 The matrix of microarray data ( 1)N MG × + . ,i jg  is a numeric value 
representing the gene expression level of the thj  gene in the thi  sample. 

il  in the last column is the class label for the thi  sample 
 
 
 
 

To overcome the challenge, a gene selection approach is 
usually used to select a small subset of informative genes that 
maximises the classifier’s ability to classify samples accurately 
(Mohamad et al., 2007). This approach has several advantages: 

 
 

Class label M genes 

N samples 

g1,2 l1 g1,m g1,1

g2,1 g2,2 g2,m l2 

  

gN,1 gN,2 gN,M lN 
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• It can maintain or improve classification accuracy. 
• It can reduce the dimensionality of data.  
• It can remove noisy genes. 

 
Gene selection methods can be classified into two categories. If 
gene selection is carried out independently from the classification 
procedure, the method belongs to the filter approach. Otherwise, it 
is said to follow a hybrid approach. Most previous works have used 
the filter approach to select genes since it is computationally more 
efficient than the hybrid approach. However, the hybrid approach 
usually provides greater accuracy than the filter approach 
(Mohamad et al., 2005). In this paper, an approach that involves two 
hybrid methods is proposed to select a small subset of informative 
genes for cancer classification. 
 
 
4.2    THE PROPOSED APPROACH 
 
 
Mohamad et al. (Mohamad et al., 2005) have reported that a hybrid 
of genetic algorithms and support vector machines (GASVM), and 
an improved GASVM (NewGASVM) have several advantages and 
disadvantages (Mohamad et al., 2005). In this paper, NewGASVM 
is called GASVM-II. All information of GASVM and GASVM-II 
are available in Mohamad et al. (Mohamad et al., 2005). The 
advantage of GASVM is that it can automatically select and 
optimise a number of genes to produce a gene subset. However, it 
performs poorly in high-dimensional data. In contrast, GASVM-II 
performs well in the high-dimensional data. It can also reduce the 
complexity of search spaces and maybe able to evaluate all possible 
subsets of genes. Nevertheless, the drawback of GASVM-II is that it 
selects a number of genes manually to yield a gene subset. 
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As a result, this paper proposes an approach using two 
hybrid methods for selecting informative genes. This approach is 
called as GASVM-II+GASVM. It is developed to improve the 
performances of GASVM and GASVM-II. Figure 2 shows that the 
algorithm of GASVM-II+GASVM involving two stages. In the first 
stage, GASVM-II is applied to manually select genes from the 
overall microarray data to produce a subset of genes. It is used to 
reduce the dimensionality of the data, and therefore the complexity 
of the searches or solution spaces can also be decreased. 

 
 
 
 

Step 1: Select a number of genes and produce initial populations 
with each chromosome is represented by an integer string. 
Step 2: Evaluate each individual (chromosome) in each population 
using a fitness function. 
     Step  2.1: Sort integer values in a chromosome. 
     Step  2.2: Select genes based on position of the integer values in 
a chromosome (e.g: if integer value=10, then select 10th  gene).  
     Step  2.3: Store the selected genes into a subset. 
     Step  2.4: 1 2( ) ( ) ( ( ( )) / )fitness x w A x w M R x M= × + −  
Step 3: GA operates on the populations to evolve the best solution (a 
subset of selected genes) until the final generation. 
     Step 3.1: Apply a selection strategy and GA operators (crossover 
and mutation).  
     Step 3.2:  Repeat Step 2. 
Step 4:   Return a subset of genes (the highest fitness). 
Step 5:   Get the total number of genes from the subset of genes that 
is produced by Step 4, and produce new initial populations with 
each chromosome is represented by a bit (0 and 1) string. 
Step 6: Evaluate each chromosome in each population using a 
fitness function. 
     Step 6.1: Select genes based on bit values in a chromosome (bit 
1=select; bit 0=unselect). 
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     Step  6.2: Store the selected genes into a subset. 
     Step  6.3: 1 2( ) ( ) ( ( ( )) / )fitness x w A x w M R x M= × + −  
Step 7: GA operates on the populations to evolve the best solution 
(the best subset of genes) until the final generation. 
     Step 7.1: Apply a selection strategy and GA operators (crossover 
and mutation). 
     Step 7.2: Repeat Step 6. 
Step 8: Return the optimal subset of genes. 
Step 9: Classify the optimal subset using an SVM classifier. 

 
Figure 2 The algorithm of GASVM-II+GASVM 

 
 

In the second stage, GASVM is used to select and optimise a 
small subset of informative genes from the subset that is produced 
by the first stage. If the size of the subset is small and the 
combination of genes is not very complex, GASVM can easily find 
and optimise the subset. GASVM is applied because it can 
automatically select a number of genes and finally produce an 
optimised gene subset. This second stage can also remove noisy 
genes because the first step has reduced the size and complexity of 
the search spaces. 

Therefore, this proposed approach has totally excluded the 
test samples from the classifier building process in order to avoid 
the influence of selection bias (Ambroise and MacLachlan, 2002). 
The fitness of an individual is calculated as follows: 

 
 

1 2( ) ( ) ( ( ( )) / )fitness x w A x w M R x M= × + −  (Eq. 1) 

 
 
in which ( ) [0,1]A x ∈ is the leave-one-out-cross-validation (LOOCV) 
accuracy on the training data using the only expression values of the 
selected genes in a subset x , ( )R x  is the number of selected genes 
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in x . M  is the total number of genes. 1w  and 2w  are two priority 
weights corresponding to the importance of accuracy and the 
number of selected genes, where 1 [0.1,0.9]w ∈  and 2 11 .w w= − In 
this paper, the accuracy is more important than the number of 
selected genes. Hence, 1w  and 2w  are set to 0.7 and 0.3 respectively 
for the acute myeloid leukemia (MLL) cancer data set. These values 
are based on experimental results in Mohamad et al.’s paper 
(Mohamad et al., 2009). 
 
 
 
 
4.3    EXPERIMENT RESULTS 
 
 
 
 
4.3.1    Data Sets 
 
 
The MLL cancer microarray data set is used to evaluate the 
proposed algorithm. The MLL cancer data set is a multi-classes data 
set. It has three leukemia classes: acute lymphoblastic leukemia 
(ALL), acute myeloid leukemia (AML), and MLL. The training set 
contains 57 samples (20 ALL, 17 MLL, and 20 AML). While the 
testing set contains 4 ALL, 3 MLL, and 8 AML samples. There are 
12,582 genes in each sample. This data set was published by 
Armstrong et al. (Armstrong et al., 2002). It can be downloaded at 
http://www.broad.mit.edu/cgi-bin/cancer/publications/ 
pub_paper.cgi?mode=view&paper_id=63. 
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4.3.2    Experimental Setup 
 
 
Three criteria following its importance are considered to evaluate 
the performances of the proposed approach: the test accuracy, the 
LOOCV accuracy, and the number of selected genes. 

The experimental results presented in this section pursue two 
objectives. The first objective is to show that gene selection using 
GASVM-II+GASVM is needed for better classification of 
microarray data. The second objective is to show that it is better 
than GASVMs (single-objective and multi-objective) and GASVM-
II. To achieve these objectives, several experiments are conducted 
on the proposed approach 10 times on each data set. In the first 
stage, it is experimented by using different number of pre-selected 
genes (10, 20, 30,…, 600). Furthermore, in the second stage, 
GASVM chooses a number of the final selected genes 
automatically. Lastly, it produces an optimised gene subset that 
contains the final selected genes. The subset that produces the 
highest LOOCV accuracy with the possible least number of selected 
genes is chosen as the best subset. SVM classifier, GASVMs, and 
GASVM-II are also experimented for comparison with GASVM-
II+GASVM. 

 
 
 
 

4.3.3    Result Analysis and Discussion 
 
 
In this paper, a value of the form x ± y represents average value x 
with standard deviation y. Furthermore, #Pre-Selected Genes, #Final 
Selected Genes, and Run# represent the number of pre-selected 
genes, the number of the final selected genes, and a run number, 
respectively. 
 



58 Advances in Bioinformatics 

 

100±0

99.65±0.74

99.65±1.11 100±0 99.82±0.55 99.47±0.85

99.3±01.23 99.65±0.74 99.65±0.74 100±0 100±0

100±0

100±0

86.67±7.7

76±10.52
79.33±12.35

79.33±11.95

72.67±11.53
74±12.35

80±9.43

83.33±9.56

75.33±8.92
77.33±14.47

74±9.66

92±8.2 85.33±6.89

6.5±0.71

8.1±2.33

7.7±2.31

8.3±1.49
8.7±1.57

8.4±1.78

8.6±2.12

8.2±2.25

8.4±1.9
7.4±1.9

13.5±1.08

29.1±1.79

6.7±1.16
60

70

80

90

100

110

10 20 30 40 50 60 70 80 90 100 200 400 600
#Pre-selected Genes

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

5

10

15

20

25

30

#F
in

al
 S

el
ec

te
d 

G
en

es

LOOCV Test #Final Selected Genes

cx

 
Figure 3 A relation between classification accuracies and the numbers of 

selected genes (#Pre-selected genes and #Final selected genes) on the 
MLL data set (10 runs on average) 

 
 
 
 

Figure 3 shows that the highest averages of LOOCV and test 
accuracies are 100% and 92%, respectively. Only 6.5 average genes 
were finally selected to obtain the highest average of the accuracies 
of the data set. All the different numbers of pre-selected genes and 
the final selected genes have obtained more than 99% LOOCV 
accuracy, and this has proven that the proposed approach search and 
select the optimal solution (the best gene subset) in the solution 
space successfully. However, the test accuracy was much lower than 
the LOOCV accuracy due to over-fitting problem. This problem 
happened because of the number of training samples is smaller than 
the number of test samples, and many expression values of the test 
samples may be different from those of the training samples. 

Table 1 shows that the best performances (LOOCV and test 
accuracies) of the proposed approach in the best subsets were both 
100% using the only six genes. The best performances have been 
found in the first, second, sixth, and ninth run. 
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Table 1 The result of the best gene subsets in 10 runs 
 
 

 
 
 
 
The selected genes in the best gene subsets as founded by 

GASVM-II+GASVM in Table 1 are shown in Table 2. The probe-
set name, gene description, and gene accession number of the 
selected informative genes are also given. From this finding, the 
existence of some kinds of relations among the six selected genes of 
the MLL data set is noted (gene description). Based on graph in 
Figure 3, different number of selected genes in a subset has 
produced dissimilar test accuracy. Thus, GASVM-II+GASVM 
preserves the interactions among the genes that result in the best 
classification accuracy by using only two genes of the data set. 
These genes among thousand of genes may be excellent candidate 
for medical investigations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data  
set 

#Pre-Selected 
Genes 

LOOCV 
 (%) 

Test 
 (%) 

#Final Selected 
Genes 

Run# 

MLL 100 100 100 6 1,2,6,9 
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Table 2 A list of informative genes in the best gene subsets 
 
 

Data 
Set 

Run# Probe-set  
Name 

Gene 
Accession 
Number 

Gene Description 

1, 2, 6, 9 36873_at D16532 Human gene for very low 
density lipoprotein receptor, 
5'flanking  

1, 2, 6, 9 40520_g_a
t 

Y00638 Human mRNA for leukocyte 
common antigen (T200) 

1, 2, 6, 9 38462_at U64028 Human NADH:ubiquinone 
oxidoreductase subunit B13 
mRNA, complete cds 

1, 2, 9 31340_at Y12779 H.sapiens mRNA for 
enamelysin 

1, 2, 9 1116_at M28170 Human cell surface protein 
CD19 (CD19) gene, complete 
cds 

1, 2 40489_at D31840 Human DRPLA mRNA for 
ORF, complete cds 

6 32392_s_at M57951 Human bilirubin UDP-
glucuronosyltransferase 
isozyme 2 mRNA, complete 
cds 

6 34950_at AB018303 Homo sapiens mRNA for 
KIAA0760 protein, partial 
cds 

6 1356_at U18321 Human ionizing radiation 
resistance conferring protein 
mRNA, complete cds 

MLL 

9 32262_at AL049669 Human gene from PAC 
612B18, chromosome 1 
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The benchmark of the proposed approach comparing with 
GASVM-II, GASVMs (single-objective and multi-objective), and 
SVM is summarised in Table 3. The LOOCV accuracy, test 
accuracy, and number of selected genes are written in the 
parenthesis; the first and second parts are average result and 
showcased the best result, respectively. In the table, GASVM-
II+GASVM has outperformed GASVM-II, GASVMs, and SVM in 
terms of the LOOCV accuracy, test accuracy, and number of 
selected genes on average results and the best results. Generally, 
GASVM-II was better than GASVMs and SVM. A smaller size 
gene subset that is produced by the GASVM-II+GASVM results in 
higher classification accuracy. Hence, it may provide more insights 
into the molecular classification and diagnosis of cancers. This 
suggests that gene selection using the proposed approach is needed 
for cancer classification of microarray data. 

 
 

Table 3 The benchmark of GASVM-II+GASVM with GASVMs, 
GASVM-II, and SVM 

 
 

MLL Data Set (Average; The Best) 
Accuracy (%) Method  #Final  

Selected Genes LOOCV Test 

GASVM-II+GASVM  (6.5 ±  
0.71; 6) 

(100 ±  
0; 100) 

(92 ±  
8.20; 100) 

GASVM-II (30 ±  
0; 30) 

(100 ±  
0; 100) 

(84.67 ±  
6.33; 93.33) 

GASVM (multi-
objective) 

(4,465.2 ±  
18.34; 4,437) 

(94.74 ±  
0; 94.74) 

(90 ± 
 3.51; 93.33) 

GASVM (single-
objective) 

(6,298.8 ±  
51.51; 6,224) 

(94.74 ±  
0; 94.74) 

(87.33 ±  
2.11; 86.67) 

SVM classifier (12,582 ±  
0; 12,582) 

(92.98 ±  
0; 92.98) 

(86.67 ±  
0; 86.67) 

Note: The best result shown in shaded cells. 
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Table 4 The benchmark of GASVM-II+GASVM with previous works 
 
 

MLL Data Set  
Accuracy (%) Author [Reference]  #Final Selected 

Genes LOOCV Test 
Our work 6 100 100 
Li et al. 2003 - - 100 
Wang et al. 2005 39 100 - 
Wang, 2006 - 98.61  - 
Yang et al. 2006 56 97.2 - 
Armstrong et al. 2002 100 95 - 
Note: The best result shown in shaded cells. ‘–‘ means that result is not available. 

 
 
 
 
Table 4 displays benchmark of the best results of this work 

and previous related works. The best result of the proposed 
approach was obtained from the best subset in Table 1. Based on 
LOOCV and test accuracies, it was noted that the best results from 
this work were equal to the best result from the famous previous 
work (Li et al., 2003). However, this work only did not display the 
LOOCV accuracy and the number of selected genes to achieve the 
accuracy.  

 
 
 
 

4.4    CONCLUSIONS 
 
 
In this paper, an approach (GASVM-II+GASVM) that involved two 
hybrid methods has been proposed, developed, and analysed for 
gene selection and classification. This research found many 
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combinations of gene subsets that were not equal number of genes 
have produced the different classification accuracy. This finding 
suggests that there are many irrelevant and noisy genes in 
microarray data. In addition, the performances of the GASVM-
II+GASVM were superior to the GASVM-II, GASVMs, and SVM. 
Focusing attention on a smaller subset of genes is useful not only 
because it produces good classification accuracy, but also since 
informative genes in this subset may provide insights into the 
mechanisms responsible for the cancer itself.  

It can also be applied in other applications such as robotics, 
computer intrusion detections, and computer graphics. Even though 
the proposed approach has classified tumours with higher accuracy, 
it is still can not avoid the over-fitting problem. A recursive genetic 
algorithm is currently studied to better select a small subset of genes 
for cancer classification. 
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5.1    INTRODUCTION 

 
 
Advances in the area of microarray-based gene expression analysis 
have led to a promising future of cancer diagnosis using new 
molecular-based approaches. Microarray technology is used to 
measure the expression levels of thousands of genes 
simultaneously, and finally produce gene expression data. A 
comparison between the gene expression levels of cancerous and 
normal tissues can also be done. This comparison is useful to 
select those genes that might anticipate the clinical behaviour of 
cancers. Thus, there is a need to select informative genes that 
contribute to a cancerous state. However, the gene selection 
process poses a major challenge because of the following 
characteristics of gene expression data: the huge number of genes 
compared to the small number of samples (higher-dimensional 
data), irrelevant genes, and noisy data. 

To overcome the challenge, a gene selection method is 
used to select a subset of genes that maximises the classifier’s 
ability to classify samples more accurately. The gene selection 
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method has several advantages such as improving classification 
accuracy, reducing the dimensionality of data, and removing 
irrelevant and noisy genes. 

There are two types of gene selection methods (Mohamad 
et al., 2005): if a gene selection method is carried out 
independently from a classifier, it belongs to the filter approach; 
otherwise, it is said to follow a hybrid (wrapper) approach. In the 
early era of microarray analysis, most previous works have used 
the filter approach to select genes because it is computationally 
more efficient than the hybrid approach (Chang et al., 2007; Li et 
al., 2007). However, the filter approach results in inclusion of 
irrelevant and noisy genes in a gene subset for the cancer 
classification. The hybrid approach usually provides greater 
accuracy than the filter approach since the genes are selected by 
considering and optimising relations among genes (Mohamad et 
al., 2007). Until now, several hybrid methods, especially a 
combination between a genetic algorithm (GA) and a support 
vector machine (SVM) classifier (GASVM), have been 
implemented to select informative genes (Huang and Chang, 2007; 
Li et al., 2005; Li et al., 2008; Mohamad et al., 2005; Mohamad et 
al., 2009; Peng et al., 2003) The drawbacks of the hybrid methods 
(GASVM-based methods) in the previous works are: 1) intractable 
to efficiently produce a smaller (near-optimal) subset of 
informative genes when the total number of genes is too large 
(higher-dimensional data); 2) the high risk of over-fitting 
problems. 

In order to overcome the limitations of the previous works 
and solve the problems derived from gene expression data, we 
propose a cyclic GASVM-based method (C-GASVM). The 
diagnostic goal is to develop a medical procedure based on the 
least number of possible genes that needed to detect diseases. 
Thus, the ultimate goal of this paper is to automatically select a 
smaller (near-optimal) subset of informative genes that is most 
relevant for the cancer classification. The proposed method is 
optimal in the sense that it minimises the number of selected genes 
and maximises the classification accuracy. To achieve the goal, we 
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adopt C-GASVM. The proposed method is evaluated on two real 
gene expression data sets.  

The outline of this paper is as follows: Section 2 describes 
the problems of previous related works, whereas Section 3 
discusses the detail of the proposed C-GASVM. In Section 4, gene 
expression data sets used, experimental setup, and experimental 
results are described. The conclusion of this paper is provided in 
Section 5. 
 
 
 
 
5.2    PREVIOUS WORKS 
 
 
Several hybrid methods, i.e., GASVM-based methods have been 
proposed for genes selection of gene expression data (Huang and 
Chang, 2007; Li et al., 2005; Li et al., 2008; Mohamad et al., 
2005; Mohamad et al., 2009; Peng et al., 2003). Generally, our 
previous GASVM-based methods performed well in higher-
dimensional data, e.g., gene expression data since we proposed a 
modified chromosome representation and a multi-objective 
approach (Mohamad et al., 2005; Mohamad et al., 2009). 
However, the methods yielded inconsistent results when they were 
run independently. 

Li et al. (Li et al., 2005) proposed a GASVM-based 
method for the same purpose. Next, the work of Huang and Chang 
can simultaneously optimise genes and SVM parameter settings by 
using a GASVM-based method (Huang and Chang, 2007). An 
improved GASVM-based method has been recently introduced in 
Li et al. (Li et al., 2008) to produce a small subset of genes. Peng 
et al. (Peng et al., 2003) introduced a recursive feature elimination 
post-processing step after the step of a GASVM-based method in 
order to reduce the number of selected genes again (Peng et al., 
2003). 
Nevertheless, the GASVM-based methods of the previous works 



68 Advances in Bioinformatics 

 

are still intractable to produce a near-optimal subset of genes from 
higher-dimensional data due to their binary chromosome 
representation drawback (Huang and Chang, 2007; Li et al., 2005; 
Li et al., 2008; Mohamad et al., 2005; Mohamad et al., 2009; Peng 
et al., 2003). The total number of gene subsets produced by 
GASVM-based methods is calculated by 2 1M

cM = −  where cM  
is the total number of gene subsets, and M  is the total number of 
genes. Based on this equation, the GASVM-based methods are 
almost impossible to evaluate all possible subsets of selected genes 
if M  is too many (higher-dimensional data). Although the works 
of Peng et al. and Li et al. have implemented a pre-processing step 
to decrease the dimensionality of data, but it can only reduce a 
small number of genes, and many genes are still available in the 
data (Li et al., 2008; Peng et al., 2003). The GASVM-based 
methods also face with the high risk of over-fitting problems. The 
over-fitting problem that occurred on hybrid methods (e.g., 
GASVM-based methods) was also reported in a review paper 
written by Saeys et al. (Saeys et al. 2007). 
 
 
 
 
5.3    THE PROPOSED CYCLIC HYBRID METHOD (C-
GASVM) 
 
 
In this paper, we propose C-GASVM for gene selection from gene 
expression data. C-GASVM is a hybrid method based on GASVM. 
C-GASVM in our work differs from the GASVM-based methods 
in the previous works (Huang and Chang, 2007; Li et al., 2005; Li 
et al., 2008; Mohamad et al., 2005; Mohamad et al., 2009; Peng et 
al., 2003) in one major part. The major difference is that our 
proposed method involves a cyclic (an iterative) approach, 
whereas the previous works did not use any a cyclic approach for 
gene selection. The general procedure of C-GASVM is shown in 
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Figure 1. 
 
 
 
 

 
 
 

Figure 1 The general procedure of C-GASVM 
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5.3.1    Pseudo-code for C-GASVM 
 
 
The detail of C-GASVM is shown in Fig. 2. Basically, C-GASVM 
repeats the process of GASVM to produce potential subsets and 
reduce the dimensionality of data iteratively. The description of 
each step in Fig. 2 is explained as follows: 
 
 
Step 1: Starting a cyclic (an iterative) process. It is repeated 

until the number of selected genes in the potential subset 

of the cycle c is equal to 1. Every cycle (cycle c) is 

started here. 

Step 2: Starting GASVM to search and produce a potential 

subset of selected genes. 

Step 3: End of Step 2. 

Step 4: Producing and saving the potential subset of genes. This 

potential subset is used for the next cycle (cycle c+1) as 

an input set. The selection of genes in the next cycle 

(cycle c+1) only uses genes in the potential subset that 

are resulted by the cycle c. Therefore, the 

dimensionality and complexity of solution spaces can be 

decreased on a cycle by cycle basis. 

Step 5: Select a number of genes for the next cycle (cycle c+1). 

In each cycle of C-GASVM, a number of selected genes 

are automatically selected and the dimensionality is 

automatically reduced. C-GASVM only chooses the 
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large number of selected genes in each cycle in order to 

avoid an over-fitting problem. This is reported and 

proved on the experimental results in Section 4.3.3. The 

problem could be avoided since the large selection 

involves many relations among genes, and C-GASVM 

reduces the number of genes (dimensionality) 

iteratively. 

Step 6: End of Step 5. 

Step 7: End of Step 1.  

Step 8: A near-optimal subset is selected among the potential 

subsets based on the highest fitness value (the highest 

LOOCV accuracy with the smallest number of selected 

genes). 

Step 9: The cyclic (iterative) process (Steps 1-8) results a near-

optimal subset of genes. This near-optimal subset is 

possible to be found due to the dimensionality of data 

has been iteratively reduced. The subset is then used to 

construct an SVM classifier, and the constructed SVM 

is tested by using the test set.  
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5.3.2    Chromosome Representation for C-GASVM 
 
 
We use integer chromosome representation in C-GASVM in order 
to overcome the limitation of the binary chromosome 
representation in previous related works (Huang and Chang, 2007; 
Li et al., 2005; Li et al., 2008; Mohamad et al., 2009; Peng et al., 
2003). We modify the mechanism of gene selection of C-GASVM 
based on the representation to efficiently select gene subsets from 
higher-dimensional data. The modification idea is based on Eq. (1) 
to reduce the number of gene subsets by fixing the number of 
selected genes. The fixing process is automatically done by a 
cyclic process in C-GASVM for each cycle. 

 

!
!( )!M x

My C
x M x

= =
−

 (Eq. 1) 

 
where M xC is the total number of subsets of selected genes x from 
the total number of genes .M  

Figure 3 shows a graph based on Eq. (1). A maximum 
number of subsets are reached when the number of selected genes 
is chosen at M/2. Hence, the selection number at M/2 or about M/2 
should be avoided. If the selection uses the number, C-GASVM is 
impossible to evaluate all subsets due to the huge number of 
subsets. Conversely, all subsets of genes are possible evaluated if a 
small or large number of the selected genes are chosen. In this 
work, C-GASVM only chooses the large number of selected genes 
in each cycle in order to avoid an over-fitting problem. If the 
selection chooses the small number, C-GASVM faces with the 
problem. This is reported and proved by the experimental results in 
Section 4.3.3. 

Therefore, in C-GASVM, the chromosome representation 
is modified as shown in Fig. 4 which has integer representation. It 
includes values of integers jg  that indicate which genes are 
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needed to be selected among the total genes in a data set. For 
example, if 10,=jg  then C-GASVM selects the 10th gene from 
the data set, and groups it into a subset of genes. The number of 
selected genes is represented by .sn  The number of jg  in a 
chromosome is equal to .sn  The binary chromosome 
representation of GASVM-based methods in the related previous 
works is encoded with all genes and its size depends entirely on 
the total number of genes, M  (Huang and Chang, 2007; Li et al., 
2005; Li et al., 2008; Mohamad et al., 2005; Mohamad et al., 
2009; Peng et al., 2003). In contrast, the integer chromosome 
representation in C-GASVM is only encoded with a number of 
selected genes that is automatically fixed by the cyclic process. 
Hence, the total number of genes, M does not really affect the size 
(length) of the chromosome so as to keep its size relatively small. 
Its size can vary according to M  and sn . The size of 
chromosomes and the number of selected genes are also same for a 
similar cycle, but they are different for dissimilar cycles. Finally, a 
chromosome (a gene subset) is represented as 

11 2( , ,..., , ).s sn nx g g g g−=  For example, the tha chromosome is 
represented by 11 2( , ,..., , ).s sn n

a a a a ax g g g g−=  
 

 
 
Figure 2 The relation between the number of subsets y and the number 

of selected genes x from the total number of genes M 
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1g  2g  … 1−sng  sng  

 
 
 
 
 
 
 
 

Figure 3 Integer chromosome representation in C-GASVM 
 

Note: 
sn = a number of selected genes from an input set ( 1cS − ), 1 .sn M≤ ≤  

M =  the total number of genes in an input set ( 1cS − ). 
jg  = an integer value in a chromosome, 1 .jg M≤ ≤  

j =  the jth gene in a chromosome, 1 .sj n≤ ≤  
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Figure 4 The pseudo-code of C-GASVM 
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5.3.3    A Fitness Function for C-GASVM 
 
 
A fitness value of an individual (a gene subset) is calculated as 
follows: 
 
 

1 2( ) ( ) ( ( ( )) / )fitness x w A x w M R x M= × + −  (Eq. 2) 

 
 
in which [ ]( ) 0,1A x ∈ is leave-one-out-cross-validation (LOOCV) 
accuracy on the training set using the only expression values of the 
selected genes in a gene subset, .x  This accuracy is provided by an 
SVM classifier. ( )R x  is the number of selected genes in .x M  is 
the total number of genes for each sample in the training set. 1w  
and 2w are two priority weights corresponding to the importance of 
accuracy and the number of selected genes, respectively, where 

[ ]1 0.1,0.9w ∈  and 2 11 .w w= −  
 
 
 
 
5.4    EXPERIMENT  
 
 
 
 
5.4.1    Data Sets 
 
 
Two real gene expression data sets that contain binary classes and 
multi-classes are used to evaluate C-GASVM: lung cancer and 
small round blue cell tumours (SRBCT) cancer data sets. The lung 
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cancer data set has two classes: malignant pleural mesothelioma 
(MPM) and adenocarcinoma (ADCA). There are 181 samples (31 
MPM and 150 ADCA). The training set contains 32 of them (16 
MPM and 16 ADCA). The rest of the 149 samples (15 MPM and 
134 ADCA) are used for the test set. Each sample is described by 
12,533 genes. It can be obtained at 
http://chestsurg.org/publications/2002-microarray.aspx.  

The SRBCT cancer data set is a multi-classes data set. It 
has four classes: ewing family of tumours (EWS), 
rhabdomyosarcoma (RMS), neuroblastoma (NB), and burkitt 
lymphomas (BL). The training set contains 63 samples (23 EWS, 
20 RMS, 12 NB, and 8 BL), whereas the test set contains 20 
samples (6 EWS, 5 RMS, 6 NB, and 3 BL). There are 2,308 genes 
in each sample.. It can be downloaded at 
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. 
 
 
 
 
5.4.2 Experimental Setup 
 
 
Since the number of training samples in gene expression data is 
small, the accuracy on the training set is calculated through an 
LOOCV procedure. For the test accuracy, a classifier is built using 
all the training samples, and the classes of test samples from the 
test set are predicted one by one using the built classifier. The test 
accuracy is estimated by the number of the correctly classified test 
samples, divided by the number of samples in the test set. 

Table 1 contains parameter values for C-GASVM. These 
values are chosen based on the results of preliminary runs. Three 
criteria following their importance are considered to evaluate the 
performances of C-GASVM and other experimental methods: the 
test accuracy, the LOOCV accuracy, and the number of selected 
genes. Higher accuracies and a smaller number of selected genes 
are needed to obtain an excellent performance. 



78 Advances in Bioinformatics 

 

Table 1 Parameter settings for C-GASVM 
 
 

      Data Set 
    Parameter SRBCT Lung 

The size of population 50 50 
The number of generation 100 100 
Replacement rate (Roulette wheel 
selection) 0.8 0.8 

Crossover rate (Two-point) 0.7 0.7 
Mutation rate (Gaussian) 0.01 0.01 

1w  0.8 0.7 
2w  0.2 0.3 

div_gene 1.33 1.33 
Cost for generalisation of an SVM 
classifier 100 0.7 

 
Experimental results presented in this paper pursue four 

objectives. The first objective is to show that a gene selection 
using C-GASVM is needed to produce a smaller (near-optimal) 
subset of informative genes for better classification accuracy.  The 
second objective is to display a list of informative genes in the best 
subsets produced by C-GASVM for biological usage. The third 
objective is to show that C-GASVM is better than other 
experimental methods such as GASVM (single-objective), multi-
objective GASVM (MOGASVM), GASVM version 2 (GASVM-
II), and an SVM classifier. The last objective is to compare C-
GASVM with other previous works that only used GASVM-based 
methods. To achieve the four objectives, several experiments are 
conducted 10 times on each data set using C-GASVM and other 
experimental methods. Next, an average result of the 10 
independent runs is obtained. A near-optimal subset that produces 
the highest classification accuracies with the possible least number 
of genes is selected as the best subset. 
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5.4.3 Experimental Results 
 
 
 
 
5.4.3.1    LOOCV And Test Accuracies Of Selected Genes With 
C-GASVM 
 
 
Table 2 shows the classification accuracy for each run using C-
GASVM on both data sets. Interestingly, all runs have achieved 
100% LOOCV accuracy. This has proven that C-GASVM has 
efficiently selected and produced the near-optimal solution in a 
solution space. This is due to the fact of its ability to automatically 
reduce the dimensionality and complexity of the solution space on 
a cycle by cycle basis. C-GASVM also removes irrelevant and 
noisy genes in order to yield the higher accuracy. The smaller gene 
subsets that are produced by the proposed C-GASVM result in the 
higher classification accuracy. 
 Practically, the best subset of a data set is firstly chosen and 
the genes in it are then listed for biological usage. These 
informative genes among the thousand of genes may be the 
excellent candidates for clinical and medical investigations. 
Biologists can save much time since they can directly refer to the 
genes that have higher possibility to be useful for cancer diagnosis 
and drug target in the future. The best subset is chosen based on 
the highest classification accuracy with the smallest number of 
selected genes. The highest accuracy gives confidence to us for the 
most accurate classification of cancer types. Moreover, the 
smallest number of selected genes for cancer classification can 
reduce the cost in a clinical setting. 
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Table 2 Classification accuracies for each run using C-GASVM 
 
 

Lung Data Set SRBCT Data Set 
Run# LOOCV 

(%) 
Test 
(%) #Genes LOOCV 

(%) 
Test 
(%) #Genes 

1 100 94.63 2 100 90 7 
2 100 93.96 5 100 85 6 
3 100 94.63 2 100 80 7 
4 100 90.60 2 100 85 7 
5 100 93.96 5 100 80 7 
6 100 98.66 4 100 85 7 
7 100 94.63 2 100 85 7 
8 100 94.63 2 100 85 7 
9 100 90.60 2 100 85 7 

10 100 90.60 2 100 85 8 
Average  
± S.D.  

100  
± 0 

93.69 ± 
2.52 2.80 ± 1.32 100  

± 0 
84.5  

± 2.84 
8.3  

± 4.14 
Note: The result of the best subsets of each data set shown in shaded 
cells. S.D. denotes the standard deviation, whereas Run# and #Genes 
represent a run number and a number of selected genes, respectively.  
 
 
5.4.3.2    A List Of Informative Genes For Biological Usage 
 
 
Informative genes in the best gene subsets as produced by the 
proposed C-GASVM and reported in Table 2 are listed in Table 3. 
Some of these genes are already identified to be highly possible 
clinical markers for cancer diagnosis by biological researches. the 
remaining genes may be the excellent candidates for further 
clinical investigation. 
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Table 3 The list of informative genes in the best gene subsets 
 

 

Data 
Set 

Probe-set 
Name / 

Image ID 

Gene Accession 
Number / Gene 
Card Identifier 

Gene Description 

884867 GC14P102870 
eukaryotic translation initiation factor 5 
(ETI5) 

868304 GC10M090684 
actin, alpha 2, smooth muscle, aorta 
(ACTA2) 

1323448 GC14P105024 cysteine-rich protein 1 (intestinal) (CRIP1) 

450152 GC09P000263 
dedicator of cytokinesis 8 
(DOCK8) 

298963 GC14P104957 metastasis associated 1 (MTA1) 

725188 GC02P063727 
malate dehydrogenase 1, NAD (soluble) 
(MDH1) 

823696 GC10P091142 interferon-induced protein 56 (IFIT1) 

295985 GC07M092072 
cyclin-dependent kinase 6 
(CDK6) 

139705 GC13M072181 
similar to RIKEN cDNA 
2410129H14 

SRBCT 

244652 GC09P130485 
SET translocation (myeloid leukemia-
associated) (SET) 

32551_at U03877 EGF-containing fibulin-like 
extracellular matrix protein 1 

33634_at AF038007 ATPase, Class I, type 8B, member 
1 

35708_at W27414 
Homo sapiens, clone 
IMAGE:3502329, mRNA, partial 
cds 

Lung  

36938_at U70063 N-acylsphingosine 
amidohydrolase (acid ceramidase) 

 
 
 
 
5.4.3.3    C-GASVM Versus Other Experimental Methods 
 
 
The benchmark of C-GASVM in comparison with other 
experimental methods that have been experimented in this work is 
summarized in Table 4.  
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Table 4 The benchmark of C-GASVM with other experimental method 
 
 

SRBCT Data Set (Average ± S.D.; 
The Best) 

Lung  Data Set (Average ± S.D.; 
The Best) 

Accuracy (%) Accuracy (%) 
Method 

#Genes 
LOOCV Test 

#Genes 
LOOCV Test 

C-GASVM 
(8.3 ±  
4.14; 
20) 

(100 ±  
0; 100) 

(84.5 ±  
2.84; 90) 

(2.80 ±  
1.32; 4) 

(100 ±  
0; 100) 

(93.69 ±  
2.52; 

98.66) 
GASVM-II 
(Mohamad 
et al., 2005) 

(10 ±  
0; 10) 

(99.84 ±  
0.50; 
100) 

(68 ±  
9.49; 85) 

(10 ±  
0; 10) 

(100 ±  
0; 100) 

(59.33 ±  
29.32; 
97.32) 

MOGASVM 
(Mohamad 
et al., 2008) 

(444.7 ±  
19.09;  
429) 

(100 ±  
0; 100) 

(81.5 ±  
7.47; 85) 

(4,418.5 
±  

50.19; 
4,433) 

(75.31 ±  
0.99; 

78.13) 

(85.84 ±  
3.97; 

93.29) 

GASVM 
(Mohamad 
et al., 2005) 

(1146 ±  
10.33;  
1134) 

(98.41 ±  
0; 98.41) 

(78.5 ±  
3.38; 85) 

(6,267.8 
± 56.34; 
6,342) 

75 ± 0;  
75) 

(84.77 ± 
2.53; 

87.92) 

SVM 
(Mohamad 
et al., 2008) 

(2,308 ±  
0; 2,308) 

(6,298.8 
±  

51.51; 
6,224) 

(80 ±  
0; 80) 

(12,533 ± 
0; 

12,533) 

(65.63 ±  
0; 65.63) 

(85.91 ±  
0; 85.91) 

Note: The best result of each data set shown in shaded cells. S.D. denotes the standard deviation, 
whereas #Genes represents a number of selected genes. 

 
 

 
 

GASVM (single-objective) is developed to implement a 
single-objective approach in its fitness function, while 
MOGASVM for multi-objective approach. Binary chromosome 
representation has been used in these hybrid methods. GASVM-II 
and C-GASVM are almost same in terms of chromosome 
representation, algorithm, etc. The difference is that GASVM-II 
not implements the iterative process in its mechanism. It is 
developed to prove that an over-fitting problem is happen when the 
selection using a small number of selected genes, and compare its 
experimental results with C-GASVM. 
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GASVM (single-objective) and MOGASVM cannot 
produce a near-optimal subset of informative genes because they 
perform poorly in higher-dimensional data due to their 
chromosome representation drawback. The LOOCV accuracy of 
GASVM-II is much higher than its test accuracy. These findings 
prove that GASVM-II causes the over-fitting problem even if it 
uses a smaller numbers of selected genes. This problem happens 
since the smaller selections not involve many relations among 
genes. This method would also be difficult for the usage because it 
selects a number of genes manually. 

On the contrary, C-GASVM selects a large number of 
genes automatically in each cycle of the iterative process to finally 
produce a smaller (near-optimal) subset of informative genes. The 
gap between LOOCV accuracy and test accuracy was also lower. 
Therefore, C-GASVM is more efficient than other experimental 
methods since it has produced the higher classification accuracies, 
smaller number of selected genes, smaller standard deviations, and 
smaller gap between LOOCV accuracy and test accuracy. 
However, due to the iterative process, C-GASVM is 
computationally more extensive than other methods. 

 
 
 
 

5.4.3.4     C-GASVM Versus Related Previous Works 
 
 
For an objective comparison, we only compare our work with 
related previous works that used GASVM-based methods in their 
works (Huang and Chang, 2007; Mohamad et al., 2005). The 
previous works produced the average results of classification 
accuracy since they used hybrid approaches. We make the 
comparison using the averages of LOOCV accuracy and the 
number of selected genes. This is due to the most previous works 
only evaluated the performance of their approaches using the 
LOOCV procedure or k-fold-cross-validation and the number of 
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selected genes on averages. At the moment, they used higher-
dimensional data such as the SRBCT data set for experimental 
usage. Additionally, our work has used very higher-dimensional 
data (more than 12,000 genes) such as the lung data set to test the 
effectiveness of C-GASVM. The experimental result of the very 
higher-dimensional data is only shown in Tables 2, 3, and 4. 
 
 

Table 5 The comparison between C-GASVM and other previous 
GASVM-based methods 

 
 

SRBCT Data Set (Average ± S.D.; The Best) 
Accuracy (%) Method 

#Genes 
LOOCV Test 

C-GASVM (8.3 ± 4.14; 20) (100 ± 0; 100) (84.5 ± 2.84; 90) 

Huang and 
Chang, 
2007 

(6.2 ± NA; NA) NA (98.75 using 10-
CV ± NA; NA) 

Mohamad et 
al., 2005 

(10 ± 0; 10) (99.84 ± 0.50; 100) (68 ± 9.49; 85) 

Note: The best result of each data set shown in shaded cells. ‘NA‘ means that the 
result is not reported in the related previous works. S.D. denotes the standard 
deviation, whereas 10-CV means 10-fold-cross-validation. #Genes represents a 
number of selected genes. 
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Table 5 displays the benchmark of this work and previous related 
works. The averages of LOOCV accuracy and test accuracy of our 
work were 100% and 84.5%, respectively. However, the average 
of the number of selected genes (8.3 genes) was slightly higher 
than the previous work (Huang and Chang, 2007). The work of 
Huang and Chang (Huang and Chang, 2007) only achieved 
98.75% LOOCV accuracy on average using 6.2 average genes. 
The LOOCV accuracy and test accuracy genes set that produced in 
Mohamad et al., (Mohamad et al., 2005) were also less than our 
work. Overall, this work has outperformed the related previous 
works on the data sets in terms of LOOCV accuracy and the 
number of selected genes. The previous work is intractable to 
efficiently produce a near-optimal subset of genes in high-
dimensional data due to their binary chromosome representation 
drawback (Huang and Chang, 2007). 
 
5.5    CONCLUSIONS 
 
 
In this paper, a cyclic GASVM-based method (C-GASVM) has 
been proposed and tested for gene selection on two real gene 
expression data that contain binary classes and multi-classes of 
tumour samples. Based on the experimental results, the 
performance of C-GASVM was superior to the other experimental 
methods and related previous works. This is due to the fact that C-
GASVM can automatically reduce the dimensionality of the data 
on a cycle by cycle basis. When the dimensionality was reduced, 
the combination of genes and the complexity of solution spaces 
can also be automatically decreased iteratively. This iterative 
process is done to produce potential gene subsets from higher-
dimensional data (gene expression data), and finally generate a 
near-optimal subset of informative genes. Hence, the gene 
selection using C-GASVM is needed to produce a smaller subset 
of informative genes for better cancer classification. Moreover, 
focusing the attention on the informative genes in the best subset 
may provide insights into the mechanisms responsible for the 
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cancer itself. However, due to the iterative process, C-GASVM is 
computationally more extensive than the other methods. Even 
though C-GASVM has classified tumours with higher accuracy, it 
is still not able to completely avoid the over-fitting problem. 
Therefore, a combination between a filter approach and a hybrid 
approach will be proposed to solve the computational time and 
over-fitting problems. 
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6.1    INTRODUCTION 

 
 
Microarray technology is used to measure the expression levels of 
thousands of genes simultaneously, and finally produce microarray 
data. A comparison between the gene expression levels of 
cancerous and normal tissues can also be done. This comparison is 
useful to select those genes that might anticipate the clinical 
behaviour of cancers. Thus, there is a need to select informative 
genes that contribute to a cancerous state. However, the gene 
selection poses a major challenge because of the following 
characteristics of microarray data: 
• High-dimensional data, for example, a huge number of genes 

and a small number of samples are in the ranges of 7,000-
15,000 and 30-200, respectively. 

• Most genes are not relevant for classifying different tissue 
types. 

• These data have noisy genes. 
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To overcome the problems, a gene selection method is used 
to select a subset of genes that maximises the classifier’s ability to 
classify samples more accurately. The gene selection method has 
several advantages such as improving classification accuracy, 
reducing the dimensionality of data, and removing irrelevant and 
noisy genes. 

In the context of cancer classification, gene selection 
methods can be classified into two categories. If a gene selection 
method is carried out independently from a classifier, it belongs to 
the filter approach. Otherwise, it is said to follow a hybrid 
(wrapper) approach. In the early era of microarray analysis, most 
previous works have used the filter approach to select genes since 
it is computationally more efficient than the hybrid method (Saeys 
et al., 2007). However, the hybrid approach usually provides 
greater accuracy than the filter approach. Until now, several hybrid 
methods (Huang and Chang, 2007; Mohamad et al., 2005; 
Mohamad et al., 2009a; Mohamad et al., 2009b; Mohamad et al., 
2009c; Peng et al., 2003), especially a combination between a 
genetic algorithm (GA) (Elmahi et al., 2006) and a support vector 
machine (SVM) (She et al., 2008) classifier (GASVM), have been 
implemented to select informative genes. Generally, our previous 
hybrid methods, i.e., GASVM-based methods performed well in 
high-dimensional data since we proposed a modified chromosome 
representation, a cyclic approach, and a multi-objective strategy 
(Mohamad et al., 2005; Mohamad et al., 2009a; Mohamad et al., 
2009b; Mohamad et al., 2009c). However, the methods yielded 
inconsistent results when they were run independently. 

The previous work of Huang and Chang (Huang and 
Chang, 2007) that proposed GASVM-based methods can 
simultaneously optimise genes and SVM parameter settings. The 
work of Peng et al. (Peng et al. 2003) introduced a recursive 
feature elimination post-processing step after the step of a 
GASVM-based method in order to reduce the number of selected 
genes again. Nevertheless, the hybrid methods (GASVM-based 
methods) of the previous works are intractable to efficiently 
produce a smaller subset of genes in high-dimensional data due to 



Selecting A Smaller Subset of Genes 91 

 

their binary chromosome representation drawback (Huang and 
Chang, 2007; Peng et al., 2003). The total number of gene subsets 
produced by the GASVM-based methods in the previous works are 

calculated by 2 1M
cM = −  where cM  is the total number of 

subsets, whereas M  is the total number of genes. Based on this 
equation, the GASVM-based methods are almost impossible to 
evaluate all possible subsets of selected genes if M  is too many 
(high-dimensional data). Although the work of Peng et al., (Peng 
et al., 2003) implemented a pre-processing step to decrease the 
dimensionality of data, but it can only reduce a small number of 
genes, and many genes are still available in the data. The GASVM-
based methods (Huang and Chang, 2007; Peng et al., 2003) also 
face with the high risk of over-fitting problems. An over-fitting 
problem is happened because the number of genes greatly exceeds 
the number of samples. The over-fitting problem that occurred on 
hybrid methods (e.g., GASVM-based methods) is also reported in 
a review paper in Saeys et al., 2007. 

In order to solve the problems derived from microarray data 
and overcome the limitation of the GASVM-based methods in the 
previous works (Huang and Chang, 2007; Mohamad et al., 2005; 
Mohamad et al., 2009a; Mohamad et al., 2009b; Mohamad et al., 
2009c; Peng et al., 2003), we propose a two-stage gene selection 
method (Filter+MOGASVM). This proposed method is able to 
perform well in high-dimensional data and reduce a risk of over-
fitting problems since it has two stages as follows: stage 1 to 
decrease the dimensionality of data; stage 2 to produce a smaller 
(near-optimal) genes subset. The diagnostic goal is to develop a 
medical procedure based on the least number of possible genes that 
needed to detect diseases. Thus, the ultimate goal of this paper is to 
select a smaller subset of informative genes (minimise the number 
of selected genes) for yielding higher cancer classification 
accuracy (maximise the classification accuracy). To achieve the 
goal, we adopt Filter+MOGASVM. The proposed method is 
evaluated on one real microarray data sets, namely the leukemia 
cancer data set.  
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The outline of this paper is as follows: Section 2 discusses 
the detail of the proposed Filter+MOGASVM. In Section 3, 
microarray data sets used, experimental setup, and experimental 
results are described. The conclusion of this paper is provided in 
Section 4. 
 
 
 
 
6.2    THE PROPOSED TWO-STAGE GENE SELECTION 
METHOD (FILTER+MOGASVM) 
 
 
In this paper, we propose Filter+MOGASVM to overcome the 
drawbacks of GASVM-based methods in the related previous 
works (Huang and Chang, 2007; Mohamad et al., 2005; Mohamad 
et al., 2009a; Mohamad et al., 2009b; Mohamad et al., 2009c; 
Peng et al., 2003). Filter+MOGASVM in our work differs from the 
methods in the previous works in one major part. The major 
difference is that our proposed method involves two stages (using 
a filter method and a hybrid method), whereas the previous works 
usually used only one stage (using a hybrid method) for gene 
selection. The difference is necessary in order to produce a smaller 
(near-optimal) gene subset from high-dimensional data and reduce 
the high risk of over-fitting problems. For more understanding, the 
general flowcharts of our work and the previous works are shown 
in Fig. 1 (a) and Fig. 1 (b), respectively. The detailed stages of 
Filter+MOGASVM are described as follows. 
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Figure 1 General flowcharts of (a) previous works (GASVM-based 

methods); (b) our work (Filter+MOGASVM) 
 
 
 
 
6.2.1    Stage 1: Pre-Selecting Genes Using A Filter Method 
 
 
In the first stage, we apply a filter method such as gain ratio (GR) 
or information gain (IG) on the training set to pre-select genes and 
finally produce a subset of genes. After the pre-select process, the 
dimensionality of data is also decreased. The filter method 
calculates and ranks a score for each gene. Genes with the highest 
scores are selected and put into the gene subset. This subset is used 
as an input to the second stage.  

Since GASVM-based methods in previous works performs 
poorly in high-dimensional data, and meanwhile, we use a 
GASVM-based method (MOGASVM) in the second stage of 
Filter+MOGASVM, a filter method (GR or IG) in this first stage is 
used to reduce the high-dimensional in order to overcome the 
drawback of GASVM-based methods. If the subset that produced 
by the filter method is small-dimension, the combination of genes 
is not complex, and then MOGASVM in the next stage can 
possible to produce a smaller (near-optimal) subset of informative 
genes. 
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6.2.2    Stage 2: Optimizing A Gene Subset Using MOGASVM 
 
 
In this stage, we develop and use MOGASVM to automatically 
optimise the gene subset that is produced by the first stage, and 
finally yield a smaller (near-optimal) subset of informative genes. 
This smaller subset is identified by an evaluation function in 
MOGASVM that uses two criteria: maximisation of the leave-one-
out-cross-validation (LOOCV) accuracy and minimisation of the 
number of selected genes. MOGASVM selects and optimises 
genes by considering relations among them in order to remove 
irrelevant and noisy genes. The smaller subset is possible to be 
found due to the dimensionality and complexity of data has been 
firstly reduced by the first stage. The high risk of over-fitting 
problems can be also decreased because of the reduction. The 
detail of MOGASVM can be found in Mohamad et al. (Mohamad 
et al. 2009a) 

Finally, the smaller subset of the training set is used to 
construct an SVM classifier for cancer classification, and the 
constructed SVM is then tested by using the test set (independent 
set). This paper has produced two methods of Filter+MOGASVM 
obtained from combinations of two different filter methods (GR 
and IG) and MOGASVM. These methods are GR+MOGASVM 
and IG+MOGASVM. 
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6.3    EXPERIMENTS 
 
 
 
 
6.3.1    Data Sets 
 
 
One benchmark microarray data set, namely the leukemia cancer 
data set is used to evaluate Filter+MOGASVM. It contains the 
expression levels of 7,129 genes and can be obtained at 
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. In this data 
set, bone marrow and blood samples were taken from 72 patients 
(47 acute lymphoblastic leukemia (ALL) samples, 25 acute 
myeloid leukemia (AML) samples). The training set contains 38 
samples (27 ALL, 11 AML), whereas the test set consists 34 
samples (20 ALL, 14 AML).  
 
 
 
 
6.3.2    Experimental Setup 
 
 
Since the number of training samples in microarray data is small, 
the cross-validation (CV) accuracy on the training set is calculated 
through an LOOCV procedure (Mohamad et al., 2005). For the test 
accuracy, a classifier is built using all the training samples, and the 
classes of test samples from the test set are predicted one by one 
using the built classifier. The test accuracy is estimated by the 
number of the correctly classified, divided by the number of 
samples in the test set. 
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Table 1 Parameter Settings for Filter+MOGASVM 
 
 

Parameter Leukemia 
Data Set  

Size of population 100 
Number of generation 300 
Crossover rate 0.7 
Mutation rate 0.01 
Weight 1, 1w  0.8 

Weight 2, 2w  0.2 
Cost for SVM 100 

 
 
 
 

Table 1 contains parameter values for Filter+MOGASVM. 
These values are chosen based on the results of preliminary runs. 
Three criteria following their importance are considered to 
evaluate and compare the performance of Filter+MOGASVM with 
existing methods (Huang and Chang, 2007; Mohamad et al., 2005; 
Mohamad et al., 2009a; Mohamad et al., 2009b; Mohamad et al., 
2009c; Peng et al., 2003): test accuracy, CV accuracy, and the 
number of selected genes. Higher accuracies and a smaller number 
of selected genes are needed to obtain an excellent performance. 
The top 200 genes are pre-selected by using GR and IG in the first 
stage of the proposed method, and are then used for the second 
stage. Several experiments are conducted 10 times on each data set 
using Filter+MOGASVM and other experimental methods such as 
GASVM (single-objective), MOGASVM, GASVM version 2 
(GASVM-II), and SVM. Filter+GASVM methods (IG+GASVM 
and GR+GASVM) are also experimented for the comparison. 
Next, an average result of the 10 independent runs is obtained. 
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6.3.3    Experimental Results 
 
 
6.3.3.1    LOOCV And Test Accuracies Of Selected Genes With 
Filter+MOGASVM 
 
Table 2 shows the results for each run on the leukemia data set. 
The results of the best subsets are shown in shaded cells, whereas 
the results in boldface display the best result of averages. S.D. 
denotes the standard deviation. Run# and #Genes represent a run 
number and a number of selected genes, respectively. Almost all 
runs have achieved 100% LOOCV accuracy. This has proved that 
Filter+MOGASVM has efficiently selected and produced a near-
optimal gene subset from a solution space. 
 
 

Table 2 Classification accuracies using Filter+MOGASVM on the 
leukemia data set 

 
 

GR+MOGASVM  
(Filter+MOGASVM) 

IG+MOGASVM  
(Filter+MOGASVM) Run# 

LOOCV 
 (%) 

Test 
 (%) #Genes LOOCV 

 (%) 
Test 
 (%) #Genes 

1 100 91.18 3 100 91.18 3 
2 100 88.24 3 100 91.18 3 
3 100 94.12 2 100 94.12 3 
4 100 91.18 2 100 91.18 2 
5 100 91.18 3 100 91.18 3 
6 100 94.12 3 100 88.24 2 
7 100 91.18 2 100 94.12 2 
8 100 91.18 3 100 88.24 3 
9 100 94.12 3 100 85.30 3 
10 100 91.18 3 100 91.18 3 
Average  
± S.D.  

100  
± 0 

91.77  
± 1.86 

2.70  
± 0.48 

100  
± 0 

90.59  
± 2.70 

2.70  
± 0.48 

Note: The results of the best subsets shown in shaded cells. Result in boldface 
displayed the best result of averages. S.D. denotes the standard deviation. 
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6.3.3.2    Filter+MOGASVM Versus Other Experimental 
Methods 
 
 
The benchmark of Filter+MOGASVM in comparison with other 
experimental methods that have been experimented in this work is 
summarized in Table 3. Overall, the LOOCV and test accuracies of 
Filter+MOGASVM for all the data sets were higher than 
Filter+GASVM, MOGASVM, GASVM-II, GASVM, and SVM. 
Moreover, the number of selected genes by using 
Filter+MOGASVM was also lower.  

Based on the standard deviations of LOOCV accuracy, test 
accuracy, and the number of selected genes, Filter+MOGASVM 
was also more consistent than the other experimental methods 
except the SVM classifier. This SVM classifier achieved 0 for the 
standard deviations in all experiments since it did not implement 
any gene selection approach. The gap between LOOCV accuracy 
and test accuracy that resulted by Filter+MOGASVM was also 
lower. This small gap shows that the risk of the over-fitting 
problem can be reduced. On the other hand, the results of LOOCV 
accuracy of the others were much higher than their test accuracy 
because they were unable to avoid or reduce the risk of over-fitting 
problems. Over-fitting is a major problem of hybrid methods in 
gene selection and classification of microarray data when the 
classification accuracy on training samples, e.g., LOOCV accuracy 
is much higher than the test accuracy. 
GASVM and MOGASVM cannot produce a near-optimal subset 
of informative genes because they perform poorly in high-
dimensional data due to their chromosome representation 
drawback. GASVM-II method is impractical to be used in real 
applications because a variety number of selected genes should be 
tested in order to obtain the near-optimal one. On the contrary, the 
proposed Filter+MOGASVM that pre-selects a number of genes in 
the first stage can automatically optimise the selected genes by the 
second stage in order to remove irrelevant genes and produce a 
smaller (near-optimal) subset of informative genes. 
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Table 3 Classification accuracies using Filter+MOGASVM on the 
Leukemia data set 

 
 

Leukemia Data Set  
(Average ± S.D.;The Best) 

Accuracy (%) 
Method 

#Genes 
LOOCV Test 

GR+MOGASVM  
(Filter+MOGASVM)  

2.70 ±  
0.48; 3 

100 ±  
0; 100 

91.77 ±  
1.86; 94.12 

IG+MOGASVM  
(Filter+MOGASVM) 

2.70 ±  
0.48; 2 

100 ±  
0; 100 

90.59 ±  
2.70; 94.12 

GR+GASVM  
(Filter+GASVM) 

97.40 ±  
4.43; 91 

100 ±  
0; 100 

86.18 ±  
1.99; 88.24 

IG+GASVM  
(Filter+GASVM) 

99.30 ±  
6.29; 96 

100 ±  
0; 100 

88.53 ±  
2.93; 91.18 

A recursive GASVM 
(Mohamad et al., 2009c) 

2.9 ±  
1.73; 2 

100 ±  
0; 100 

88.82 ±  
3.04; 94.12 

GASVM-II+GASVM 
(Mohamad et al., 2009b)  

3.4 ±  
1.35; 2 

100 ±  
0; 100 

85.88 ±  
8.86; 97.06 

GASVM-II (Mohamad et 
al., 2005) 

10 ±  
0; 10 

100 ±  
0; 100 

81.18 ±  
0.21; 94.12 

MOGASVM (Mohamad 
et al., 2009a) 

2,212.6 ±  
26.63; 2,189 

95.53 ±  
1.27; 97.37 

84.41 ±  
2.42; 88.24 

GASVM (Mohamad et 
al., 2005) 

3,574.9 ±  
40.05; 3,531 

94.74 ±  
0; 94.74 

83.53 ±  
2.48; 88.24 

SVM classifier 
(Mohamad et al., 2009a) 

7,129 ±  
0; 7,129 

94.74 ±  
0; 94.74 

85.29 ±  
0; 85.29 

Note: The best result shown in shaded cells. S.D. denotes the standard 
deviation, whereas #Genes represents a number of selected genes.  
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6.3.3.3    Filter+MOGASVM Versus Other Experimental 
Methods 
 
Table 4 displays the benchmark of this work and previous related 
works on the leukemia data set. The averages of LOOCV accuracy 
and the number of selected genes of our work were 100% and 2.7 
genes, respectively. The latest previous work, Huang and Chang 
(Huang and Chang, 2007) also came up with the similar LOOCV 
result to ours, but the number of selected genes is slightly higher in 
order to obtain the same result. The work of Peng et al. (Peng et 
al., 2003) analysed this data set and finally yielded 100% average 
LOOCV accuracy with six average selected genes. Overall, this 
work has outperformed the related previous works in terms of 
classification accuracy and the number of selected genes. 
Filter+MOGASVM in our work has produced a near-optimal 
(smaller) gene subset from high-dimensional data and reduced the 
high risk of over-fitting problems. This is due to the fact that a 
filter method in the first stage of Filter+MOGASVM reduces the 
dimensionality of the solution space in order to produce a gene 
subset. Next, MOGASVM in the second stage of 
Filter+MOGASVM optimises the subset automatically to yield a 
smaller subset of informative genes with higher classification 
accuracy. This smaller subset is obtained since Filter+MOGASVM 
considers and optimises a relation among genes. 

Unfortunately, the previous works (Huang and Chang, 
2007; Peng et al. 2003) did not provide any test accuracy result on 
the test set (independent data set) and did not show any standard 
deviation result for comparative comparison with our work. 
GASVM-based methods in the previous works may almost 
possible face with a high risk of over-fitting problems and the 
difficulty to obtain a near-optimal solution in high-dimensional 
data since they used binary chromosome representation for gene 
selection mechanisms. This is also supported by a review paper in 
Saeys et al. (Saeys et al. 2007) which reported that hybrid methods 
(e.g., GASVM-based methods) confront with the risk of over-
fitting problems because of the high-dimensional data. 
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Table 4 The comparison between our proposed method 
(Filter+MOGASVM) and other previous GASVM-based methods 

 

6.4    CONCLUSION 
 
 
In this paper, Filter+MOGASVM has been proposed and tested for 
gene selection on the leukemia microarray data set. Based on the 
experimental results, the performance of Filter+MOGASVM was 
superior to the other experimental methods and related previous 
works. This is due to the fact that the filter method in the first stage 
of the proposed method can pre-select genes and reduce 
dimensionality of data in order to produce a subset of genes. When 
the dimensionality was reduced, the combination of genes and 
complexity of solution spaces were automatically decreased. The 
second stage of Filter+MOGASVM can automatically optimise the 
subset that is yielded by the first stage. This optimisation process is 
done to remove irrelevant and noisy genes, and finally produce a 
smaller (near-optimal) subset of informative genes. Hence, the 
gene selection using Filter+MOGASVM is needed to produce a 

Data  Experiment 
Evaluation 

Our work 
(Filter+MOGASVM) 

Huang and 
Chang, 2007 

Peng et al., 
2003 

CV Accuracy 
(%)  

100 ± 0; 100  
(using LOOCV) 

100 ± NA; NA 
(using 10-CV) 

100 ± NA; 
 NA (using 
LOOCV) 

Test Accuracy 
(%)    

91.77 ±  
1.86; 94.12 NA NA 

Leukemia 
(Average ± 
S.D; The 
Best) 

#Genes  2.70 ±  
0.48; 3 

3.4 ±  
NA; NA 

6 ± 
 NA; NA 

Note: The best result shown in shaded cells. ‘NA‘ means that results are not reported in 
the related previous works. S.D. denotes the standard deviation, whereas 10-CV means 
10-fold-cross-validation. #Genes represents a number of selected genes. 
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smaller subset of informative genes for better cancer classification 
of microarray data. However, due to the application of a filter 
method in the first stage of Filter+MOGASVM, pre-selecting 
genes is difficult since it is manually done. Even though 
Filter+MOGASVM has classified tumours with higher accuracy, it 
is still not able to completely avoid the over-fitting problem. 
Therefore, a combination between constraint based reasoning 
methods and particle swarm optimisation techniques is recently 
developed to solve the over-fitting problem. 
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7.1    INTRODUCTION 

 
 
Microarray technology is used to measure the expression levels of 
thousands of genes simultaneously, and finally produce microarray 
data. A comparison between the gene expression levels of 
cancerous and normal tissues can also be done. This comparison is 
useful to select those genes that might anticipate the clinical 
behaviour of cancers. Thus, there is a need to select informative 
genes that contribute to a cancerous state. An informative gene is 
useful for cancer classification. However, the gene selection 
process poses a major challenge because of the following 
characteristics of microarray data: the huge number of genes 
compared to the small number of samples (higher-dimensional 
data), irrelevant genes, and noisy data. 

To overcome the challenge, a gene selection method is 
used to select a subset of genes for cancer classification. The gene 
selection method has several advantages such as maintaining or 
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improving classification accuracy, reducing the dimensionality of 
data, and removing irrelevant and noisy genes. 

There are two types of gene selection methods (Shah an 
Kusiak, 2007): if a gene selection method is carried out 
independently from a classifier, it belongs to the filter approach; 
otherwise, it is said to follow a hybrid (wrapper) approach. In the 
early era of microarray analysis, most previous works have used 
the filter approach to select genes because it is computationally 
more efficient than the hybrid approach (Armstrong et al., 2002; Li 
et al., 2003; Yang et al., 2006). However, the filter approach 
results in inclusion of irrelevant and noisy genes in a gene subset 
for the cancer classification. The hybrid approach usually provides 
greater accuracy than the filter approach. Until now, several hybrid 
methods, especially a combination between a genetic algorithm 
(GA) and a support vector machine (SVM) classifier (GASVM), 
have been implemented to select informative genes (Huang and 
Chang, 2007; Lee, 2008; Mohamad et al., 2005; Mohamad et al., 
2009a; Mohamad et al., 2009b; Peng et al., 2003; Shah and 
Kusiak, 2007). The drawbacks of the hybrid methods (GASVM-
based methods) in the previous works are: 1) intractable to 
efficiently produce a smaller subset of informative genes when the 
total number of genes is too large (higher-dimensional data); 2) the 
high risk of over-fitting problems. 

In order to solve the problems derived from microarray 
data and overcome the limitation of the hybrid methods in the 
previous works (Huang and Chang, 2007; Lee, 2008; Mohamad et 
al., 2005; Mohamad et al., 2009a; Mohamad et al., 2009b; Peng et 
al., 2003; Shah and Kusiak, 2007), we propose a three-stage gene 
selection method (3-SGS). This proposed method is able to 
perform well in the higher-dimensional data and reduce the high 
risk of over-fitting problems since it has three stages as follows: 
stage 1 for producing a subset of genes; stage 2 for resulting near-
optimal subsets of genes; stage 3 for yielding a smaller (final) 
subset of informative genes based on the frequency of appearance 
for each gene in the near-optimal subsets. The diagnostic goal is to 
develop a medical procedure based on the least number of possible 
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genes that needed to detect diseases. Thus, the ultimate goal of this 
paper is to select a smaller subset of informative genes (minimise 
the number of selected genes) for yielding higher cancer 
classification accuracy (maximise the classification accuracy). To 
achieve the goal, we adopt 3-SGS. 3-SGS is evaluated one real 
microarray data set, namely the leukemia cancer data set. 

The outline of this paper is as follows: Sections 2 and 3 
discuss previous works and the detail of the proposed three-stage 
method, respectively. In Section 4, microarray data sets used, 
experimental setup, and experimental results are described. The 
conclusion of this paper is provided in Section 5. 
 
 
 
 
7.2    PREVIOUS WORKS 
 
 
Several hybrid methods, i.e., GASVM-based methods have been 
proposed for genes selection of microarray data (Huang and 
Chang, 2007; Lee, 2008; Mohamad et al., 2005; Mohamad et al., 
2009a; Mohamad et al., 2009b; Peng et al., 2003; Shah and 
Kusiak, 2007). The hybrid methods usually provide greater 
accuracy than filter methods since genes are selected by 
considering relations among genes. Generally, our previous 
GASVM-based methods performed well in higher-dimensional 
data, e.g., microarray data since we proposed a modified 
chromosome representation and a multi-objective approach 
(Mohamad et al., 2005; Mohamad et al., 2009a; Mohamad et al., 
2009b). However, the methods yielded inconsistent results when 
they were run independently. 

The work of Huang and Chang (Huang and Chang, 2007) 
can simultaneously optimise genes and SVM parameter settings by 
using a GASVM-based method. Next, integrated algorithms based 
on GASVM have been proposed by the works of Shah and Kusiak 
(Shah and Kusiak, 2007), and Lee (Lee, 2008) to produce a small 
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subset of genes. Peng et al. (Peng et al., 2003) introduced a 
recursive feature elimination post-processing step after the step of 
a GASVM-based method in order to reduce the number of selected 
genes again. 

Nevertheless, the GASVM-based methods of the previous 
works are still intractable to efficiently produce a smaller subset of 
informative genes from higher-dimensional data due to their binary 
chromosome representation drawback (Huang and Chang, 2007; 
Lee, 2008; Mohamad et al., 2005; Mohamad et al., 2009a; 
Mohamad et al., 2009b; Peng et al., 2003; Shah and Kusiak, 2007). 
The total number of gene subsets produced by GASVM-based 
methods is calculated by 2 1M

cM = −  where cM  is the total 
number of gene subsets, whereas M  is the total number of genes. 
Based on this equation, the GASVM-based methods are almost 
impossible to evaluate all possible subsets of selected genes if M  
is too many (higher-dimensional data). Although the work of Peng 
et al. (Peng et al., 2003) have implemented a pre-processing step 
to decrease the dimensionality of data, but it can only reduce a 
small number of genes, and many genes are still available in the 
data (Peng et al., 2003). The GASVM-based methods also face 
with the high risk of over-fitting problems. The over-fitting 
problem that occurred on hybrid methods (e.g., GASVM-based 
methods) was also reported in a review paper in Saeys et al. (Saeys 
et al., 2007). 
 
 
 
 
7.3    THE PROPOSED THREE-STAGE GENE SELECTION 
METHOD (3-SGS) 
 
 
In order to overcome the drawbacks of GASVM-based methods in 
the related previous works (Huang and Chang, 2007; Lee, 2008; 
Mohamad et al., 2005; Mohamad et al., 2009a; Mohamad et al., 
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2009b; Peng et al., 2003; Shah and Kusiak, 2007), we propose a 
three-stage gene selection method (3-SGS). 3-SGS in our work 
differs from the methods in the previous works in one major part. 
The major difference is that our proposed method involves three 
stages, whereas the previous works usually used only one stage 
(using a hybrid method) (Huang and Chang, 2007; Lee, 2008; 
Mohamad et al., 2005; Mohamad et al., 2009a; Mohamad et al., 
2009b; Shah and Kusiak, 2007) or two stages (using a filter 
method and a hybrid method) (Peng et al., 2003) for gene 
selection. In the third stage, our method implements frequency 
analysis to identify the most frequently selected genes in near-
optimal gene subsets, whereas the previous works (Huang and 
Chang, 2007; Lee, 2008; Mohamad et al., 2005; Mohamad et al., 
2009a; Mohamad et al., 2009b; Peng et al., 2003; Shah and 
Kusiak, 2007)rely solely on a filter method or a hybrid method in 
the first stage of their methods. The difference is necessary in 
order to produce near-optimal gene subsets from higher-
dimensional data, reduce the high risk of over-fitting problems, 
and finally yield a smaller subset of informative genes. 3-SGS is 
shown in Fig. 1. The detailed stages are described as follows: 

 
 
 
 

 
 
 

Figure 1 The proposed method (3-SGS) 
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7.3.1    Stage 1: Pre-selecting Genes Using a Filter Method 
 
 
A filter method such as gain ratio (GR) or information gain (IG) is 
used to pre-select genes and finally produce a subset of genes. 
After the pre-select process, the dimensionality of data is also 
decreased. The filter method calculates and ranks a score for each 
gene. Genes with the highest scores are selected and put into a 
gene subset. This subset is then used as an input to the second 
stage. 
Since GASVM-based methods in previous works performs poorly 
in higher-dimensional data, and meanwhile, we also use a 
GASVM-based method, i.e., a multi-objective GASVM 
(MOGASVM) in the second stage of 3-SGS, a filter method (GR 
or IG) in this first stage is used to reduce the higher-dimensional in 
order to overcome the drawback of GASVM-based methods. If the 
subset that produced by the filter method is in small-dimension, the 
combination of genes is not complex, and then MOGASVM can 
possible to produce near-optimal genes subsets. 
 
 
 
 
7.3.2    Stage 2: Optimising a Gene Subset Using MOGASVM 
 
 
In this stage, we develop MOGASVM to automatically optimise a 
gene subset that is produced by the first stage, and finally yield 
near-optimal subsets of genes. This stage is cycled until the 
maximum number of cycles is satisfied. The near-optimal subsets 
are identified by an evaluation function in MOGASVM that uses 
two criteria: maximisation of leave-one-out-cross-validation 
(LOOCV) accuracy and minimisation of the number of selected 
genes. MOGASVM selects and optimises genes by considering 
relations among them in order to remove irrelevant and noisy 
genes. The near-optimal subsets are possible to be found due to the 
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dimensionality and complexity of data has been firstly reduced by 
the first stage. The high risk of over-fitting problems can be also 
decreased because of the reduction. The detail of MOGASVM can 
be found in our previous work (Mohamad et al., 2009b). 
 
 
 
 
7.3.3    Stage 3: Analysing the Frequency of Each Gene in Near-
optimal Subsets 
 
 
The frequency of appearance for each gene in each near-optimal 
gene subset is examined and analysed to assess the relative 
importance of genes for cancer classification. The most frequently 
selected genes in near-optimal gene subsets are presumed to be the 
most relevant for the classification. Finally, a smaller (final) subset 
of informative genes (K genes, K is a number of genes) is produced 
and used to construct an SVM classifier. This subset contains a 
smaller number of informative genes with higher classification 
accuracy. This paper has produced two methods of 3-SGS obtained 
from combinations of two different filter methods (GR and IG) and 
MOGASVM. These methods are 3-SGS-GR and 3-SGS-IG. 
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7.4    EXPERIMENTS 
 
 
 
 
7.4.1    Data Sets and Experimental Setup 
 
 
The mixed-lineage leukemia (MLL) microarray data set is used to 
evaluate 3-SGS. The MLL cancer data set is a multi-classes data 
set. It has three leukemia classes: acute lymphoblastic leukemia 
(ALL), acute myeloid leukemia (AML), and MLL. The training set 
contains 57 samples (20 ALL, 17 MLL, and 20 AML). While the 
testing set contains 4 ALL, 3 MLL, and 8 AML samples. There are 
12,582 genes in each sample. This data set was published by 
Armstrong et al. (Armstrong et al., 2002). It can be downloaded at 
http://www.broad.mit.edu/cgi-bin/cancer/publications/ 
pub_paper.cgi?mode=view&paper_id=63. 

 
 
 
 

Table 1 Parameter settings for 3-SGS 
 
 

Parameters MLL data set 
Size of population 100 
Number of generation 300 
Crossover rate 0.7 
Mutation rate 0.01 
Maximum number of cycles 10 
Cost for an SVM classifier 100 
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Table 1 contains parameter values for 3-SGS. These values 
are chosen based on the results of preliminary runs. Three criteria 
following their importance are considered to evaluate the 
performance of 3-SGS: test accuracy on the test set, LOOCV 
accuracy on the training set, and the number of selected genes. 
Higher accuracies and a smaller number of selected genes are 
needed to obtain an excellent performance. The top 200 genes are 
pre-selected by using GR and IG in the first stage of the 3-SGS, 
and are then used for the second stage. 

 
 
 
 

7.4.2    Experimental Results 
 
 
 
 
7.4.2.1 Classification accuracies of final informative genes 
 
 
As shown in Fig. 2, the best results of the MLL (100% LOOCV 
and 100% test accuracies) are obtained by using the only six (using 
3-SGS-GR) final selected informative genes (K genes). 
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(a) 3-SGS-GR on the MLL data set 
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Figure 2 A relation between classification accuracies and the number of 
final selected informative genes (K genes) using 3-SGS 

 
 
 
 

Many runs have achieved 100% LOOCV accuracy. This 
has proved that 3-SGS has efficiently selected and produced a 
smaller subset of informative genes from a solution space. This is 
due to the fact that a filter method in the first stage of 3-SGS 
reduces the dimensionality of the solution space in order to 
produce a gene subset. Next, MOGASVM in the second stage of 3-
SGS optimise the subset automatically to yield near-optimal 
subsets of genes. These subsets are obtained since MOGASVM in 
3-SGS considers and optimises a relation among genes. Finally, 
the first K genes appearing most frequently are selected as the final 
selected informative genes for cancer classification. 

 
 
 
 
 
 

 
 
 
 

(b) 3-SGS-IG on the MLL data set 
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7.4.2.2    A list of informative genes for biological usage 
 
 
The informative genes and their rank scores (frequency) of the 
final subsets as produced by the proposed 3-SGS and reported in 
Fig. 2 are listed in Table 2. These informative genes among the 
thousand of genes may be the excellent candidates for clinical and 
medical investigations. Biologists can save much time since they 
can directly refer to the genes that have higher possibility to be 
useful for cancer diagnosis and drug target in the future. 

 
 
 
 

Table 2 The list of informative genes in the final gene subsets 
 
 

Data Set Rank 
Score Gene ID  Gene Description 

9 M11722 human terminal transferase mRNA, 
complete cds 

7 M13143 nucleotide sequence of the cDNA 
insert of lambda  

3 U41843 human Dr1-associated corepressor 
(DRAP1) mRNA 

3 Z83844 vicpro2.D07.r Homo sapiens 
cDNA, 5' end 

2 L08895 homo sapiens MADS 

MLL 

2 U59878 human low-Mr GTP-binding 
protein (RAB32) mRNA 
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7.4.2.3    3-SGS versus other previous methods 
 
 
Table 3 displays the benchmark of this work and previous related 
works that used filter and hybrid approaches. Overall, 3-SGS in 
this work has outperformed the previous works on MLL the data 
set in terms of the test accuracy, the LOOCV accuracy, and the 
number of selected genes.  

 
 
 
 

Table 3 The benchmark of 3-SGS with previous methods on the MLL 
data set 

 
 

MLL Data Set 
Accuracy (%) 

Gene Selection Method (Category) 
[Reference] #Selected 

Genes CV Test 

3-SGS (Filter, hybrid, and frequency 
analysis) 

6 100 100 

GASVM (Hybrid) (Huang and Chang, 2007) (3.5) (100) - 

F-test and Cho’s method (Filter) (Yang et 
al., 2006) 23 97.2 - 

Principal component analysis (Filter) 
(Armstrong et al., 2002) 100 95 - 

Information gain (Filter) (Li et al., 2003) - - 100 
GASVM-II+GASVM (Hybrid) (Mohamad et 
al., 2009a) (6.5) (100) (92) 

GASVM-II (Hybrid) (Mohamad et al., 2005) (30) (100) (84.67) 
MOGASVM (Hybrid) (Mohamad et al., 
2009b) (4,465.2) (94.74) (90) 

GASVM (Hybrid) (Mohamad et al., 2005) (6,298.8) (94.74) (87.33) 
Note: The results of the best subsets shown in shaded cells. ‘-‘ means that a result is not 
reported in the related previous work. A result in ‘( )’ denotes an average result. CV and 
#Selected Genes represent cross-validation and a number of selected genes, respectively. 
Methods in italics style are experimented in this work. 
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Generally, filter methods in previous works (Armstrong et 

al., 2002; Li et al., 2003; Yang et al., 2006) achieved poor 
performances since they may result in inclusion of irrelevant and 
noisy genes in a gene subset for the cancer classification. This 
situation is happen because the methods evaluate a gene based on 
its discriminative power for the target classes without considering 
its relations with other genes. 

GASVM-based methods (Huang and Chang, 2007; 
Mohamad et al., 2005; Mohamad et al., 2009a; Mohamad et al., 
2009b; Peng et al., 2003) may be unable to produce a smaller 
subset of informative genes because they perform poorly in higher-
dimensional data due to their chromosome representation 
drawback. GASVM-II (Mohamad et al., 2005) method is 
impractical to be used in real applications because a variety 
number of selected genes should be tested in order to obtain the 
near-optimal one. On the contrary, the proposed 3-SGS that pre-
selects a number of genes at the first stage can reduce the data 
dimensionality and produce a gene subset. This subset is then 
optimised by MOGASVM in the second stage of 3-SGS to yield 
near-optimal subsets. Finally, the first K genes appearing most 
frequently are selected as the final selected informative genes (a 
smaller subset) for cancer classification. 

The gap between LOOCV accuracy and test accuracy that 
resulted by 3-SGS was also lower. This small gap shows that the 
risk of the over-fitting problem can be reduced. On the other hand, 
the results of LOOCV accuracy of the related previous works were 
much higher than their test accuracy because they were unable to 
avoid or reduce the risk of over-fitting problems. The previous 
work that used GASVM-based methods (Huang and Chang, 2007) 
did not provide any test accuracy results and thus, the over-fitting 
problem could not be investigated in their works. Over-fitting is a 
major problem on hybrid methods in gene selection and 
classification of microarray data when the classification accuracy 
on training samples, e.g., LOOCV accuracy is much higher than 
the test accuracy. This is also supported by a review paper in Saeys 
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et al. (Saeys et al. 2007) which reported that hybrid methods (e.g., 
GASVM-based methods) confront with the high risk of over-
fitting problems because of the higher-dimensional data. 
 
 
 
 
7.5    CONCLUSIONS 
 
 
In this paper, Filter+MOGASVM has been proposed and tested for 
gene selection on the leukemia microarray data set. Based on the 
experimental results, the performance of Filter+MOGASVM was 
superior to the other experimental methods and related previous 
works. This is due to the fact that the filter method in the first stage 
of the proposed method can pre-select genes and reduce 
dimensionality of data in order to produce a subset of genes. When 
the dimensionality was reduced, the combination of genes and 
complexity of solution spaces were automatically decreased. The 
second stage of Filter+MOGASVM can automatically optimise the 
subset that is yielded by the first stage. This optimisation process is 
done to remove irrelevant and noisy genes, and finally produce a 
smaller (near-optimal) subset of informative genes. Hence, the 
gene selection using Filter+MOGASVM is needed to produce a 
smaller subset of informative genes for better cancer classification 
of microarray data. However, due to the application of a filter 
method in the first stage of Filter+MOGASVM, pre-selecting 
genes is difficult since it is manually done. Even though 
Filter+MOGASVM has classified tumours with higher accuracy, it 
is still not able to completely avoid the over-fitting problem. 
Therefore, a combination between constraint based reasoning 
methods and particle swarm optimisation techniques is recently 
developed to solve the over-fitting problem. 
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8.1    INTRODUCTION  

 
 
Advances in the area of microarray-based gene expression 
analyses have led to a promising future of cancer diagnosis using 
new molecular-based approaches. This microarray technology is 
used to measure the expression levels of thousands of genes 
simultaneously, and finally produce microarray data. A 
comparison between the gene expression levels of cancerous and 
normal tissues can also be done. This comparison is useful to 
select those genes that might anticipate the clinical behaviour of 
cancers. Thus, there is a need to select informative genes that 
contribute to a cancerous state. However, the gene selection 
process poses a major challenge because of the characteristics of 
microarray data: the huge number of genes compared to the small 
number of samples (higher-dimensional data), irrelevant genes, 
and noisy data. 

To overcome the challenge, a gene selection method is 
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used to select a subset of genes that increases the classifier’s 
ability to classify samples more accurately. The gene selection 
method has several advantages such as improving classification 
accuracy, reducing the dimensionality of data, and removing 
irrelevant and noisy genes. 

There are two types of gene selection methods (Li et al., 
2008; Mohamad et al., 2005): if a gene selection method is carried 
out independently from a classifier, it belongs to the filter 
approach; otherwise, it is said to follow a hybrid (wrapper) 
approach. In the early era of microarray analysis, most previous 
works have used the filter approach to select genes because it is 
computationally more efficient than the hybrid approach. 
However, the hybrid approach usually provides greater accuracy 
than the filter approach since the genes are selected by considering 
and optimising relations among genes (Saeys et al., 2007). Until 
now, several hybrid methods, especially a combination between a 
genetic algorithm (GA) and a support vector machine (SVM) 
classifier (GASVM), have been implemented to select informative 
genes (Li et al., 2008; Mohamad et al., 2005; Mohamad et al., 
2009; Peng et al., 2003). The drawbacks of the hybrid methods 
(GASVM-based methods) in the previous works are: 1) intractable 
to efficiently produce a near-optimal subset of informative genes 
when the total number of genes is too large (higher-dimensional 
data) due to the drawback of binary chromosome representation; 2) 
the high risk of over-fitting problems. The over-fitting problem 
that occurred on hybrid methods (e.g., GASVM-based methods) 
was also reported in a review paper in Saeys et al. (Saeys et al., 
2007). 

In order to overcome the limitations of the previous works 
and solve the problems derived from microarray data, we propose 
an iterative approach based on multi-objective GASVM 
(MOGASVM). The ultimate goal of this paper is to automatically 
select a near-optimal (smaller) subset of informative genes that is 
most relevant for the cancer classification. To achieve the goal, we 
adopt the proposed method. It is evaluated on real microarray data 
set, namely lung cancer data set. 
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8.2    THE PROPOSED ITERATIVE APPROACH BASED 
ON MOGASVM (I-GA) 
 
 
In this paper, we propose I-GA to overcome the problems derived 
from the previous works and microarray data (Li et al., 2008; 
Mohamad et al., 2005; Mohamad et al., 2009; Peng et al., 2003). I-
GA is a hybrid approach based on MOGASVM. Details of 
MOGASVM can be found in Mohamad et al. (Mohamad et al. 
2009).  

 
 
 
 

 
 
 

Figure 1 The flowchart of I-GA 
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I-GA in our work differs from the methods in the previous 

works in one major part (Li et al., 2008; Mohamad et al., 2005; 
Mohamad et al., 2009; Peng et al., 2003). The major difference is 
that our proposed method involves an iterative approach, whereas 
the previous works did not use any iterative process for gene 
selection. The general procedure of I-GA is shown in Fig. 1. 
Basically, I-GA repeats the process of MOGASVM to reduce the 
dimensionality of data iteratively. The description of each step is 
explained as follows: 

 
 

Step 1: Starting an iterative process. It is repeated until the 

number of selected genes in the potential subset of the 

current cycle c is equal or less than 1. Every cycle is 

started here. In each cycle of I-GA, a number of selected 

genes are automatically selected by MOGASVM and 

the dimensionality is iteratively reduced. 

Step 2: Starting MOGASVM to find and produce a potential 

subset of genes. 

Step 3: Producing and saving the potential subset of selected 

genes. This potential subset is used for the next cycle 

(cycle c+1) as an input set. The selection of genes in the 

next cycle (cycle c+1) only uses genes in the potential 

subset that is resulted by the previous cycle (cycle c). 

Therefore, the dimensionality and complexity of 

solution spaces can be decreased on a cycle by cycle 

basis. 
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Step 4: A near-optimal subset is selected among the potential 

subsets based on the highest fitness value (the highest 

LOOCV accuracy with the smallest number of selected 

genes). 

Step 5: An iterative process (Steps 1-4) results a near-optimal 

subset of genes. This subset is possible to be found due 

to the dimensionality of data hs been iteratively reduced. 

The near-optimal subset is then used to construct an 

SVM classifier, and the constructed SVM is tested by 

using the test set.  
 
 
8.3    EXPERIMENT 
 
8.3.1    Data Sets 
 
 
The lung microarray data set is used to evaluate I-GA. This data 
set has two classes: malignant pleural mesothelioma (MPM) and 
adenocarcinoma (ADCA). There are 181 samples (31 MPM and 
150 ADCA). The training set contains 32 of them (16 MPM and 16 
ADCA). The rest 149 samples are used for the test set. Each 
sample is described by 12,533 genes. It can be obtained at 
http://chestsurg.org/publications/2002-microarray.aspx. 
 
8.3.3    Experimental Setup 
 
 
Three criteria following their importance are considered to 
evaluate the performances of I-GA and other experimental 
methods: test accuracy, leave-one-out-cross-validation (LOOCV) 
accuracy, and the number of selected genes. Several experiments 
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are conducted 10 times on each data set using I-GA and other 
experimental methods such as GASVM (single-objective), 
MOGASVM, GASVM version 2 (GASVM-II), and SVM. Next, 
an average result of the 10 independent runs is obtained. A near-
optimal subset that produces the highest classification accuracies 
with the possible least number of genes is selected as the best 
subset. 
 
 
 
 
8.3.4    Experimental Results 
 
 
Table 1 shows the classification accuracy for each run using I-GA. 
Interestingly, all runs have achieved 100% LOOCV accuracy. This 
has proven that I-GA has efficiently selected and produced a near-
optimal solution in a solution space. This is due to the fact of its 
ability to automatically reduce the dimensionality and complexity 
of the solution space on a cycle by cycle basis. Therefore, I-GA 
yields the near-optimal gene subset (a smaller subset of 
informative genes with higher classification accuracy) 
successfully. 
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Table 1 Classification accuracies for each run using I-GA 
 
 

Lung Data Set 
Run# 

LOOCV (%) Test (%) #Selected Genes 

1 100 90.60 2 

2 100 95.30 2 

3 100 93.29 3 

4 100 95.30 4 

5 100 85.24 2 

6 100 83.22 3 

7 100 92.62 2 

8 100 97.32 2 

9 100 96.64 2 

10 100 95.30 3 

Average ± S.D 100 ± 0 92.48 ± 4.80 2.5 ± 0.71 

Note: Results of the best subsets shown in shaded cells. S.D. denotes the standard 
deviation, whereas #Selected Genes represent a number of selected genes. 

 
 
 

 
Informative genes in the best gene subset as produced by 

the proposed I-GA and reported in Table 1 are listed in Table 2. 
These informative genes among the thousand of genes may be the 
excellent candidates for clinical and medical investigations. 
Biologists can save much time since they can directly refer to the 
genes that have higher possibility to be useful for cancer diagnosis 
and drug target in the future. 
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Table 2 The list of informative genes in the best gene subsets 
 
 

Data Set Run# Probe-set Name Gene Description 

33328_at ESTs 

Lung 2 
609_f_at 

Highly similar to SMHU1B 
metallothionein 1B [H.sapiens] 

 
 
 
 
According to Table 3, generally, I-GA has outperformed 

the other experimental methods in terms of LOOCV accuracy, test 
accuracy, and the number of selected genes. The gap between 
LOOCV accuracy and test accuracy that resulted by I-GA was also 
lower. This small gap shows that the risk of the over-fitting 
problem can be reduced. Therefore, I-GA is more efficient than 
other experimental methods since it has produced the higher 
classification accuracies, smaller number of selected genes, smaller 
standard deviations, and smaller gap between LOOCV accuracy 
and test accuracy. However, due to the iterative process, I-GA is 
computationally more extensive than other methods. 
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Table 3 The benchmark of the proposed I-GA with the previous related 
methods 

 
 

Lung Data Set (Average ± S.D; The Best) 
Accuracy (%) Method #Selected 

Genes LOOCV Test 

I-GA 
(2.5 ±  

0.71; 2) 
(100 ±  
0; 100) 

(92.48 ±  
4.80; 97.32) 

GASVM-II (Mohamad 
et al., 2005) 

(10 ±  
0; 10) 

(100 ±  
0; 100) 

(59.33 ±  
29.32; 97.32) 

MOGASVM 
(Mohamad et al., 2009) 

(4,418.5 ±  
50.19; 
4,433) 

(75.31 ± 
0.99; 78.13) 

(85.84 ±  
3.97; 93.29) 

GASVM (Mohamad et 
al., 2005) 

(6,267.8 ±  
56.34; 
6,342) 

(75 ±  
0; 75) 

(84.77 ±  
2.53; 87.92) 

SVM (Mohamad et al., 
2005) 

(12,533 ±  

0; 
12,533) 

(6
5.63 ±  

0; 
65.63) 

(85.91 
±  

0; 
85.91) 

Note: The best result shown in shaded cells. S.D. denotes the standard deviation, 
whereas #Selected Genes represent a number of selected genes.   
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8.5    CONCLUSIONS 
 
 
In this paper, I-GA has been proposed and tested for gene selection 
on the lung microarray data set. Based on the experimental results, 
the performance of I-GA was superior to the other experimental 
methods and related previous works. This is due to the fact that I-
GA can automatically reduce the dimensionality of the data on a 
cycle by cycle basis. When the dimensionality was reduced, the 
combination of genes and the complexity of solution spaces can 
also be automatically decreased iteratively. This iterative process 
is done to generate potential gene subsets in higher-dimensional 
data (microarray data), and finally produce a near-optimal subset 
of informative genes. Hence, the gene selection using I-GA is 
needed to produce a near-optimal (smaller) subset of informative 
genes for better cancer classification. Moreover, focusing the 
attention on the informative genes in the best subset may provide 
insights into the mechanisms responsible for the cancer itself. Even 
though I-GA has classified tumours with higher accuracy, it is still 
not able to completely avoid the over-fitting problem. Therefore, a 
combination between a constraint approach and a hybrid approach 
is recently developed to solve the problem. 
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9.1    INTRODUCTION 

 
 
Microarray is a device that can be employed in measuring of 
expression levels of thousands of genes simultaneously. It finally 
produces microarray data that contain useful information of 
genomic, diagnostic, and prognostic for researchers (Knudsen, 
2002). Thus, there is a need to select informative genes that 
contribute to a cancerous state (Mohamad et al., 2009). However, 
the gene selection process poses a major challenge because of the 
following characteristics of microarray data: the huge number of 
genes compared to the small number of samples (higher-
dimensional data), irrelevant genes, and noisy data. To overcome 
this challenge, a gene selection method is used to select a subset of 
genes that increases the classifier’s ability to classify samples more 
accurately (Mohamad et al., 2007). 
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Recently, several methods based on particle swarm optimization 
(PSO) are proposed to select informative genes from microarray 
data (Chuang et al., 2008; Li et al., 2008; Shen et al., 2008). PSO 
is a new evolutionary technique proposed by Kennedy and 
Eberhart (Kennedy and Eberhart, 1995)]. It is motivated from the 
simulation of social behaviour of organisms such as bird flocking 
and fish schooling. Shen et al. (Shen et al. 2008) have proposed a 
hybrid of PSO and tabu search approaches for gene selection. 
However, the results obtained by using the hybrid method are less 
significant because the application of tabu approaches in PSO is 
unable to search a near-optimal solution in search spaces. Next, an 
improved binary PSO have been proposed by Chuang et al. 
(Chuang et al., 2008). This approach produced 100% classification 
accuracy in many data sets, but it used a higher number of selected 
genes to achieve the higher accuracy. It uses the higher number 
because of all global best particles are reset to the same position 
when their fitness values do not change after three consecutive 
iterations. Li et al. (Li et al., 2008) have introduced a hybrid of 
PSO and GA for the same purpose. Unfortunately, the accuracy 
result is still not high and many genes are selected for cancer 
classification since there is no direct probability relation between 
genetic algorithms (GA) and PSO. Generally, the proposed 
methods that based on PSO (Chuang et al., 2008; Li et al., 2008; 
Shen et al., 2008) are intractable to efficiently produce a near-
optimal (smaller) subset of informative genes for higher 
classification accuracy. This is mainly because the total number of 
genes in microarray data is too large (higher-dimensional data). 
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9.2    METHOD 
 
 
 
 
9.2.1    A Standard Version of Binary PSO (BPSO) 
 
 
Binary PSO (BPSO) is initialised with a population of particles. At 
each iteration, all particles move in a problem space to find the 
optimal solution. A particle represents a potential solution (gene 
subset) in an n-dimensional space (Kennedy and Eberhart, 1997). 
Each particle has position and velocity vectors for directing its 
movement. The position vector and velocity vector of the ith 
particle in the n-dimension can be represented as 

1 2( , ,..., )n
i i i iX x x x= and 1 2( , ,..., )n

i i i iV v v v= , respectively, where d
ix  is a 

binary bit, i=1,2,..m (m is the total number of particles); d=1,2,..n 
(n is the dimension of data). 

In gene selection, the vector of particle positions is 
represented by a binary bit string of length n, where n is the total 
number of genes. Each vector denotes a gene subset. If the value of 
the bit is 1, it means that the corresponding gene is selected. 
Otherwise, the value of 0 means that the corresponding gene is not 
selected. Each particle in a generation updates its own position and 
velocity according to the following equations: 

 
 

1 1 2 2* *( ) *( )d d d d d d
i i i i iv w v c r pbest x c r gbest x= + − + −  (Eq. 1) 

1( )
1

d
i

d
i v

Sig v
e−

=
+

  
(Eq. 2) 

if 3( ) ,d
iSig v r>   then 1;d

ix =   else  0.d
ix =  (Eq. 3) 
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where w is the inertia weight. 1c  and 2c  are the acceleration 
constants in the interval [0,2]. 1 2, ,r r  and 3r  are random values in 
the range [0,1]. 1 2( , ,..., )n

i i i iPbest pbest pbest pbest=  and 
1 2( , ,..., )nGbest gbest gbest gbest=  represent the best previous 

position of the ith particle and the global best position of the 
swarm (all particles), respectively. ( )d

iSig v  is a sigmoid function 
where  ( ) [0,1].d

iSig v ∈  
 
 
 
 
9.2.2    An Improved Binary PSO (IPSO) 
 
 
In this paper, we propose IPSO for gene selection. It is introduced 
to solve the problems derived from the microarray data, overcome 
the limitation of the related previous works (Chuang et al., 2008; 
Li et al., 2008; Shen et al., 2008), and inline with the diagnostic 
goal. IPSO in our work differs from the methods in the previous 
works in one major part. The major difference is that we modify 
the existing rule (Eq. 3) for the position update, whereas the 
previous works used a standard rule (Eq. 3). Firstly, we analyse the 
sigmoid function (Eq. 2). This function represents a probability for 

d
ix  to be 0 or 1 ( ( 0)d

iP x =  or ( 1)d
iP x = ). It has the properties as 

follows: 
 

lim ( ) 1
d
i

d
iv

Sig v
→∞

=    (Eq. 4) 

 

lim ( ) 0
d
i

d
iv

Sig v
→−∞

=  

 
 

(Eq. 5) 
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if  0d
iv =   then  ( 1) 0.5d

iP x = =   or  (0) 0.5Sig =  (Eq. 6) 

 
 

if  0d
iv <   then  ( 1) 0.5d

iP x = <   or  ( 0) 0.5d
iSig v < <  

 
 

(Eq. 7) 

 
 

if  0d
iv >   then  ( 1) 0.5d

iP x = >   or  ( 0) 0.5d
iSig v > >  

 
 

(Eq. 8) 

 
 

( 0) 1 ( 1)d d
i iP x P x= = − =  

  (Eq. 9) 

 
Also note that the value of d

ix  can change even if the value 
of d

iv does not change, due to the random number 3r  in the Eq. 3. 
To propose IPSO, the following approaches are suggested: 

 
 

9.2.3    Modifying the existing rule of position update (Eq. 3) 
 
 
In order to support the diagnostic goal that needs the least number 
of genes for accurate cancer classification, the rule of position 
update is simple modified as follows: 
 
 

if  3( ) ,iS V r>   then  0;d
ix =   else  1d

ix =  (Eq. 10) 
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The value of particle velocity, iV  in the modified formula 
(Eq. 10) represents the whole of elements of a particle velocity 
vector, whereas the standard formula represents a single element. 
Moreover, iV  is also a positive real number. Based on this positive 
velocity value, Eq. 2, and Eq. 10, the possibility of 1d

ix =  is too 
small. This situation causes a smaller number of genes is selected 
in order to produce a near-optimal gene subset from higher-
dimensional data (microarray data). 

 
 

9.2.4    A Simple Modification of the Formula of Velocity 
Update (Eq. 1) 
 
 
In this formula, the calculation of the value of velocity is 
completely based on the whole of bits of a particle position vector, 
whereas the original formula (Eq. 1) is based on a single bit. 
 
 

1 1 2 2* *( ) *( )i i i i iV w V c r Pbest X c r Gbest X= + − + −  (Eq. 11) 

 
 
9.2.5    Calculation for the distance of two positions 
 
 
The number of different bits between two particles relates to the 
difference between their positions. For example, 

[0011101000]Gbest =  and [1100110100].iX = The difference 
between Gbest  and iX  is [ 1 1110 11 100].− − − −  A value of 1 
indicates that compared with the best position, this bit (gene) 
should be selected, but it is not selected, which may decrease 
classification quality and lead to a lower fitness value. In contrast, 
a value of -1 indicates that, compared with the best position, this 
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bit should not be selected, but it is selected. The selection of 
irrelevant genes makes the length of the subset longer and leads to 
a lower fitness value. Assume that the number of 1 is a, whereas 
the number of -1 is b. We use the absolute value of ( ),a b−  | |a b−  
to express the distance between two positions. In this example, 
| | | 3 4 | 1,a b− = − =  so the distance between Gbest  and iX  is 

1.iGbest X− =  
 
 
9.2.5    Fitness function 
 
 
A fitness value of a particle (a gene subset) is calculated as 
follows: 
 
 

1 2( ) ( ) ( ( ( )) / )i i ifitness X w A X w M R X M= × + −  (Eq. 12) 

 
 
in which [ ]( ) 0,1iA X ∈ is leave-one-out-cross-validation (LOOCV) 
accuracy on the training set using the only genes in .iX  This 
accuracy is provided by support vector machine classifiers (SVM). 

( )iR X  is the number of selected genes in .iX M  is the total 
number of genes for each sample in the training set. 1w  and 2w are 
two weights. 
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9.3    EXPERIMENT 
 
 
9.3.1    Data Sets and Experimental Setup 
 
 
A real microarray data set is used to evaluate IPSO, namely the 
colon cancer data set. The colon cancer data set, there are 62 
samples. It can be obtained at 
http://chestsurg.org/publications/2002-microarray.aspx.  

Firstly, we applied the gain ratio technique to pre-select 
500-top-ranked genes. These genes are then used by IPSO in the 
next process. In this paper, LOOCV is used to measure 
classification accuracy of a gene subset that produced by IPSO. 
The implementation of LOOCV is in exactly the same way as did 
by Chuang et al. (Chuang et al. 2008). Two criteria following their 
importance are considered to evaluate the performance of IPSO: 
LOOCV accuracy and the number of selected genes. A near-
optimal subset that produces the highest classification accuracy 
with the smallest number of genes is selected as the best subset. 
Several experiments are independently conducted 10 times on each 
data set using IPSO and the standard version of binary PSO 
(BPSO). Next, an average result of the 10 independent runs is 
obtained. 

 
 

9.3.2    Experimental Results 
 
 
Based on the standard deviations of classification accuracy and the 
number of selected genes in Table 1, results that produced by IPSO 
were nearly consistent on the colon data set. Interestingly, all runs 
have consistently achieved more than 93% LOOCV accuracy with 
less than six selected genes. This means that IPSO has efficiently 
selected and produced a near-optimal gene subset from higher-
dimensional data (microarray data). 
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Table 1 Experimental results for each run using IPSO 
 
 

Colon Data Set 
Run# Classification Accuracy 

(%) #Selected Genes 

1 93.55 5 
2 93.55 5 
3 96.77 4 
4 93.55 5 
5 93.55 4 
6 95.16 5 
7 93.55 4 
8 95.16 4 
9 93.55 5 
10 93.55 4 

Average ± S.D 94.19 ± 1.13 4.5 ± 0.53 
Note: Results of the best subsets shown in shaded cells. S.D. denotes 
the standard deviation, whereas #Selected Genes and Run# represent 
a number of selected genes and a run number, respectively. 

 
 
Figure 1 shows that the average of fitness values of IPSO 

increases dramatically after a few generations. The higher average 
produces a smaller subset of selected genes with higher 
classification rate. The condition of velocity that should always be 
positive real numbers provided in the initialisation method, and the 
new rule of position update provoke the early convergence of 
IPSO. In contrast, the average of fitness values of BPSO was no 
improvement until the last generation. 

 
 



An Improved Binary PSO Algorithm 141 

 

Colon Data Set

0.78
0.8

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96

0 50 100 150 200 250 300

Generation

Fi
tn

es
s IPSO

PSO

 
Figure 1 A relation between the average of fitness values (10 runs on 

average) and the number of generations for IPSO and BPSO 
 
 
 
 

According to the Table 2, overall, it is worthwhile to 
mention that the classification accuracy and the number of selected 
genes of IPSO are superior to BPSO in terms of the best, average, 
and standard deviation results. 
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Table 2 A comparison in terms of statistical results of the proposed IPSO 
and BPSO on the colon data set 

 
 

Classfication Accuracy 
(%) #Selected Genes Metho

d The 
Best Average S.D The 

Best Average S.D 

IPSO 96.77 94.19 1.1
3 4 4.50 0.53 

BPSO 87.10 86.94 0.5
1 214 231 10.1

9 
Note: The best result of each data set shown in shaded cells. S.D. 
denotes the standard deviation, whereas #Selected Genes represents 
the number of selected genes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



An Improved Binary PSO Algorithm 143 

 

Table 3 A comparison between our method (IPSO) and other previous 
methods based on PSO on the colon data set 

 
 

Method Classfication Accuracy 
(%) #Selected Genes 

IPSO (94.19) (4.50) 
PSOGA 
(Li et al.  
2008) 

(88.7) (16.8) 

PSOTS 
(Shen et al. 
2008) 

(93.55) (8) 

Note: The results of the best subsets shown in shaded cells. ‘-‘ 
means that a result is not reported in the related previous work. A 
result in ‘( )’ denotes an average result. #Selected Genes represents 
a number of selected genes.  
PSOTS = A hybrid of PSO and tabu search 
PSOGA = A hybrid of PSO and GA. 

 
 
 
 
For an objective comparison, we compare our work with 

related previous works that used PSO in their methods (Chuang et 
al., 2008; Li et al., 2008; Shen et al., 2008). It is shown in Table 3. 
The averages of LOOCV accuracy and the number of selected 
genes of our work were 94.19% and 4.5 selected genes, 
respectively. The latest previous work also came up with the a 
higher LOOCV result, but they used more than eight genes to 
obtain the result (Shen et al., 2008). Overall, this work has 
outperformed the related previous works in terms of LOOCV 
accuracy and the number of selected genes. 
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According to Fig. 1 and Tables 1-3, IPSO is reliable for 
gene selection since it has produced the near-optimal solution from 
microarray data. This is due to the modification of position update 
that causes the selection of a smaller number of genes. Therefore, 
IPSO yields the optimal gene subset (a smaller subset of 
informative genes with higher classification accuracy) for colon 
cancer classification.  
 
 
 
 
9.4    CONCLUSIONS 
 
 
In this paper, IPSO has been proposed and tested for gene selection 
on the colon microarray data set. Based on the experimental 
results, the performance of IPSO was superior to the standard 
version of binary PSO and related previous works. This is due to 
the fact that the modified rule of position update in IPSO causes a 
smaller number of genes is selected in each iterative, and finally 
produce a near-optimal subset of genes for better cancer 
classification. For future works, a combination between a 
constraint approach and PSO is proposed to increase the 
classification accuracy. 
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10.1    INTRODUCTION 

 
 
Protein structure similarity measure is a very important tool to 
highlight the similarities and differences between protein 
structures. It has wide applications in protein structure analysis and 
classification, structure-based drug design, phylogenetic analysis 
and protein structure predictions which have attracted tremendous 
attention and have been broadly studied within the past decade. It 
is known that the protein structure highly indicates its functionality 
and the potential interactions with the other protein structures. For 
two given proteins, if the sequences are similar then their 
evolutionary relationship is obvious. Otherwise, the 3D-structure 
of proteins, due to structural and functional behavior placed on 
them, are much more evident than protein sequences. As a result, 
the structural similarity of proteins should be used to distinguish 
the differences among various proteins functionalities and their 
evolutionary relationships. Whenever a new protein structure is 
discovered, it is desired to find the structural similar proteins to 
predict its functions and properties. 

The protein structure similarity measurement has two main 
problems: Complexity and Curse of dimensionality (Aghili et al., 
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2005). In the view of complexity, the structure comparison 
problem is NP-hard and no exact solution exists for structural 
alignment of proteins. There are several algorithms proposed for 
optimizing the results, however, none of them can guarantee 
optimality within any given precision. Rapidly growing of the 
number of discovered protein structures, also, provides the 
dimensionality problem. The Protein Data Bank (PDB), currently, 
contains 54,956 known protein structure. The increasing number of 
entries in the PDB requires more efficient methods to search and 
find similar structural proteins. 

Many protein structure comparison, retrieval and 
classification methods have been proposed that are divided into 
two main categories; sequence comparison and 3D structure 
comparison (Ohkawa et al., 1999). The former can be considered 
as a sequence alignment problem of amino acids in the primary 
structure of the proteins. The latter is structure matching process 
based on three-dimensional structure of the proteins. The main 
goal of protein structure comparison is to superimpose two 
proteins over the maximum number of residues (amino acids) with 
a minimal distance between the matched pairs. 

Several approaches to protein structure alignment have 
been explored over the past decade. The proposed techniques can 
be categorized into fine-grain and coarse-grain approaches 
(Chionh et al., 2003). Fine-grain approaches, firstly, operate at the 
SSElevel, and then align two proteins in amino acid level for 
detailed alignment. Examples of these approaches include 
comparison of distance matrices (DALI) (Holm and Sander, 1993), 
vector alignment of SSEs (VAST) (Gibrat et al., 1997), 
combinatorial extension of alignment path (CE) (Shindyalov and 
Bourne, 1998) and Secondary Structure Matching (SSM) 
(Krissinel and Henrick, 2004). The methods of fine-grain approach 
usually have high accuracy but they are slow. Coarse-grain 
approaches, apply only SSEs as the basic elements. TOPSCAN 
(Martin, 2000) and SCALE (Chionh et al., 2003) are two examples 
of these approaches that are much faster but less accurate.   

Despite the maturity of the proposed methods, the study for 
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designing new similarity measures is still an active research area. 
Due to the continuous growth of protein databases and discover of 
new unknown proteins, the interest is renewed for designing 
alternative effective and reliable algorithms. Furthermore, another 
motivation of equal importance for establishment of similarity 
measure is proposition of a method without need to parameter 
setting by the user. The classical similarity approaches such as 
dynamic programming often needs a set of optional parameters to 
reach the best possible similarity. 

Language modeling and its algorithms is a hybrid research 
area in protein structure analysis. The amino acid sequence of a 
protein consists of 20 distinct symbols of alphabet that can be 
treated as text written in a universal language. The mapping of a 
protein sequence to its structure, functional and biological role is 
similar to the mapping of words to their semantic meaning in 
natural languages. Recently (Biological Language Conference, 
2003), it was suggested that this similarity motivates to apply 
statistical language modeling and text classification techniques in 
biological sequences analyzing. Within this hybrid research area, it 
is believed that the identification of Grammar/Syntax rules could 
reveal entities/relations of biological and medical sciences (Bogan-
Marta et al., 2005). 

Here a novel method for protein structural similarity 
measurement based on n-gram text modeling is proposed. The 
method is inspired by the successful use of entropy concept for 
information retrieval in the field of statistical language modeling 
(Young and Bloothooft, 1997, Manning, 2000). N-gram modeling 
also stands out as superior to any formal linguistics approach and 
has gained high popularity due to its simplicity (Bogan-Marta et 
al., 2005). In a very first attempt to fuse theoretical concepts from 
computational linguistics within the field of bioinformatics, a new 
general strategy for measuring similarity between primary 
sequences of proteins was introduced (Bogan-Marta et al., 2005). 
In this strategy, specifically, n-gram modeling is first applied to 
each protein sequence and cross-entropy measures are then 
employed to compare pairs of proteins. Based on the fruitful 
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results of this attempt in using n-gram modeling, we now extend 
this approach to protein structural similarity measurement.  
The rest of this paper is organized as follows. The next section, 
describes the protein structure representation in sequence form. In 
section 3, the n-gram modeling technique is discussed. Section 4 
introduces a superposition task to find an overlap between two 
protein structures. Section 5 describes the novel method for protein 
structural similarity measurement based on n-gram modeling. 
Finally, the experiments results are represented and discussed in 
section 6. 
 
 
 
 
10.2    PROTEIN STRUCTURE MODELING IN STRING 
FORM 
 
 
Various kinds of language models can be used to capture different 
aspects of regularities of natural language. A variety of these 
alternative methods has already used for expressing similarity 
between biological sequences. Development of the language 
models to measure structural similarity of proteins needs protein 
3D structure modeling in string form. 

There are various databases containing structure details of 
proteins. The Protein Data Bank (PDB) is the worldwide 
repository for the processing and distribution of three dimensional 
biological molecular structure data. From the PDB file of each 
protein, the position of each residue in 3D space can be extracted 
using the 3D coordinates of Cα atom of each amino acid. Hence the 
3D structure of a protein can be modeled in a sequence form by 
labeling the position of each residue with respect to the position of 
its previous residue in 3D coordinate. For labeling each residue i, 
let us suppose that the position of residue i-1 is centered at the 
origin of the spatial coordinate. Thus the position of the residue i 
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can be labeled according to its spatial coordinates and can be 
represented with a specially defined alphabet. Figure1 shows 
labels defined for 18 different positions of residue i with respect to 
residue i-1. To prevent the ambiguity, the other 8 labels are not 
shown in the figure. Table 1 represents 26 letters used for 26 
position states in spatial coordinate corresponding to its previous 
residue. In this table, all lengths are expressed in Angstrom. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Accordingly, the protein structure can be represented in 

two strings sequences: the first string represents amino acids 
sequence and the second string represents the position label of 
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Figure 1 3D-space and labels defined for different position of residue 

i with respect to residue i-1 in the origin of the coordinate 
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each amino acid, according to table 1. From now onwards, we call 
the second sequence as relative residue position sequence. Figure2 
represents the two sequences extracted for 1CRB chain. Having 
reduced the protein structure to a sequence of characters, we can 
apply language modeling techniques in protein structure similarity 
measurement problem. 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   1   PVDFNGYWKM LSNENFEEYL RALDVNVALR KIANLLKPDK EIVQDGDHMI 
       zwtwxsugu yuauktspjt kvhsqsmqzy wxzywxzlzv ximieuvohh 
 
   51  IRTLSTFRNY IMDFQVGKEF EEDLTGIDDR KCMTTVSWDG DKLQCVQKGE 
       hkwscuvzvz imuyzustot xtnowiptvj ryzynwxhqz uvsppovssy 
 
   101 KEGRGWTQWI EGDELHLEMR AEGVTCKQVF KKVH 
       yrxnmzxrqy xckluououo uywnqrxnxn xqh 

 
 

Figure 2 Two sequences extracted for the 1CRB protein chain 
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10.3    TEXT SIMILARITY MEASUREMENT USING N-
GRAM MODELING 
 
 
Several kinds of language modeling techniques have been 
developed to capture different aspects of regularities of textual 
data. Markov chains are the more fundamental concept used in 
language modeling. In this approach, the dependency of the 
conditional probability of existing words Wk at a position k in a 
given text is depended only upon its immediate n predecessor 
words Wk-n ,… ,Wk-1. The resulting stochastic models, usually 
called as n-grams, widely used in formal linguistic approaches and 
has gained high popularity due to its simplicity (Bogan-Marta et 
al., 2005). Entropy is also a useful concept in the quantification of 
information in a textual sequence and making connection with 
probabilistic language modeling. It can also be applied for 

Table 1 Letters defined for labeling 3D position of each residue 
with respect to its previous residue. 

((x2,y2,z2) is the position of current residue and 
(x1,y1,z1) is the position of previous residue) 

 
 

Conditions for x,y,z Symbol Conditions for x,y,z Symbol 

x2-x1>0, |y2-y1|<1, |z2-z1|<1 ‘a’ x2-x1<0, |y2-y1|<1, z2-z1<0 ‘n’ 
x2-x1<0, |y2-y1|<1, |z2-z1|<1 ‘b’ x2-x1>0, y2-y1>0, |z2-z1|<1 ‘o’ 
|x2-x1|<1, y2-y1>0, |z2-z1|<1 ‘c’ x2-x1>0, y2-y1<0, |z2-z1|<1 ‘p’ 
|x2-x1|<1, y2-y1<0, |z2-z1|<1 ‘d’ x2-x1<0, y2-y1>0, |z2-z1|<1 ‘q’ 
|x2-x1|<1, |y2-y1|<1, z2-z1>0 ‘e’ x2-x1<0, y2-y1<0, |z2-z1|<1 ‘r’ 
|x2-x1|<1, |y2-y1|<1, z2-z1<0 ‘f’ x2-x1>0, y2-y1>0, z2-z1>0 ‘s’ 
|x2-x1|<1, y2-y1>0, z2-z1>0 ‘g’ x2-x1>0, y2-y1>0, z2-z1<0 ‘t’ 
|x2-x1|<1, y2-y1>0, z2-z1<0 ‘h’ x2-x1>0, y2-y1<0, z2-z1>0 ‘u’ 
|x2-x1|<1, y2-y1<0, z2-z1>0 ‘i’ x2-x1>0, y2-y1<0, z2-z1<0 ‘v’ 
|x2-x1|<1, y2-y1<0, z2-z1<0 ‘j’ x2-x1<0, y2-y1>0, z2-z1>0 ‘w’ 
x2-x1>0, |y2-y1|<1, z2-z1>0 ‘k’ x2-x1<0, y2-y1>0, z2-z1<0 ‘x’ 
x2-x1>0, |y2-y1|<1, z2-z1<0 ‘l’ x2-x1<0, y2-y1<0, z2-z1>0 ‘y’ 
x2-x1<0, |y2-y1|<1, z2-z1>0 ‘m’ x2-x1<0, y2-y1<0, z2-z1<0 ‘z’ 
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obtaining how much information is extracted by a special 
grammar, how a grammar matches a language, etc. A specific 
definition of entropy as described in (Bogan-Marta et al., 2005), 
when a written word sequence W={W1,W2,…,Wk,…} is treated as 
an n-gram, is represented in the following formula: 

 
 

       H(X) = -Σw* p(wi
n) log2 p(wi+n|wi

n-1) 
                = -(1/N) Σw* Count(wi

n) log2 p(wi+n|wi
n-1)            (Eq. 1) 

 
       

where the variable X is the n-gram wi
n={wi,wi+1,…,wi+n-1}, the 

summation runs over all the possible n-length combinations of 
consecutive w

i
, (i.e W*={{w1,w2,…,wn},{w2,w3,…,wn+1},…}), 

Count(wi
n) is the number of occurrences of n-gram wi

n and N is the 
total number of n-grams in the sequence. The second term in the 
summation is the conditional probability that relates the n-th 
element of an n-gram with the preceding n-1 elements and can be 
estimated by a counting procedure. 
 
 
                P(wi+n|wi

n-1)=Count(wi+n)/Count(wi
n-1)                   (Eq. 2) 

 
 

As described in (Bogan-Marta et al., 2005), the above 
entropy estimation indicates how a specific protein sequence is 
well predicted by the corresponding model. In the similarity 
measuring task, the direct comparison of the two proteins could not 
be facilitated by applying this measure to two distinct proteins. 
Cross-entropy measure is the relevant tool for this kind of 
comparison, where the n-gram model is, first, built based on the 
word-counts of one protein sequence and then the predictability, of 
the second sequence, by the model is measured via the formula: 
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           H(X, PM) = -Σall w* p(wi
n) log2 PM (wi+n|wi

n-1)            (Eq. 3) 
 
 

The term p(wi
n) refers to the reference protein sequence and results 

from counting the words of that specific protein. The term 
PM(wi+n|wi

n-1) refers to the sequence which the model has to be 
estimated (it results from counting the words of this protein). 
Variable X ranges over all the n-grams of the reference protein 
sequence (Bogan-Marta et al., 2005). 

The crux of the applied method in (Bogan-Marta et al., 
2005) is that both the unknown query-protein and each protein in a 
given database are represented via n-gram model and the cross-
entropy measure is utilized to compare their representations. 
Direct method, a typical implementation of this idea, firstly, 
computes the perfect score PS from (3) using the query-protein 
both as reference and model sequence. Then the method uses (3) in 
the computation of the similarity score between the query-protein 
as the reference protein and each protein from the database as the 
model sequence. Therefore, N similarities are computed and 
applied in the calculation of the absolute differences via the 
formula: 

 
 

                               D(Sq, Si)=|H(Xq, PMi)-PS|                      (Eq. 
4) 
 
 
Finally, the most similar protein in the database to the query-
protein is easily identified as the one having the lowest D(Sq,Si). In 
another implementation of the idea, called Alternating method, the 
only difference with respect to the Direct method is that the 
protein with the shortest sequence plays the role of reference 
sequence when comparing the query protein with each database-
protein. This was devised in order to cope with the more different 
length of the proteins to be compared. 
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10.4    SECONDARY STRUCTURE SUPERPOSITION 
 
 
The application of any one of the structural alignment algorithms 
requires protein structure representation in some coordinate 
independent space to make structures comparable. One possible 
representation is the so-called distance matrix, which is a two-
dimensional matrix containing all pairwise distances between all 
Cα atoms of the protein backbone (Chi et al., 2004). This can also 
be represented as a set of overlapping sub-matrices spanning only 
fragments of the protein. Another possible representation is the 
reduction of the protein structure to the level of secondary 
structure elements (SSEs), which can be represented as vectors and 
can carry additional information about relationships to other SSEs, 
as well as about certain biophysical properties (Singh and Brutlag, 
1997, Krissinel and Henrick, 2004, Martin, 2000). In the case of 
distance matrix representation, the comparison algorithm breaks 
down the distance matrices into regions of overlap, which are then 
again combined if there is overlap between adjacent fragments, 
thereby extending the alignment. If the SSE representation is 
chosen, there are several possibilities. One can search for the 
maximum ensemble of equivalent SSE pairs using algorithms to 
solve the maximum clique problem from graph theory. Other 
approaches employ dynamic programming or combinatorial 
simulated annealing (Krissinel and Henrick, 2004). 

The proposed method in this paper needs an initial 
superposition between two proteins before encoding their structure 
in sequence form. In this way, the method represents the secondary 
structure elements of proteins as vectors and obtains a match for 
aligned vector pairs of query and reference proteins by computing 
angles between them and rotating reference protein in 3D 
coordinates. The secondary structures that represented in vector 
form are α-helices and β-strands and all types of helices (α, π, 3-
10, and left handed helices) are grouped together in one class. It 
can easily be altered to use special classes for each type of helix. 
The SSEs information can be extracted from PDB file of each 
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protein. Following equations are used to compute the beginning 
and end points of the helix and strand vectors respectively where 
indices i and j denote the first and last residues in the SSE (Singh 
and Brutlag, 1997), (Krissinel and Henrick, 2004): 

 
 

                  rb = (0.74ri+ ri+1+ ri+2+ 0.74ri+3) / 3.48, 
                  re = (0.74rj-3+ rj-2+ rj-1+ 0.74rj) / 3.48,               (Eq. 5) 
                                  rb = (ri+ ri+1) / 2, 
                                  re = (rj-1+ rj) / 2                                   (Eq. 6) 

 
 

and then the SSEs are represented by the vectors rSSE=rb-re. 
Helices of length shorter than five residues and strands of length 
shorter than three residues are neglected (Singh and Brutlag, 
1997), (Krissinel and Henrick, 2004). 

Having reduced the two query and reference proteins to a 
set of either Helix or Strand vectors, the method now uses a 
dynamic programming algorithm to compare these two sets of 
vectors and find the best matched pairs. The scoring functions used 
in the algorithm are applied on the SSE type of vector, order of the 
vector in the protein and angles between matched vectors in 3D 
coordinates.  
Finally, the method computes angles between each pair of matched 
vectors of query and reference protein and achieves a rotation 
angle and direction in polar coordinates. Hence, a relevant 
rotation-translation matrix is produced to achieve an initial overlap 
between two query and reference protein. 
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10.5    STRUCTURAL SIMILARITY MEASUREMENT 
USING TEXT MODELING APPROACH 

 
 
Having introduced the above procedure for protein 

structure modeling in string form and the previous activities on n-
gram modeling, a new approach for 3D-structure of proteins 
similarity measurement is proposed. This method works based on 
the above n-gram similarity measure over protein structure 
modeled in sequence form as discussed in section 2. The similarity 
measurement process uses cross-entropy formula to compute the 
absolute entropy (4) between each pair of query and reference 
protein relative residue position sequences and find the most 
structural similar protein in the given database to the query-
protein. 

In this new approach, a modification to the n-gram method 
introduced in (Bogan-Marta et al., 2005) is done. In the counting 
process of the n-gram method described in (Bogan-Marta et al., 
2005), when all of the words have been counted once, the 
probability by PM (wi+n|wi

n-1) become zero, creating problems in 
the calculation of ),( MPXH . The new method uses a corrected 
entropy measurement formula: 

 
 

          H(X, PM) = -Σall w* p(wi
n) log2 (2+PM (wi+n|wi

n-1))      (Eq. 7) 
 
 

Thus, if the estimated term PM (wi+n|wi
n-1) is zero, the result of 

logarithm function will be 1 and the value of p(wi
n) term will be 

considered in the summation formula. 
The procedure described above for similarity measurement 

has been implemented in the following steps:  
 
 

1) Compute the cross-entropy from (7) for the relative residue 
position sequence of query-protein. 
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2) For each reference protein in the given database, apply 
steps 2-1, 2-2 and 2-3. 
2-1) Find the matched pairs of SSE vectors with query 

protein and compute the rotation-translation matrix as 
discussed in Section 4. Then, rotate and translate the 
reference protein to extract the new coordinates of 
atoms. Then, make the relative residue position 
sequence of protein as described in section 2.  

2-2) Apply the cross-entropy measure from the (7) to 
compute the absolute differences via (4), as discussed 
in section 3.  

2-3) For every atom in the query protein, find the nearest 
atom (within a threshold distance) on the reference 
protein and transform the query protein to minimize the 
RMSD between these pairs of atoms. 

3) Therefore an array of N extracted similarity is created, 
where each element of the array contains Dt(Sq, Si) 
computed via (4) for the relative residue position sequence. 
Arrange the array according to Dt. 

 
 

The input of the algorithm is the unknown query-protein 
structure modeled in sequence form and a protein database 
contains the PDB file of each protein. Furthermore, the secondary 
structure of each protein is represented in collection of some 
vectors as described in section 4 and used as the input. 

 
 

10.6    EXPERIMENTAL RESULTS 
 

In order to assess the accuracy and efficiency of the 
proposed method, some experiments were performed. Firstly, to 
measure the accuracy of the method, 53 proteins are selected from 
the SCOP database belonging to All Alpha, All Beta, Alpha and 
Beta and Alpha+Beta categories with less than 40% sequence 
identity, having more than 7 SSEs. The selected proteins are 
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shown in Table 2. The 3D structure of each selected protein is 
modeled by the two sequences and vector representation of its 
secondary structure elements, as described above. 

Figure 3 represents the matrices containing all the 
measured dissimilarities D(Si, Sj), i, j = 1, 2, …, N for each pair of 
proteins i, j in the database as grey scale images for the Direct and 
Alternating methods of three different n-gram models. In the 
figure, the first and second sequence indicates primary sequence 
and relative residue position sequence. In each matrix the vertical 
and horizontal edges represent the query and reference proteins 
respectively. The white and black colors in the output matrices 
correspond to the maximum and minimum distances between each 
pair of proteins. As described in (Bogan-Marta et al., 2005), the 
ideal spatial outlay is a white matrix with only a black diagonal 
segment. Therefore, it is clearly evident from figure3 that 4-gram 
modeling which uses Alternating Method has a better performance 
in order to distinguish similar and dissimilar proteins. On the other 
hand, as seen from the figure, 3-gram modeling outputs represent 
highly similar, less similar and dissimilar proteins and it is much 
more informative than 4-gram. Furthermore, figure 3 shows that 
the results obtained from second sequence are more informative on 
similarity measurement than the primary sequence. 
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Figure 3 Gray-scale representation of the output Dp and Dt matrices 
containing all the possible pairwise dissimilarities for 53 proteins in the 

database using Direct and Alternating method 
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Table 2 Dataset used (53 proteins) 
 

PDB Code All Alpha (12 protein) 
1eca, 2hbg, 2lhb Globin-like 
1bbh Ferritin-like 
1rtp, 1scm, 2sas, 
2scp 

EF Hand-Like 

2gst, 1glp Gluthathione S-transferases, C-terminal 
domain 

1cpt, 1phg Cytochrome P450 
PDB Code All Beta (16 protein) 
1cd8, 1cid, 1tlk, 
1cfb, 2mcm 

Immunoglobulin-like beta-sandwich 

2cas Viral coat and capsid proteins 
1tie, 1hce beta-Trefoil 
1arb, 2sga, 4sgb, 
3rp2 

Trypsin-like serine proteases 

1hbq, 1ftp, 1icn, 
1crb 

Lipocalins 

PDB Code Alpha&Beta (21 protein) 
1byb, 1ghr, 2acq, 
2mnr, 4enl 

beta/alpha (TIM)-barrel 

3cox FAD/NAD(P)-binding domain 
3chy, 2fcr, 2fx2 Flavodoxin-like 
1ldm NAD(P)-binding, Rossmann-fold 

domains 
1ede, 1tca, 3tgl alpha/beta-Hydrolases 
5p21 P-loop containing small nucleotide 

triphosphate hydrolases 
2ctc, 1amp Phosphorylase/hydrolase-like 
1gca, 2lbp Periplasmic binding protein-like I 
1omp Periplasmic binding protein-like II 
3cla, 1eaf CoA-dependent acetyltransferases 
PDB Code Alpha+Beta (4 protein) 
7rsa, 1onc Ribonuclease A-like 
1frd beta-Grasp 
2pnb SH2-like 
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In order to compare the accuracy and efficiency of the 
method with other publicly available protein structure similarity 
servers, two servers were selected, namely Combinatorial 
Extension (CE) and Secondary Structure Matching (SSM). It is 
believed that none of the scores provides an absolutely reliable 
measure of structural similarity or statistical significance, and 
therefore the final decision of accepting a match should be 
reserved for the user (Krissinel and Henrick, 2004). Hereby, the 
comparison process is done by calculating three values: RMSD, 
Nalign and Q-score. An intuitive understanding of structural 
similarity suggests contradictory requirements of achieving a 
lower RMSD and a higher number of aligned residues Nalign. This 
contradiction may be eliminated, in the first approximation, by a 
score that represents a ratio of Nalign and the RMSD. Therefore, the 
following function is suggested (Krissinel and Henrick, 2004): 

 
 

                   Q =Nalign
2/((1+(RMSD/R0)2)N1N2)                    (Eq. 8) 

 
 

R0 is an empirical parameter (chosen at 3 A۫) that measures the 
relative significance of RMSD and Nalign. N1 and N2 are the 
number of residues in the aligned structures. As seen from the 
above formula, Q reaches 1 only for identical structures 
(Nalign=N1=N2 and R.M.S.D=0), and decreases to zero with 
decreasing similarity (increasing RMSD or/and decreasing Nalign). 
Therefore, the higher Q, is the better, in general, the alignment 
(Krissinel and Henrick, 2004). 

Figure 4 represents the results of comparing the n-gram 
based method with SSM and CE methods for the example of 
protein chain 1sar:A. The experiment is done over whole PDB 
chains by SSM and CE servers in order to select the top 200 chains 
from the list and use them to do the same experiments applying the 
n-gram method. The output results in figure4 are represented for 
150 protein chains ordered by entropy measure of n-gram method. 
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Figure4 shows that n-gram method approximately fully 
agrees with the other servers in the identification of highly similar, 
less similar and dissimilar structures. As seen from the figure, all 
the methods reveal the same RMSD results for the first 30 protein 
chains, but for the rest of the protein chains there are differences. 
The differences are because the SSM and CE methods apply some 
iteration tasks to reduce RMSD value, whereas the n-gram method 
does not perform such a task. RMSD reduction task is a time 
consuming process. The n-gram method, simply, rotates and 
translates the reference protein in 3D-coordinates to achieve a 
superposition with the query protein. Therefore, from the 
viewpoint of running speed, the similarity measurement process 
has been accelerated in the n-gram method.  

The alignment length of n-gram method, represented in 
figure4, is approximately the same as SSM. As it is described in 
(Krissinel and Henrick, 2004), longer alignments always come at 
the expense of higher RMSD and therefore the observed 
differences between the servers should be mostly due to the 
different criteria employed to balance these characteristics. 

The Q-score is an indication of the balance of RMSD and 
the alignment length (Krissinel and Henrick, 2004). As seen from 
the Q-score plot in figure4, Q-score of the n-gram method is lower 
than those of the two other methods. This is because the n-gram 
method computes high RMSD value compared with the other 
methods. 

We also performed a comparison between entropy measure 
computed by the n-gram method via (4) and RMSD computed by 
the SSM method. Figure5 represents that RMSD value increases 
with the increasing value of entropy. It shows that the similarity 
measurement results produced by the n-gram method are 
approximately the same as those produced by the SSM method. 
Therefore, the entropy measure based on n-gram modeling is a 
novel efficient tool for protein structural similarity measurement.  

We performed a comparative study, similar to that 
described above, for a number of structures belonging to different 
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protein folds. The results represent that the outputs showed in 
figures 4 and 5 are of a common nature. 

To evaluate the efficiency of n-gram method, an extended 
dataset of about 2000 proteins was prepared from the various 
categories in the SCOP database. The algorithm of n-gram method 
is implemented in C++ programming language and done on 
Pentium IV  2.8GHz machine with 512MB RAM running 
Windows- XP. Average time of similarity measurement for each 
query is about 30 seconds. Because the source code of SSM 
method was not accessible, run-time comparison of two methods 
could not be conceived. However, including related experiments 
(Singh and Brutlag, 1997), (Krissinel and Henrick, 2004), (Martin, 
2000), (Aung and Tan, 2004), the efficiency of the method is 
established compared with the other similar methods. 
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1.7    CONCLUSION 
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Figure 5 Comparison of the entropy measure of the n-gram method 
and the RMSD value of SSM method. Results in axes x were ordered 

by entropy value. 
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Figure 4 Comparison of the n-gram based method results with SSM 
and CE methods. PDB chain 1sar:A was used as a query protein for 
screening the whole PDB. Results in axes x were ordered by entropy 

value computed by n-gram method. 
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 The proposed method in this paper uses the introduced 
method in (Bogan-Marta et al., 2005) to apply entropy concept for 
information retrieval in the field of statistical language modeling 
for measuring the structural similarity of proteins. Specifically, the 
studied method, simply, applies a superposition task to achieve an 
initial overlap between the secondary structure elements of two 
proteins and then, creates relative residue position sequence for 
them and uses cross-entropy measure over n-gram model to 
compare their structures. In order to confirm the validity of the 
proposed method, some experiments on similar protein retrieval 
methods were performed which demonstrates the applicability and 
efficiency of this method. Also, the results of experiments 
represent the method is comparable with the publicly available 
web servers namely SSM and CE. Moreover regarding the 
conceptual simplicity of the approach, the preference and 
applicability of the method to other applied techniques is indicated.  
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11 
DNA-CHIPS DATA PROCESSING AND 

ANALYSIS 
Edin Tankovics 

Ito Wasito 
 
 
 
 

11.1    INTRODUCTION  

 
 
Modern genetic together with bioinformatics seeks to understand 
the function of genes, including more than 40,000 genes in the 
human genome. Recently developed for genome analysis, DNA 
microarrays, also known as gene arrays or gene chips, are capable 
of determining the gene expression levels of thousands of genes 
simultaneously. Gene expression (often simply expression) is the 
process by which a gene's information is converted into the 
structures and functions of a cell. In other words, it is a process by 
which gene's information is converted into the proteins by cells. So 
a gene gets to express itself.  In combination with classification 
methods, this technology can be useful in supporting clinical 
management decisions for patients. Experimental conditions may 
include types of cancers, diseased organisms, or normal tissues. To 
have an idea of necessity to analyze thousands of genes within a 
single experiment, it is enough to consider following statement:  
“Multicellular organisms are created from a complex organization 
of cooperating cells. In humans, for instance, there are 10 to the 
power of 14 cells comprising 200 kinds of various tissues! “ 
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Observing any living thing we find the cells as the main 
building blocks of its internal structure. In other words, cells make 
up all living systems. Cells demonstrate an important dynamic 
property. Namely, they are able to adjust their behavior with 
respect to environmental stimulus. This is achieved by constant 
sampling (listening) of the multitude of molecules in their 
environments. Many of these molecules can actually be thought of 
as signal carriers that convey information to the cell. There is a 
large array of such molecules but they are all in form of proteins. 

Therefore, overall functionality of the cell and entire 
organism is determined by the “instruction” encoded in the form of 
proteins. But how are these proteins synthesized? This is the 
question answered by central dogma of molecular biology which 
states that process of protein biosynthesis is actually a flow of 
genetic information from nucleus DNA, to RNA and than to 
protein. The RNA encodes a sequence of amino acids which define 
a particular protein. The sequence of amino acids of a protein 
dictates its 3D structure that it adopts spontaneously.With a few 
notable exceptions, all biological cells conform to this rule. This 
practically means our functionality is regulated by information 
stored in the molecule of DNA. DNA is a very long molecule 
consisting of 4 main building blocks (nucleotides), respectively: 
adenine, guanine, cytosine and thymine. DNA is found in shape of 
double helix. However it is a very long molecule and as such is 
broken into segment called genes for easier analysis. Genes are 
entities that parents pass to offspring during reproduction. They 
encode information essential for the construction and regulation of 
proteins and other molecules that determine the growth and 
functioning of the organism. Genetics (from the Greek genno 
γεννώ= give birth) is the science of genes, heredity, and the 
variation of organisms. The word genetics was first applied to 
describe the study of inheritance and the science of variation by 
English scientist William Bateson in a letter to Adam Sedgewick, 
dated April 18, 1905. 
 
 



DNA-Chips Data Processing And Analysis 171 

 

Very related to genetics is another branch of science called 
Bioinformatics or computational biology which uses techniques 
from applied mathematics, informatics, statistics, and computer 
science to solve biological problems. Major research efforts in the 
field include prediction of gene expression, sequence alignment, 
protein structure prediction, etc. 
 
 
 
 
11.2    DNA MICRO-CHIPS 
 
 
"If you want to learn what words mean in a foreign language you 
look at how they are used. It's the same for genes. Microarrays as a 
way of seeing how genes express themselves will be the most 
widely used application of arrays." 
The concept emerged 10 years ago. A research paper by Fodor 
opened the way for the entire microarray industry. DNA 
microarrays are microscopic groups of thousands of DNA 
molecules of known sequences attached to a solid surface such as a 
nylon membrane or a simple glass microscope slide. Each array 
consists of an orderly organization of samples that provides a 
medium for matching known and unknown samples based on base-
pairing rules and automating the process of identifying the 
unknowns. Microarrays come in several varieties, each of which 
has specific advantages for research and screening. Depending on 
the size of each DNA spot on the array, DNA arrays can be 
categorized as microarrays when the diameter of DNA spot is less 
than 250 microns, and macroarrays when the diameter is bigger 
than 300 microns.   

Brown's team at Stanford, in collaboration with Mark 
Schena and Ron Davis, working as consultants to Affymetrix, 
developed the basic technology for what scientists now regard as 
the traditional type of microarray. It uses lengths of 
complementary DNA (or cDNA) produced from cellular 
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messenger RNA using the reverse transcriptase polymerase chain 
reaction (RT-PCR). Stretches of cDNA about 500 to 5,000 bases 
long are immobilized onto a substrate and exposed to a set of 
targets either separately or in a mixture.  

 
 
 
 

 

 
 

Figure 1 General process of acquiring the gene expression data from 
DNA microarray 

 
 
 
 

DNA microarrays are composed of thousands of individual 
DNA sequences printed in a high density array on a glass 
microscope slide using a robotic arrayer as shown in Fig. 1. The 
relative abundance of these spotted DNA sequences in two DNA 
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or RNA samples may be assessed by monitoring the differential 
hybridization of the two samples to the sequences on the array. For 
mRNA samples, the two samples are reverse-transcribed into 
cDNA, labeled using different fluorescent dyes mixed (red-
fluorescent dye Cy5 and green-fluorescent dye Cy3). After the 
hybridization of these samples with the arrayed DNA probes, the 
slides are imaged using scanner that makes fluorescence 
measurements for each dye. The log ratio between the two 
intensities of each dye is used as the gene expression data 
(Lashkari et al. 1997, Derisi et al. 1997, Eisen et al. 1998). 
 
 

                                             (Eq. 1) 
 
 
Where Int(Cy5) and Int(Cy3) are the intensities of red and green 
colors. 
 
 
 
 
11.3    SUPERVISED VERSUS UNSUPERVISED LEARNING 
 
It is essential to efficiently analyze DNA microarray data because 
the amount of DNA microarray data is usually very large. Many 
machine learning and data mining methods have been applied to 
solve them. 
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11.3.1    Classification (Supervised versus Unsupervised) 
 
There are two main divisions of classification: 
 
 
 
 
11.3.1.1    Supervised classification or discrimination 
 
 
Unsupervised classification simply referred to as classification or 
clustering. In supervised classification we have a set of data 
samples with associated labels, class types. An example of 
application is radar target recognition of objects. Related to our 
course of study we use classification to select genes related to 
cancer, also to select cancer genes from normal tissues.  

In unsupervised classification the data are not labeled and 
we seek to find the gropes in the data and the features that 
distinguish one object from another. In our example, we use 
clustering to read the results from the microarray. We want to se 
which are genes that are dominant and we don’t care if they are 
from the cancer tissue or normal tissue. We perform an unbiased 
observation. 
 
 
11.3.1.2    Unsupervised classification or Clustering 
 
 
Clustering methods are used in for data exploration and to provide 
prototypes for use in supervised classifiers. Available methods 
operate both on dissimilarity matrices and measurements on 
individuals, each imposing its own structure on data. 

Cluster analysis is the groping of individuals in population 
in order to discover structure in data. In some sense we would like 
the individuals within the group to be close or similar to one 
another, but dissimilar from individuals in other groups. 
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Clustering is fundamentally a collection of methods of methods of 
data exploration. 

We can roughly distinguish among following clustering 
methods: 
 
 

1. Hierarchical methods 
2. Quick partitions 
3. Mixture models 
4. Sum-of-squares 
5. Cluster validity 

 
 
 
 
11.3.1.2.1    Hierarchical Clustering Methods 
 
Hierarchical Clustering Methods are the most commonly used 
methods of summarizing data structure. A hierarchical tree is a 
nested set of partitions represented by a tree diagram or 
dendogram. 
 
 

- Single link method  
- Complete link method 
- Sum-Of Squares method (Ward) 
- General agglomerative algorithm (Centroid distance, 

Median distance, group average link) 
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11.3.2    Statistical Learning and Analysis 
 
 
Each DNA hybridization array experiment generates thousands of 
data points, and each study (containing many experiments) can 
result in millions of data points (Sherlock, 2000). Therefore, the 
interpretation and verification of array databases present a major 
challenge. While no universal algorithm exists for array data 
management, many experiments undergo a process of 
normalization, unsupervised analysis, and supervised analysis 
(Young, 2000).  

Unsupervised analysis is commonly used for exploratory 

tasks, such as an unbiased discovery of gene expression patterns. 
Data grouped in an unsupervised analytic strategy are termed 

"clusters" (Tamayo et al., 1999). Several mathematical models 

exist for the clustering. Cluster algorithms group similar profiles 

based on a distance metric, usually by the statistical correlation 

coefficient or Euclidean distance (Freeman et al., 2000). 
 
 
11.4    DNA-CHIP DATA PROCESSING 
 
 
A common procedure of analysis in microarray technology is to 
conduct several experiments across the same genes, measuring 
gene expression during each trial ( e.g. different patients, time 
points, etc.).   The end result is often expression arrays of high 
dimensionality.   For example, if you have 10 trials measured 
across 10,000 genes, you have a 10 by 10,000 matrix (10,000 
genes in 10 dimensions).   In order to detect a pattern in the data, 
researchers traditionally use methods that reduce the 
dimensionality to just two dimensions (along an x and y axis).    
 

Many methods exist to accomplish this task, but I will 
focus on just one: cluster analysis. 
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11.4.1    Loading Data 
 
 
The first step is to import data. Currently, our program only reads 
tab delimited text files in a particular format, described below. 
Such tab-delimited text files can be created and exported in any 
standard spreadsheet program, such as Microsoft Excel. (Create 
the excel file and save by .txt extension) 

By convention, input tables rows represent genes and 
columns represent samples or observations (e.g. a single 
microarray hybridization). For a simple time-course, a minimal 
input file would look like this: 
 
 

 
 
  
 
 
 
 
 

 
 

Figure 2 Time-course microarray data 
 
 
 

This is to satisfy multiple experiment data sets, however 
single ones are also supported and in that case we would have  
only two columns. Each row has an identifier (in green) that 
always goes in the first column. It actually represents the name of 
the gene of interest. Each column (sample) has a label (in blue) 
that is always in the first row; here the labels describe the time at 
which a sample was taken. It can be any other trial of interest such 
as tumor cells of different patients etc. 
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The first column of the first row contains a special field (in 
red) that tells the program what kinds of objects are in each row. In 
this case, YORF stands for yeast open reading frame. This field 
can be any alpha-numeric value.  

This format of input file was first proposed by M. Eisen at 
Standford University and today represents a widely accepted 
standard. 

To test the output of my program I was using the test data 
set provided by the same author and available from 
http://rana.lbl.gov/downloads/data/demo.txt 
 
 
1.4.2    Filtering data 
 
Once data set is uploaded, we need to reduce the size of data set by 
excluding unwanted variables such as genes that do not show a 
significant difference in expression values between the control and 
experimental groups. This is aimed to improve computation speed 
since we are dealing with very large data sets. 

Example of filtering methods recommended and proven to 
be useful in recent papers are: 

 
- Removing all genes that have missing values in 

percentage greater than (100 - X) of the columns. 
 
- Removing all genes that have standard deviations of 

observed values less than X. Removing all genes that 
all genes that do not have at least X observations with 
absolute values greater than . 

 
- Removing all genes whose maximum minus minimum 

values are less than X.  
 
These are fairly self-explanatory and it is trivial thing to code these 
filters in Matlab. 
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11.4.3    Adjusting data 
 
 
Adjusting data actually perform a number of operations that alter 
the underlying data in the imported table. These operations that 
have been proposed by number of authors include: 
 

- Log Transform Data (replace all data values x by log2 (x)).  
 The results of DNA microarray experiments are fluorescent 
ratios. Ratio measurements are most naturally processed in 
log space.  

 
Illustrative Example given by M. Eisen: “Consider an 

experiment where you are looking at gene expression over time, 
and the results are relative expression levels compared to time 0. 
Assume at time point 1, a gene is unchanged, at time point 2 it is 
up 2-fold and at time point three is down 2-fold relative to time 0. 
The raw ratio values are 1.0, 2.0 and 0.5. In most applications, you 
want to think of 2-fold up and 2-fold down as being the same 
magnitude of change, but in an opposite direction. In raw ratio 
space, however, the difference between time point 1 and 2 is +1.0, 
while between time point 1 and 3 is -0.5. Thus mathematical 
operations that use the difference between values would think that 
the 2-foldup change was twice as significant as the 2-fold down 
change. Usually, you do not want this. In log space (we use log 
base 2 for simplicity) the data points become 0,1.0,-1.0.With these 
values, 2-fold up and 2-fold down are symmetric about 0.” 
 
 

- Normalize Genes and/or Arrays: Multiply all values in each 
row and/or column of data a scale factor S to so that the 
sum of the squares of the values is in each row and/or 
column is 1.0 (a separate S is computed for each 
row/column).  
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- Mean Center Genes and/or Arrays: Subtract the row-wise 
or column-wise mean from the values in each row and/or 
column of data, so that mean value of each row and/or 
column is 0. 

 
Explanation by M. Eisen (Stanford University): “Consider 

a now common experimental design where you are looking at a 
large number of tumor samples all compared to a common 
reference sample made from a collection of cell-lines. For each 
gene, you have a series of ratio values that are relative to the 
expression level of that gene in the reference sample. Since the 
reference sample really has nothing to do with your experiment, 
you want your analysis to be independent of the amount of a gene 
present in the reference sample. This is achieved by adjusting the 
values of each gene to reflect their variation from some property of 
the series of observed values such as the mean or median. This is 
what mean and/or median centering of genes does. “ 

However, these operations are not associative, so the order 
in which these operations are applied is very important to preserve 
the meaning of the data. 
 
 

- The order of operations is 
- Log transform all values. 
- Mean center rows. 
- Normalize rows. 
- Mean center columns. 
- Normalize columns. 

 
Again, Matlab is used as a sufficient tool to perform all these 
operation. 
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11.4.3    Distance/Similarity Measures (Creating Similarity 
Matrix) 
 
 
The first choice that must be made is how similarity (or 
dissimilarity or distance) between gene expression data is to be 
defined. There are many ways to compute how similar two series 
of numbers are. 
 
 
11.4.4    Pearson Correlation 
 
 
Usually conceived of as applicable to situations where X and Y are 
interval or ratio scales (quantitative variables). In micro array’s 
case we have log ratios of colors and therefore the most commonly 
used similarity metrics are based on Pearson correlation.  

The Pearson correlation coefficient between any two series 
of numbers x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn} is 
defined as: 
 
 

                           (Eq. 2) 
 
 
where  X is mean (average) value, calculated as (x1 +x2+ x3 + 
xn)/n and δ is standard deviation 
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                                                (Eq. 3) 
 
 

There are many ways of conceptualizing the correlation 
coefficient. Using a scatterplot of the values of x against y (pairing 
x1 with y1, x2 with y2, etc. The simplest way to think about the 
correlation coefficient is to plot x and y as curves, with r telling 
how similar the shapes of the two curves are. The Pearson 
correlation coefficient is always between -1 and 1, with 1 meaning 
that the two series are identical, 0 meaning they are completely 
uncorrelated, and -1 meaning they are perfect opposites. The 
correlation coefficient is invariant under linear transformation of 
the data. That is, if you multiply all the values in y by 2, or add 7 
to all the values in y, the correlation between x and y will be 
unchanged. Thus, two curves that have identical shape, but 
different magnitude, will still have a correlation of 1. 

We have  used Pearson Coefficient inmy program to obtain 
similarity matrix which is displayed in grid box.  Here is the 
source code: 
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function res = pearson(matrix) 
D = size(matrix) 
D 
for i = 1:D(1) 
    for j = (i+1):D(1) 
        x = matrix(i, :); 
        xx = matrix(j, :); 
 
        A = 0; 
 
        for k=1:size(D(2)) 
        A = A + ((x(k)-mean(x))/std(x)) * (xx(k)-mean(xx))/std(xx); 
        end 
 
     res(i,j) = (1/D(2)) * A; 
     res(j,i) = (1/D(2)) * A; 
    end 
end 
 
 

Figure 3 Pearson coefficient pseudo-code 
 
 
 
 
 A newly added distance function is the Euclidean distance, 
which is defined as: 
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The Euclidean distance takes the difference between two gene 
expression levels directly. It should therefore only be used for 
expression data that are suitably normalized, for example by 
converting the measured gene expression levels to log-ratios. 
Unlike the correlation-based distance measures, the Euclidean 
distance takes the magnitude of changes in the gene expression 
levels into account. It therefore preserves more information about 
the gene expression levels than the other distance measures 
mentioned above. An example of the Euclidean distance applied to 
k-means clustering can be found in De Hoon, Imoto, and Miyano 
(2002). 
 
 
 
11.5    CLUSTERING 
 
 
Since we already have similarity matrix created by function 
person(), logical next step is clustering of these data based on their 
similarity. 

Clustering can be considered the most important 
unsupervised learning problem; so, as every other problem of this 
kind, it deals with finding a structure in a collection of unlabeled 
data. A loose definition of clustering could be “the process of 
organizing objects into groups whose members are similar in some 
way”. A cluster is therefore a collection of objects which are 
“similar” between them and are “dissimilar” to the objects 
belonging to other clusters. 

There are several clustering algorithms generally proposed 
for use in DNA micro array experiments. Such as: Hierarchical 
Clustering, SOM (self organizing maps), k-means clustering, 
support vector machine Hierarchical clustering methods organize 
genes in a tree structure, based on their similarity. Four variants of 
hierarchical clustering are studied in this project: Single link 
method, Complete link method, Sum-Of Squares method (Ward) 
and average link method.   
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11.5.1    Single Linkage Clustering  
 
 
In Single Linkage Clustering the distance between two items x and 
y is the minimum of all pairwise distances between items 
contained in x and y. In single linkage clustering no further 
distances need to be calculated once the distance matrix is known.  
 
 
11.5.2    Complete Linkage Clustering  
 
 
In Complete Linkage Clustering the distance between two items x 
and y is the maximum of all pairwise distances between items 
contained in x and y. As in single linkage clustering, no other 
distances need to be calculated once the distance matrix is known. 
 
 
11.5.3    Average Linkage Clustering 
 
In average linkage clustering, the distance between two items x 
and y is the mean of all pairwise distances between items 
contained in x and y. 
 
 
 
11.5.4    Ward (Sum-of-Squares) Linkage Method 
 
The Sum-of-Squares method is appropriate for the clustering of 
points in Euclidian space. The aim is to minimize total within 
group sum of squares. 
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11.5.5    Graphical Observation of Results (Dendrogram) 
 
For graphical observation we use a dendrogram—a binary tree in 
which subtrees are each a cluster and the leaves are individual 
genes. The distance from the root to a subtree indicates the 
similarity of subtrees—highly similar nodes or subtrees have 
joining points farther from the root. 
 

 
 
 

Figure 3 An example of dendrogram 
 
 
 
 
11.6    DISCUSSION  
 
 
DNA array technology and bioinformatics are rapidly evolving and 
becoming better able to address important biologic questions. 
Microarray-based genomic surveys and other high-throughput 
approaches play a part in the process. As a result, we need to 
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develop our ability to "see" the information in the massive tables of 
quantitative measurements that these approaches produce.  

Our approach to this problem can be generalized as follows. 
First, we use a common-sense approach to organize the data, next 
we filter these data, optionally we apply various transformations 
on the data, than we use correlation techniques to create similarity 
matrix, than apply clustering algorithm. And all of this just to be 
able to display data graphically in a form of dendrogram. This is 
important because human brains are not well adapted to 
assimilating quantitative data by reading digits; we represent the 
quantitative values in a form of hierarchical tree by using a 
naturalistic color scale rather than numbers. This alternative 
encoding preserves all the quantitative information, but transmits it 
to our brains by way of a much higher-bandwidth channel than the 
"number-reading" channel.  
 
 
 
11.7    CONCLUSION 
 
 
A natural way of viewing complex data sets is first to scan and 
survey the large-scale features and then to focus in on the 

interesting details. What we have found to be the most valuable 

feature of the approach described here is that it allows this natural 
and intuitive process to be applied to genomic data sets. The 
approach is a general one, with no inherent specificity to the 
particular method used to acquire data or even to gene-expression 

data. It is therefore likely that very similar approaches may be 
applied to many other kinds of very large data sets. In each case, it 
may be necessary to find alternative algorithms and computation 

methods to bring out inherent structures in the data, and, equally 

important, to find dense naturalistic visual representations that 

convey the quantitative information effectively. We recognize that 
the particular clustering algorithm we may use is not the only, or 
even the best, method available.  
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