
ar
X

iv
:0

90
3.

20
93

v1
  [

m
at

h.
A

C
] 

 1
2 

M
ar

 2
00

9

EXTENSION FUNCTORS OF LOCAL COHOMOLOGY MODULES

M. AGHAPOURNAHR1, A. J. TAHERIZADEH2, AND ALIREZA VAHIDI3

Abstract. Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, and X an

R–module. In this paper, for fixed integers s, t and a finite a–torsion R–module N , we first study the

membership of Ext s+t
R

(N, X) and Ext s
R

(N, Ht
a(X)) in Serre subcategories of the category of R–modules.

Then we present some conditions which ensure the existence of an isomorphism between them. Finally,

we introduce the concept of Serre cofiniteness as a generalization of cofiniteness and study this property

for certain local cohomology modules.

1. Introduction

Throughout R will denote a commutative Noetherian ring with non-zero identity and a an ideal of

R. Also N will be a finite a–torsion module and X an R–module. For unexplained terminology from

homological and commutative algebra we refer the reader to [10] and [11].

The following conjecture was made by Grothendieck in [19].

Conjecture 1.1. For any ideal a and finite R–module X, the module Hom R(R/a, Hn
a (X)) is finite for

all n ≥ 0.

This conjecture is false in general as shown by Hartshorne in [21]. However, he defined an R–module

X to be a–cofinite if Supp R(X) ⊆ V (a) and Ext i
R(R/a, X) is finite for each i, and he asked the following

question.

Question 1.2. If a is an ideal of R and X is a finite R–module when is Ext i
R(R/a, Hj

a(X)) finite for

every i and j?

There are some attempts to show that under some conditions, for fixed integers s and t, the R–module

Ext s
R(R/a, Ht

a(X)) is finite, for example see [3, Theorem 3.3], [16, Theorems A and B], [17, Theorem

6.3.9] and [24, Theorem 3.3].

Recently, the first author and Melkersson in [1] and [2], and Asgharzadeh and Tousi in [5] approached

the study of local cohomology modules by means of Serre subcategories and it is noteworthy that their

approach enables us to deal with several important problems on local cohomology modules comprehen-

sively. For more information, we refer the reader to [23] to see a survey of some important problems on

finiteness, vanishing, Artinianness, and finiteness of associated primes of local cohomology modules.

In this paper, we study some properties of extension functors of local cohomology modules by using

Serre classes. Recall that a class of R–modules is a Serre subcategory of the category of R–modules when

it is closed under taking submodules, quotients and extensions. Always, S stands for a Serre subcategory

of the category of R–modules.
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The crucial points of Section 2 are Theorems 2.1 and 2.3 which show that when R–modules

Ext s+t
R (N, X) and Ext s

R(N, Ht
a(X)) belong to S. These two theorems, which are frequently used

through the paper, enable us to demonstrate some new facts and improve some older facts about the

extension functors of local cohomology modules. We find the weakest possible conditions for finiteness

of associated primes of local cohomology modules and, improve and give a new proof for [24, Theorem

3.3] in Corollaries 2.5 and 2.7. The relation between R–modules Ext s+t
R (N, X) and Ext s

R(N, Ht
a(X)) to

be in a Serre subcategory of the category of R–modules is shown in Corollary 2.8.

In Section 3, we first introduce the class of Melkersson subcategory as a special case of Serre classes and

next investigate the extension functors of local cohomology modules in these subcategories. In Proposi-

tions 3.2, 3.3 and 3.4, we give new proofs for [1, Theorems 2.9 and 2.13] and study the membership of the

local cohomology modules of an R–module X with respect to different ideals in Melkersson subcategories.

Our main result in this section is Theorem 3.5 which provides an isomorphism between the R–modules

Ext s+t
R (N, X) and Ext s

R(N, Ht
a(X)). Corollaries 3.6 through 3.9 are some applications of this theorem.

In Section 4, we present a generalization of the concept of cofiniteness with respect to an ideal to

Serre subcategories of the category of R–modules. Theorems 4.2, 4.4 and 4.6 generalize [26, Proposition

2.5], [27, Proposition 3.11], [14, Theorem 3.1], [16, Theorems A and B] and [13, Corollary 2.7]. The

Change of ring principle for Serre cofiniteness is presented in Theorem 4.8. We also give a proposition

about a–cofinite minimax local cohomology modules in Proposition 4.10. Corollaries 4.11 and 4.12 are

immediate results of this proposition where Corollary 4.11 improves [6, Theorem 2.3].

2. Local cohomology modules and Serre subcategories

Let a be an ideal of R, N a finite a–torsion module and s, t non-negative integers. In this section, we

present sufficient conditions which convince us the R–modules Ext t
R(N, X) and Ext s

R(N, Ht
a(X)) are in

a Serre subcategory of the category of R–modules. Even though we can provide elementary proofs by

using induction for our main theorems, for shortening the proofs we use spectral sequences argument.

Theorem 2.1. Let X be an R–module and t be a non-negative integer such that Ext t−r
R (N, Hr

a(X)) is

in S for all r, 0 ≤ r ≤ t. Then Ext t
R(N, X) is in S.

Proof. By [29, Theorem 11.38], there is a Grothendieck spectral sequence

Ep,q
2 := Ext p

R(N, Hq
a(X))=⇒

p
Ext p+q

R (N, X).

For all r, 0 ≤ r ≤ t, we have Et−r,r
∞ = Et−r,r

t+2 since Et−r−i,r+i−1
i = 0 = Et−r+i,r+1−i

i for all i ≥ t + 2;

so that Et−r,r
∞ is in S from the fact that Et−r,r

t+2 is a subquotient of Et−r,r
2 which is in S by assumption.

There exists a finite filtration

0 = φt+1Ht ⊆ φtHt ⊆ · · · ⊆ φ1Ht ⊆ φ0Ht = Ext t
R(N, X)

such that Et−r,r
∞ = φt−rHt/φt−r+1Ht for all r, 0 ≤ r ≤ t. Now the exact sequences

0 −→ φt−r+1Ht −→ φt−rHt −→ Et−r,r
∞ −→ 0,

for all r, 0 ≤ r ≤ t, yield the assertion. �
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Recall that, an R–module X is said to be weakly Laskerian if the set of associated primes of any

quotient module of X is finite (see [13, Definition 2.1]). Also, we say that X is a–weakly cofinite if

Supp R(X) ⊆ V (a) and Ext i
R(R/a, X) is weakly Laskerian for all i ≥ 0 (see [14, Definition 2.4]). We

denote the category of R–modules (resp. the category of finite R–modules, the category of weakly

Laskerian R–modules) by C(R) (resp. Cf.g(R), Cw.l(R)).

Corollary 2.2. (cf. [17, Theorem 6.3.9(i)]) Let X be an R–module and n be a non-negative integer such

that for all r, 0 ≤ r ≤ n, Ext n−r
R (N, Hr

a(X)) is weakly Laskerian (resp. finite). Then Ext n
R(N, X) is

weakly Laskerian (resp. finite) and so Ass R(ExtnR(N, X)) is finite.

The next theorem is related to the R–module Ext s
R(N, Ht

a(X)) to be in a Serre subcategory of the

category of R–modules.

Theorem 2.3. Let X be an R–module and s, t be non-negative integers such that

(i) Ext s+t
R (N, X) is in S,

(ii) Ext s+t+1−i
R (N, Hi

a(X)) is in S for all i, 0 ≤ i < t, and

(iii) Ext s+t−1−i
R (N, Hi

a(X)) is in S for all i, t + 1 ≤ i < s + t.

Then Ext s
R(N, Ht

a(X)) is in S.

Proof. Consider the Grothendieck spectral sequence

Ep,q
2 := Ext p

R(N, Hq
a(X))=⇒

p
Ext p+q

R (N, X).

For all r ≥ 2, let Zs,t
r = ker(Es,t

r −→ Es+r,t+1−r
r ) and Bs,t

r = Im (Es−r,t+r−1
r −→ Es,t

r ). We have the

exact sequences:

0 −→ Zs,t
r −→ Es,t

r −→ Es,t
r /Zs,t

r −→ 0

and

0 −→ Bs,t
r −→ Zs,t

r −→ Es,t
r+1 −→ 0.

Since, by assumptions (ii) and (iii), Es+r,t+1−r
2 and Es−r,t+r−1

2 are in S, Es+r,t+1−r
r and Es−r,t+r−1

r are

also in S, and so Es,t
r /Zs,t

r and Bs,t
r are in S. It shows that Es,t

r is in S whenever Es,t
r+1 is in S.

We have Es−r,t+r−1
r = 0 = Es+r,t+1−r

r for all r, r ≥ t + s + 2. Therefore we obtain Es,t
t+s+2 = Es,t

∞ . To

complete the proof, it is enough to show that Es,t
∞ is in S. There exists a finite filtration

0 = φs+t+1Hs+t ⊆ φs+tHs+t ⊆ · · · ⊆ φ1Hs+t ⊆ φ0Hs+t = Ext s+t
R (N, X)

such that Es+t−j,j
∞ = φs+t−jHs+t/φs+t−j+1Hs+t for all j, 0 ≤ j ≤ s + t. Since Ext s+t

R (N, X) is in S,

φsHs+t is in S and so Es,t
∞ = φsHs+t/φs+1Hs+t is in S as we desired. �

Corollary 2.4. (cf. [5, Theorem 2.2]) Suppose that X is an R–module and n is a non-negative integer

such that

(i) Ext n
R(N, X) is in S, and

(ii) Ext n+1−i
R (N, Hi

a(X)) is in S for all i, 0 ≤ i < n.

Then Hom R(N, Hn
a (X)) is in S.

Proof. Apply Theorem 2.3 with s = 0 and t = n. �
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We can deduce from the above corollary the main results of [25, Theorem B], [9, Theorem 2.2],

[28, Theorem 5.6], [13, Corollary 2.7], [17, Theorem 6.3.9(ii)], [7, Theorem 2.3], [15, Corollary 3.2], [8,

Corollary 2.3] and [6, Lemma 2.2] concerning the finiteness of associated primes of local cohomology

modules. We just state the weakest possible conditions which yield the finiteness of associated primes of

local cohomology modules in the next corollary.

Corollary 2.5. Suppose that X is an R–module and n is a non-negative integer such that

(i) Ext n
R(R/a, X) is weakly Laskerian, and

(ii) Ext n+1−i
R (R/a, Hi

a(X)) is weakly Laskerian for all i, 0 ≤ i < n.

Then Hom R(R/a, Hn
a (X)) is weakly Laskerian, and so Ass R(Hn

a (X)) is finite.

Proof. Apply Corollary 2.4 with N = R/a and S = Cw.l(R), and note that we have the equality

Ass R(Hom R(R/a, Hn
a (X))) = V (a) ∩ Ass R(Hn

a (X)) = Ass R(Hn
a (X)). �

It is easy to see that if R is a local ring and S is a non-zero Serre subcategory of the category of

R–modules, then every R–module with finite length belongs to S.

Corollary 2.6. (cf. [5, Theorem 2.12]) Let R be a local ring with maximal ideal m and X be an R–

module. Assume also that S is a non-zero Serre subcategory of C(R) and n is a non-negative integer such

that

(i) Ext n
R(R/m, X) is finite, and

(ii) Ext n+1−i
R (R/m, Hi

a(X)) is in S for all i, 0 ≤ i < n.

Then Hom R(R/m, Hn
a (X)) is in S.

Proof. Since S 6= 0, Ext n
R(R/m, X) is in S. Now, the assertion follows from Corollary 2.4. �

Khashayarmanesh, in [24, Theorem 3.3], by using the concept of a–filter regular sequence, proved the

following corollary with stronger assumptions. His assumptions were X is a finite R–module with finite

Krull dimension and N = R/b, where b is an ideal of R contains a, while it is a simple conclusion of

Theorem 2.3 for an arbitrary R–module X and a finite a–torsion module N.

Corollary 2.7. (cf. [24, Theorem 3.3]) Suppose that X is an R–module and s, t are non-negative integers

such that

(i) Ext s+t
R (N, X) is finite,

(ii) Ext s+t+1−i
R (N, Hi

a(X)) is finite for all i, 0 ≤ i < t, and

(iii) Ext s+t−1−i
R (N, Hi

a(X)) is finite for all i, t + 1 ≤ i < s + t.

Then Ext s
R(N, Ht

a(X)) is finite.

Proof. Apply Theorem 2.3 for S = Cf.g(R). �

Theorem 2.1 in conjunction with Theorem 2.3 arise the following corollary.

Corollary 2.8. Let X be an R–module and n, m be non-negative integers such that n ≤ m. Assume also

that Hi
a(X) is in S for all i, i 6= n (resp. 0 ≤ i ≤ n − 1 or n + 1 ≤ i ≤ m). Then, for all i, i ≥ 0 (resp.

0 ≤ i ≤ m − n), Ext i
R(N, Hn

a (X)) is in S if and only if Ext i+n
R (N, X) is in S.
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In the course of the remaining parts of the paper by cd S(a, X) (S–cohomological dimension of X with

respect to a) we mean the largest integer i in which Hi
a(X) is not in S (see [5, Definition 3.4] or [1,

Definition 3.5]). Note that when S = 0, then cd S(a, X) = cd (a, X) as in [20].

Corollary 2.9. Let X be an R–module and n be a non-negative integer. Then the following statements

hold true.

(i) If cd S(a, X) = 0, then Ext n
R(N, Γa(X)) is in S if and only if Ext n

R(N, X) is in S.

(ii) If cd S(a, X) = 1, then Ext n
R(N, H1

a(X)) is in S if and only if Ext n+1
R (N, X/Γa(X)) is in S.

(iii) If cd S(a, X) = 2, then Ext n
R(N, H2

a(X)) is in S if and only if Ext n+2
R (N, Da(X)) is in S.

Proof. (i) This is clear from Corollary 2.8.

(ii) For all i 6= 1, Hi
a(X/Γa(X)) is in S by assumption. Now, the assertion follows from Corollary 2.8.

(iii) By [10, Corollary 2.2.8], Hi
a(Da(X)) is in S for all i 6= 2. Again, use Corollary 2.8. �

3. Special Serre subcategories

In this section, we study the extension functors of local cohomology modules in some special Serre

subcategories of the category of R–modules. We begin with a definition.

Definition 3.1. (see [1, Definition 2.1]) Let M be a Serre subcategory of the category of R–modules.

We say that M is a Melkersson subcategory with respect to the ideal a if for any a–torsion R–module X,

0 :X a is in M implies that X is in M. M is called Melkersson subcategory when it is a Melkersson

subcategory with respect to all ideals of R.

In honor of Melkersson who proved this property for Artinian category (see [10, Theorem 7.1.2]) and

Artinian a–cofinite category (see [27, Proposition 4.1]), we named the above subcategory as Melkersson

subcategory. To see some examples of Melkersson subcategories, we refer the reader to [1, Examples 2.4

and 2.5].

The next two propositions show that how properties of Melkersson subcategories behave similarly

at the initial points of Ext and local cohomology modules. These propositions give new proofs for [1,

Theorems 2.9 and 2.13] based on Theorems 2.1 and 2.3.

Proposition 3.2. (see [1, Theorem 2.13]) Let X be an R–module, M be a Melkersson subcategory with

respect to the ideal a, and n be a non-negative integer such that Ext j−i
R (R/a, Hi

a(X)) is in M for all i, j

with 0 ≤ i ≤ n − 1 and j = n, n + 1. Then the following statements are equivalent.

(i) Ext n
R(R/a, X) is in M.

(ii) Hn
a (X) is in M.

Proof. (i) ⇒ (ii). Apply Theorem 2.3 with s = 0 and t = n. It shows that Hom R(R/a, Hn
a (X)) is in M.

Thus Hn
a (X) is in M.

(ii) ⇒ (i). Apply Theorem 2.1 with t = n. �

Proposition 3.3. (see [1, Theorem 2.9]) Let X be an R–module, M be a Melkersson subcategory with

respect to the ideal a, and n be a non-negative integer. Then the following statements are equivalent.
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(i) Hi
a(X) is in M for all i, 0 ≤ i ≤ n.

(ii) Ext i
R(R/a, X) is in M for all i, 0 ≤ i ≤ n.

Proof. (i) ⇒ (ii). Let 0 ≤ t ≤ n. Since Hr
a(X) is in M for all r, 0 ≤ r ≤ t, Ext t−r

R (R/a, Hr
a(X)) is in M

for all r, 0 ≤ r ≤ t. Hence Ext t
R(R/a, X) is in M by Theorem 2.1.

(ii) ⇒ (i). We prove by using induction on n. Let n = 0 and consider the isomorphism Hom R(R/a, X) ∼=
Hom R(R/a, Γa(X)). Since Hom R(R/a, X) is in M, Hom R(R/a, Γa(X)) is in M. Thus Γa(X) is in M.

Now, suppose that n > 0 and that n−1 is settled. Since Ext i
R(R/a, X) is in M for all i, 0 ≤ i ≤ n−1,

Hi
a(X) is in M for all i, 0 ≤ i ≤ n − 1 by the induction hypothesis. Now, by the above proposition,

Hn
a (X) is in M. �

In the next proposition, we study the membership of the local cohomology modules of an R–module

X with respect to different ideals in Melkersson subcategories which, among other things, shows that

cdM(b, X) ≤ cdM(a, X) + ara(b/a) where M is a Melkersson subcategory of C(R) and b is an ideal of

R contains a.

Proposition 3.4. Let X be an R–module and b be an ideal of R such that a ⊆ b. Assume also that M
is a Melkersson subcategory of C(R) and n is a non-negative integer such that Hi

a(X) is in M for all i,

0 ≤ i ≤ n (resp. i ≥ n). Then Hi
b(X) is in M for all i, 0 ≤ i ≤ n (resp. i ≥ n + ara(b/a)).

Proof. Let r = ara(b/a). There exist x1, ..., xr ∈ R such that
√

b =
√

a + (x1, ..., xr). We can, and do,

assume that b = a + c where c = (x1, ..., xr). By [29, Theorem 11.38], there is a Grothendieck spectral

sequence

Ep,q
2 := Hp

c (Hq
a(X))=⇒

p
Hp+q

b (X).

Assume that t is a non-negative integer such that 0 ≤ t ≤ n (resp. t ≥ n + r). For all i, 0 ≤ i ≤ t,

Et−i,i
∞ = Et−i,i

t+2 since Et−i−j,i+j−1
j = 0 = Et−i+j,i−j+1

j for all j ≥ t + 2. Therefore Et−i,i
∞ is in M from

the fact that Et−i,i
t+2 is a subquotient of Et−i,i

2 = Ht−i
c (Hi

a(X)) which belongs to M by assumption and

Proposition 3.3. There exists a finite filtration

0 = φt+1Ht ⊆ φtHt ⊆ · · · ⊆ φ1Ht ⊆ φ0Ht = Ht
b(X)

such that Et−i,i
∞ = φt−iHt/φt−i+1Ht for all i, 0 ≤ i ≤ t. Now the exact sequences

0 −→ φt−i+1Ht −→ φt−iHt −→ Et−i,i
∞ −→ 0,

for all i, 0 ≤ i ≤ t, show that Ht
b(X) is in M. �

Let a be an ideal of R, N a finite a–torsion module and s, t non-negative integers. In the following theo-

rem, we find some sufficient conditions for validity of the isomorphism Ext s+t
R (N, X) ∼= Ext s

R(N, Ht
a(X))

which concerns to the case S = 0.

Theorem 3.5. Let X be an R–module and s, t be non-negative integers such that

(i) Ext s+t−i
R (N, Hi

a(X)) = 0 for all i, 0 ≤ i < t or t < i ≤ s + t,

(ii) Ext s+t+1−i
R (N, Hi

a(X)) = 0 for all i, 0 ≤ i < t, and

(iii) Ext s+t−1−i
R (N, Hi

a(X)) = 0 for all i, t + 1 ≤ i < s + t.

Then we have Ext s
R(N, Ht

a(X)) ∼= Ext s+t
R (N, X).
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Proof. Consider the Grothendieck spectral sequence

Ep,q
2 := Ext p

R(N, Hq
a(X))=⇒

p
Ext p+q

R (N, X)

and, for all r ≥ 2, the exact sequences

0 → Bs,t
r → Zs,t

r → Es,t
r+1 → 0 and 0 → Zs,t

r → Es,t
r → Es,t

r /Zs,t
r → 0

as we used in Theorem 2.3. Since Es+r,t+1−r
2 = 0 = Es−r,t+r−1

2 , Es+r,t+1−r
r = 0 = Es−r,t+r−1

r . Therefore

Es,t
r /Zs,t

r = 0 = Bs,t
r which shows that Es,t

r = Es,t
r+1. Hence we have

Ext s
R(N, Ht

a(X)) = Es,t
2 = Es,t

3 = · · · = Es,t
s+t+1 = Es,t

s+t+2 = Es,t
∞ .

There is a finite filtration

0 = φs+t+1Hs+t ⊆ φs+tHs+t ⊆ · · · ⊆ φ1Hs+t ⊆ φ0Hs+t = Ext s+t
R (N, X)

such that Es+t−j,j
∞ = φs+t−jHs+t/φs+t−j+1Hs+t for all j, 0 ≤ j ≤ s+t. Note that for each j, 0 ≤ j ≤ t−1

or t + 1 ≤ j ≤ s + t, by assumption (i), we have Es+t−j,j
∞ = 0. Therefore we get

0 = φs+t+1Hs+t = φs+tHs+t = · · · = φs+2Hs+t = φs+1Hs+t

and

φsHs+t = φs−1Hs+t = · · · = φ1Hs+t = φ0Hs+t = Ext s+t
R (N, X).

Thus Ext s
R(N, Ht

a(X)) = Es,t
∞ = φsHs+t/φs+1Hs+t = Ext s+t

R (N, X) as desired. �

The following corollaries are immediate applications of the above theorem which give us some useful

isomorphisms and equalities about the extension functors and Bass numbers of local cohomology modules,

respectively.

Corollary 3.6. (cf. [2, Corollary 4.2.(c)]) Let X be an R–module and n be a non-negative integer. Then

the isomorphism Hom R(N, Hn
a (X)) ∼= Ext n

R(N, X) holds in either of the following cases:

(i) Ext j−i
R (N, Hi

a(X)) = 0 for all i, j with 0 ≤ i ≤ n − 1 and j = n, n + 1;

(ii) Ext i
R(R/a, X) = 0 for all i, 0 ≤ i ≤ n − 1.

Proof. (i) Apply Theorem 3.5 with s = 0 and t = n.

(ii) By Proposition 3.3, Hi
a(X) = 0 for all i, 0 ≤ i ≤ n − 1. Now, use case (i). �

Corollary 3.7. Let X be an R–module and n, m be non-negative integers such that n ≤ m. Assume

also that Hi
a(X) = 0 for all i, i 6= n (resp. 0 ≤ i ≤ n − 1 or n + 1 ≤ i ≤ m). Then we have

Ext i
R(N, Hn

a (X)) ∼= Ext i+n
R (N, X) for all i, i ≥ 0 (resp. 0 ≤ i ≤ m − n).

Proof. For all i, i ≥ 0 (resp. 0 ≤ i ≤ m − n), apply Theorem 3.5 with s = i and t = n. �

Corollary 3.8. (cf. [18, Proposition 3.1]) Let X be an R–module and n be a non-negative integer such

that Hi
a(X) = 0 for all i, i 6= n. Then we have µi(p, Hn

a (X)) = µi+n(p, X) for all i ≥ 0 and all p ∈ V (a).

Proof. Let p ∈ V (a). By assumption, Hi
aRp

(Xp) = 0 for all i, i 6= n; so that Ext i
Rp

(Rp/pRp, H
n
aRp

(Xp)) ∼=
Ext i+n

Rp
(Rp/pRp, Xp) for all i ≥ 0 by Corollary 3.7. Hence µi(p, Hn

a (X)) = µi+n(p, X) for all i ≥ 0. �

Corollary 3.9. For an arbitrary R–module X, the following statements hold true.
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(i) If cd (a, X) = 0, then Ext i
R(N, Γa(X)) ∼= Ext i

R(N, X) for all i ≥ 0.

(ii) If cd (a, X) = 1, then Ext i
R(N, H1

a(X)) ∼= Ext i+1
R (N, X/Γa(X)) for all i ≥ 0.

(iii) If cd (a, X) = 2, then Ext i
R(N, H2

a(X)) ∼= Ext i+2
R (N, Da(X)) for all i ≥ 0.

Proof. By considering Corollary 3.7, this is similar to that of Corollary 2.9. �

4. Cofinite modules

We first introduce the class of cofinite modules with respect to an ideal and a Serre subcategory of the

category of R-modules.

Definition 4.1. Let a be an ideal of R, X be an R–module and S be a Serre subcategory of C(R). We

say that X is S–cofinite with respect to the ideal a if Supp R(X) ⊆ V (a) and Ext i
R(R/a, X) is in S for

all i ≥ 0. We will denote this concept by (S, a)–cofinite.

Note that when S is Cf.g(R) (resp. Cw.l(R)), X is (S, a)–cofinite exactly when X is a–cofinite (resp.

a–weakly cofinite).

Theorem 4.2. Let X be an R–module and n be a non-negative integer such that Hi
a(X) is (S, a)–cofinite

for all i, i 6= n. Then the following statements are equivalent.

(i) Ext i
R(R/a, X) is in S for all i ≥ 0.

(ii) Ext i
R(R/a, X) is in S for all i ≥ n.

(iii) Hn
a (X) is (S, a)–cofinite.

Proof. (i) ⇒ (ii). This is clear.

(ii) ⇒ (iii). For all i ≥ 0, apply Theorem 2.3 with N = R/a, s = i and t = n.

(iii) ⇒ (i). Apply Theorem 2.1 with N = R/a. �

As an immediate result, the following corollary recovers and improves [26, Proposition 2.5], [27, Propo-

sition 3.11] and [14, Theorem 3.1].

Corollary 4.3. (cf. [26, Proposition 2.5], [27, Proposition 3.11] and [14, Theorem 3.1]) Let X be an

R–module and n be a non-negative integer such that Hi
a(X) is a–cofinite (resp. a–weakly cofinite) for all

i, i 6= n. Then the following statements are equivalent.

(i) Ext i
R(R/a, X) is finite (resp. weakly Laskerian) for all i ≥ 0.

(ii) Ext i
R(R/a, X) is finite (resp. weakly Laskerian) for all i ≥ n.

(iii) Hn
a (X) is a–cofinite (resp. a–weakly cofinite).

Theorem 4.4. Suppose that X is an R–module and n is a non-negative integer such that

(i) Hi
a(X) is (S, a)–cofinite for all i, 0 ≤ i ≤ n − 1, and

(ii) Ext 1+n
R (N, X) is in S.

Then Ext 1
R(N, Hn

a (X)) is in S.

Proof. Consider [22, Proposition 3.4] and apply Theorem 2.3 with s = 1 and t = n. �

The following result is an application of the above theorem.
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Corollary 4.5. (cf. [16, Theorem A] and [13, Corollary 2.7]) Let X be an R–module and n be a non-

negative integer. Assume also that

(i) Hi
a(X) is a–cofinite (resp. a–weakly cofinite) for all i, 0 ≤ i ≤ n − 1, and

(ii) Ext 1+n
R (N, X) is finite (resp. weakly Laskerian).

Then Ext 1
R(N, Hn

a (X)) is finite (resp. weakly Laskerian).

Theorem 4.6. Let X be an R–module and n be a non-negative integer such that Ext n+1
R (N, X) and

Ext n+2
R (N, X) are in S, and Hi

a(X) is (S, a)–cofinite for all i, 0 ≤ i < n. Then the following statements

are equivalent.

(i) Hom R(N, Hn+1
a (X)) is in S.

(ii) Ext 2
R(N, Hn

a (X)) is in S.

Proof. (i) ⇒ (ii). Consider [22, Proposition 3.4] and apply Theorem 2.3 with s = 2 and t = n.

(ii) ⇒ (i). Again consider [22, Proposition 3.4] and apply Theorem 2.3 with s = 0 and t = n + 1. �

Asadollahi and Schenzel proved that over local ring (R, m), if X is a Cohen-Macaulay R-module and

t = grade (a, X) then Hom R(R/a, Ht+1
a (X)) is finite if and only if Ext 2

R(R/a, Ht
a(X)) is finite (see [4,

Theorem 1.2]). Dibaei and Yassemi, in [16], generalized this result with weaker assumptions on R and

X . As an immediate consequence of Theorem 4.6, the following is a generalization of [16, Theorem B].

Corollary 4.7. (cf. [16, Theorem B]) Let X be an R–module and n be a non-negative integer. Assume

also that Ext n+1
R (N, X) and Ext n+2

R (N, X) are finite (resp. weakly Laskerian), and Hi
a(X) is a–cofinite

(resp. a–weakly cofinite) for all i, 0 ≤ i < n. Then the following statements are equivalent.

(i) Hom R(N, Hn+1
a (X)) is finite (resp. weakly Laskerian).

(ii) Ext 2
R(N, Hn

a (X)) is finite (resp. weakly Laskerian).

In [12, Proposition 2], Delfino and Marley proved the Change of ring principle for cofiniteness. In

the following theorem, we prove it for Serre cofiniteness. The proof is an adaption of the proof of [12,

Proposition 2].

Theorem 4.8. Let φ : A −→ B be a homomorphism between Noetherian rings such that B is a finite

A–module, a be an ideal of A and X be a B–module. Let S and T be Serre subcategories of C(A) and

C(B), respectively. Assume also that for any B–module Y , Y is in T exactly when Y is in S (as an

A–module). Then X is (T , aB)–cofinite if and only if X is (S, a)–cofinite (as an A–module).

Proof. By [29, Theorem 11.65], there is a Grothendieck spectral sequence

Ep,q
2 := Ext p

B(Tor A
q (B, A/a), X)=⇒

p
Ext p+q

A (A/a, X).

(⇒). For all p and q, by [22, Proposition 3.4], Ep,q
2 is in S. Therefore Ep,q

∞ belongs to S since

Ep,q
∞ = Ep,q

p+q+2 and Ep,q
p+q+2 is a subquotient of Ep,q

2 . Let n be a non-negative integer. There exists a

finite filtration

0 = φn+1Hn ⊆ φnHn ⊆ · · · ⊆ φ1Hn ⊆ φ0Hn = Ext n
A(A/a, X)

such that En−i,i
∞ = φn−iHn/φn−i+1Hn for all i, 0 ≤ i ≤ n. Now, by the exact sequences

0 −→ φn−i+1Hn −→ φn−iHn −→ En−i,i
∞ −→ 0,
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for all i, 0 ≤ i ≤ n, Ext n
A(A/a, X) is in S.

(⇐). By using induction on n, we show that En,0
2 = Ext n

B(B/aB, X) is in T for all n ≥ 0. The case

n = 0 is clear from the isomorphism Hom B(B/aB, X) ∼= Hom A(A/a, X). Assume that n > 0 and that

Ep,0
2 is in T for all p, 0 ≤ p ≤ n − 1. For all r ≥ 2, we have En,0

r+1
∼= En,0

r /Im (En−r,r−1
r −→ En,0

r ).

Thus En,0
r is in T whenever En,0

r+1 is in T because En−r,r−1
r is in T by the induction hypotheses and [22,

Proposition 3.4]. Since En,0
∞ = En,0

n+2, to complete the proof it is enough to show that En,0
∞ is in T . By

assumption, Ext n
A(A/a, X) is in T and hence φnHn is in T . That is En,0

∞ belongs to T as desired. �

Definition 4.9. (see [30]) The R–module X is a minimax module if it has a finite submodule X ′ such

that X/X ′ is Artinian.

The class of minimax modules thus includes all finite and all Artinian modules. Note that the category

of minimax modules and the category of a–cofinite minimax modules are two Serre subcategories of the

category of R–modules (see [27, Corollary 4.4]).

Proposition 4.10. Let X be an R–module and n, m be non-negative integers such that n ≤ m. Assume

also that

(i) Hi
a(X) is a–cofinite for all i, 0 ≤ i ≤ n − 1,

(ii) Ext i
R(R/a, X) is finite for all i, n ≤ i ≤ m, and

(iii) Hi
a(X) is minimax for all i, n ≤ i ≤ m.

Then Hi
a(X) is a–cofinite for all i, 0 ≤ i ≤ m.

Proof. Apply Theorem 2.3 with s = 0 and t = n for N = R/a and S = Cf.g(R). It shows that

Hom R(R/a, Hn
a (X)) is finite. Thus Hn

a (X) is a–cofinite from [27, Proposition 4.3]. �

Corollary 4.11. (cf. [6, Theorem 2.3]) Let X be an R–module and n be a non-negative integer such that

(i) Hi
a(X) is minimax for all i, 0 ≤ i ≤ n − 1, and

(ii) Ext i
R(R/a, X) is finite for all i, 0 ≤ i ≤ n.

Then Hom R(R/a, Hn
a (X)) is finite.

Proof. By [27, Proposition 4.3], Γa(X) is a–cofinite. Hence Hi
a(X) is a–cofinite for all i, 0 ≤ i ≤ n − 1,

from Proposition 4.10. Thus, by Theorem 2.3, Hom R(R/a, Hn
a (X)) is finite. �

Corollary 4.12. Suppose that X is an R–module and that n is a non-negative integer. Then the following

statements are equivalent.

(i) Hi
a(X) is Artinian a–cofinite for all i, 0 ≤ i ≤ n.

(ii) Ext i
R(R/a, X) has finite length for all i, 0 ≤ i ≤ n.

Proof. (i) ⇒ (ii). Let 0 ≤ t ≤ n. Since Ext t−i
R (R/a, Hi

a(X)) has finite length for all i, 0 ≤ i ≤ t,

Ext t
R(R/a, X) has also finite length by Theorem 2.1.

(ii) ⇒ (i). By Proposition 3.3, Hi
a(X) is Artinian for all i, 0 ≤ i ≤ n. Let 0 ≤ t ≤ n and consider

Corollary 4.11. It shows that Hom R(R/a, Ht
a(X)) is finite and so has finite length. Now, the assertion

follows from [27, Proposition 4.3]. �
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