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Improved efforts are necessary to define the functional product of cancer mutations currently being
revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening
technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and
confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a
high-confidence genetic interaction network of differentially essential or differential essentiality
(DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected
functional modules derived from comparative genomics with model systems data, functions for
uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we
demonstrate a general applicability of DiE gene signatures in determining genetic dependencies
of other non-isogenic cancer cell lines. For example, the PTEN� /� DiE genes reveal a signature that
can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines
derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many
cancer vulnerabilities remain to be discovered through systematic derivation of a network of
differentially essential genes in an isogenic cancer cell model.
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Introduction

A general principle in modern cancer genetics is that the
analysis of genetic lesions in cancer cells should provide
mechanistic insight into cancer cell biology and provide new
avenues for therapeutic intervention (Bell et al, 2011). It is
clear that cancer cells carry many mutations that are not
present in their normal counterparts (Stephens et al, 2009;
Bignell et al, 2010; Hudson et al, 2010; Greenman et al, 2012)
and these cancer-specific mutations may represent genetic
‘vulnerabilities’ for tailored cancer therapy. In particular, the
large-scale identification of mutations leading to genetic
interactions that cause differential essentiality, contextual

lethality or synthetic sickness/lethal (SSL), in a cancer cell-
specific genetic background, should prove particularly fruitful
(Hartwell et al, 1997). For example, mutation of BRCA1 or
BRCA2, paralogous genes that control DNA repair, is asso-
ciated with breast cancer and causes cell death when PARP1 is
also mutated (Bryant et al, 2005; Farmer et al, 2005). PARP1
encodes for poly (ADP-ribose) polymerase (Bryant et al, 2005;
Farmer et al, 2005) and inhibition of PARP1 in BRCA mutant
cells results in the persistence of DNA damage leading to
lethality (Bryant et al, 2005; Farmer et al, 2005). Importantly,
DNA damage is only one of the stress phenotypes of cancer
cells that can be exploited through synthetic lethal approaches
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to reveal therapeutically relevant genetic interactions (Luo
et al, 2009b).

The largest efforts to map genetic interactions have been in
model systems, principally the budding yeast, and these
experiments have shown that genetic interaction networks
are rich in functional information, enabling the discovery of
new biological pathways and prediction of gene function
(Lehner et al, 2006; Costanzo et al, 2010; Horn et al, 2011).
Recently, model organism genetic-interaction maps have been
used to direct experiments in cancer cells. For example, a cross-
species synthetic lethal candidate gene approach correctly
predicted a conserved synthetic lethal interaction between
RAD54B and FEN1 (McManus et al, 2009). However, this
approach has been met with very limited success over the years
(Hartwell et al, 1997). Nevertheless, genetically tractable
model systems have been indispensable at revealing funda-
mental biological principles for over a century and have set the
stage for constructing large-scale maps of genetic interactions
in human cancer cells. Given that the conservation of genetic
interactions in core biological processes (e.g., DNA replication,
DNAdamage response, chromatin remodeling and intracellular
transport) is estimated to beB29% for distantly related species
of yeast (Dixon et al, 2008), it is clear that to understand the
interplay between genetic pathways in human cancer cells we
must build a genetic interaction network from first principles in
a model human cancer cell line. Moreover, the importance of
systematically identifying genetic interactions in cancer cells is
amplified by recent evidence, suggesting that genetic interac-
tions create phantom heritability and may, in part, be at the root
of missing heritability of common traits (Zuk et al, 2012).

Genome-wide mapping of genetic interactions in human
cancer cells has become possible with the development of
large-scale RNA interference (RNAi) libraries and focused
efforts have been made to systematically identify negative
genetic interactions in paired isogenic cancer cell lines, for
example, with mutant RAS (Luo et al, 2009a) and loss of TP53
(Krastev et al, 2011). An alternative screening strategy has
been to use RNAi screens to identify genes required for
proliferation across a panel of cancer cell lines and infer
contextual lethality based on classification of the cell lines
according to specific genomic features (Barbie et al, 2009) or
cancer subtypes (Aarts et al, 2012). Large-scale efforts to
identify differentially essential genes across cancer cell lines
have shown that functional genomic and genomic classifica-
tion schemes yield only partially overlapping results, implying
that functional genomic studies reveal nuances in cancer cell
biology that are not captured by genomic analyses alone
(Cheung et al, 2011; Marcotte et al, 2012; Nijhawan et al, 2012;
Rosenbluh et al, 2012).

The systematic identification of genetic interactions in
cancer cells holds great promise for future development of

effective combination therapies for different types of cancer,
but it also represents a huge logistical hurdle to accomplish
(Bernards, 2012). The ultimate goal of developing a universal
genetic interaction network is to define genetic dependencies
of cancer cells and this requires a standardized approach that
will serve to build a reference network of digenic interactions
in a common genetic background. In order to advance this
goal, we used an established genetic screening platform
(Marcotte et al, 2012) to identify negative genetic interactions
across a small set of isogenic human cell lines. We focused on
negative genetic interactions, because these are more likely to
represent putative ‘targets’ or yield ‘drivers’ for specific cancer
genotypes. Strikingly, even within this small set of queries
we discovered and validated hundreds of negative genetic
interactions, revealed novel functional relationships for
uncharacterized genes and reconfirmed some genetic princi-
ples derived from studies using model organisms.

Results and discussion

Identification of genetic interactions in isogenic
cancer cell lines

To explore the possibility of developing a network of negative
genetic interactions (i.e. SSL) in human cells, we chose six
isogenic cell lines and screened these in parallel using a
standardized genome-scale pooled shRNA screening pipeline
previously established in our lab for identifying genes that are
more essential for proliferation in breast, pancreatic and
ovarian cancer cells (Figure 1A; Marcotte et al, 2012). The
HCT116 genetic background was chosen because it is near
diploid with intact DNA damage and spindle checkpoints
(Waldman et al, 1996), HCT116 cells are genetically tractable
with gene replacement technologies (Waldman et al, 1996) and
there is a large number of derived cell lines that are well
characterized and available for study (Shirasawa et al, 1993;
Jallepalli et al, 2001; Traverso et al, 2003; Lee et al, 2004;
Hiyama et al, 2006). The ‘query’ genotypes chosen were
PTTG1� /� , BLM� /� , MUS81� /� , PTEN� /� and KRASþ /�

(Figures 1B–F). These queries represent a functionally diverse
set of genes involved in different biological processes. We
screened the parental cell line and each of the five query or
‘mutant’ cell lines in biological triplicate using a pool of 78 432
unique shRNAs targeting 16 056 human genes (Moffat et al,
2006; Marcotte et al, 2012), testing B400 000 gene–shRNA or
B80 000 gene–gene interactions. For each replicate screen, we
examined multiple time points as the populations proliferated
and evolved in culture, and observed very good correlation
between replicates (Supplementary Figures S1A and B; R¼ 0.9–
0.99 for replicates). The abundance trend of each hairpin at
different timepoints was used to compute a dynamic hairpin-

Figure 1 (A) Workflow for the identification of genetic interactions using pooled shRNA screens. E, essential gene; NGI, negative genetic interaction. (B–F) Simplified
schematics showing the major functions of the five query genes (boxed in bold) that were screened for negative genetic interactions. (G–K) Scatter plot of zGARP scores
for parental and query cell lines from primary screens. Negative genetic interactions (Po0.05) with the query genes are indicated in red, whereas genes that are
essential in both parental and mutant lines are highlighted in blue. (L) Experimental setup for the HCS-based co-culture assay and representative images from PTTG1
competition assay at days 2 and 7 for control and DHFR knockdown conditions. The PTTG1þ /þ cells are in red and the PTTG1� /� cells are in green. The green and
red vertical bars at the side of each image represent the proportion of red/green cells within that image as determined by image analysis. (M–Q) Results from the
secondary competition assays for each of the five query genes. The y-axis represents the average fitness ratio of mutant cells versus parental cells (n¼ 2). The black line
represents the mean of the lowest drop from mock-transfected cells (n¼ 25). The green dotted lines represent the highest and lowest distribution of the mock-
transfected cells with 80% CI. Red dots are genes that were examined in more detail in tertiary assays.
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level score termed shARP (Supplementary Figures S1G–K and
Supplementary Table S1) and, from this, a gene-level essenti-
ality score termed GARP, which is the average shARP scores for
the top two performing shRNAs for each gene (Supplementary
Information; Marcotte et al, 2012). A scatter plot of the
normalized GARP (i.e., zGARP) scores for each query gene
compared with the parental control cell line revealed many
candidate genetic interactions by differential zGARP (i.e.,
dGARP) for each of the query genes (Figures 1G–K). To reduce
the number of false positives inherent to RNAi screens, we also
performed genome-scale microarray gene expression profiling
experiments on parental HCT116 cells and in all five query cell
lines in order to measure target mRNA levels, and used these
levels to determine a threshold for the presence/absence (see
Supplementary Information). Therefore, using stringent nega-
tive dGARP scores (Po0.05; Supplementary Figures S1L–P and
Supplementary Table S2) and filtering for mRNA target gene
expression (i.e., the presence/absence; see Supplementary
Table S3), we generated a network of negative genetic inter-
actions across the five query genes consisting of 2014 nodes and
2617 edges, which we will refer to hereafter as a differential
essentiality (DiE) network (Supplementary Figure S2A).

In order to confirm a subset of the negative genetic
interactions identified in our DiE network for each of the
query genotypes, and to help rule out that our primary
screening results were not due to RNAi off-target effects
(Moffat et al, 2007; Kaelin, 2012), we designed five separate
colored competition assays, one for each query, where equal
numbers of parental cells expressing red fluorescent protein
and query cells expressing green fluorescent protein were
mixed and cocultured following knockdown of putative
SSL genes using orthogonal siRNA reagents (Figure 1L and
Supplementary Information). Putative SSL genes were
selected for confirmation by considering target expression,
GARP scores (Po0.05), shARP scores (Po0.01), differential
gene expression between the parental and query cells, and
yeast orthology (Supplementary Figure S2B), as we antici-
pated exploiting the large-scale mapping of genetic and
chemical–genetic networks from yeast to validate some of
the genetic interactions we observe in the DiE network
(Supplementary Figure S2A). Mixtures of parental and query
cells were reverse transfected with siRNAs and the relative
ratio of red-to-green cells, respectively, was determined every
day for 7 days by automated microscopy and image analysis
(Figure 1L) after normalizing for growth differences between
the parental and derived cell lines (Supplementary Figures
S2C–G). As siRNAs can have a transient effect over the course
of 7 days, we used the greatest fold-change in red-to-green cells
from two independent replicates to calculate a relative fitness
score for query versus parental cells. A total of 826 genetic
interactions were tested across five assays and 200 unique
negative genetic interactions (24.2%) were confirmed to
differentially decrease the fitness of the query cells compared
with the parental cells (80% CI; Figure 1M–Q and
Supplementary Tables S4 and S5).

We tested a small number of interactions across all the five
colored competition assays to examine the specificity of each
genetic interaction. For example, HKDC1 was identified in
the KRAS primary screen and knockdown in the secondary
assays showed synthetic lethality specific to the KRASG13D/�

genotype (Supplementary Figure S2H). Another example is
KPNA6, which was identified in both the PTTG1 and MUS81
primary screens, and was subsequently shown to be
synthetic lethal only in these genotypes in the secondary
validation screens (Supplementary Figure S2I). In contrast,
some of the hits from the primary screen were not validated
in the secondary assays (e.g., ESPL1 in PTTG1 assay;
Supplementary Figure S2J), but were validated using shRNAs
(see below). Lastly, hits like RASSF2, which was identified in
the primary PTEN screen, also validated in the secondary
screen (Supplementary Figure S2K). However, RASSF2 knock-
down was also found to be synthetic lethal with KRASG13D/� in
the secondary screen (Supplementary Figure S2K), but did not
emerge as a hit in the primary KRAS screen. This small set of
specificity tests demonstrates that our secondary validation
assays largely recapitulate the specificity of our primary
genetic interaction data.

As mentioned above, one of our goals was to use
comparative genomics to identify genetic interactions that
may be conserved between HCT116 cells and model systems.
By using InParanoid to identify orthologs, which depends on
bidirectional best BLAST hits (O’Brien et al, 2005), we
observed that several established functional orthologs were
not represented. For example, human ESPL1 shows a strong
negative genetic interaction with PTTG1 and is orthologous to
yeast ESP1 (Ciosk et al, 1998), which was not reported in
InParanoid. Thus, using overly stringent orthology mapping
will underestimate the number of conserved genetic interac-
tions. To identify a larger set of functional orthologs, we
developed a less stringent orthology mapping algorithm to
identify the most probable orthologs of human genes in model
organisms based on eggNOG 2.0 (Muller et al, 2010), which we
refer to as MP-eggNOG (Supplementary Figure S3A and
Supplementary Table S6). The eggNOG uses orthologous
clusters to detect protein relationships, resulting in an
increased number of cross-species orthologs compared with
alternative algorithms (Supplementary Figures S3B and C),
whereas the MP-eggNOG introduces an additional filtering
step that prevents overestimation of orthologous relationships
(Supplementary Figure S3D and see Supplementary Informa-
tion). Overall, 200 negative genetic interactions were con-
firmed from the five query screens (Po0.05; Supplementary
Table S5) and 90 non-redundant interactions were predicted as
conserved (Supplementary Table S7). A high-confidence DiE
network of confirmed and/or conserved negative genetic
interactions containing 264 nodes and 291 edges is shown
in Figure 2.

Properties of the differential essentiality network

Our high-confidence DiE network (Figure 2) in cancer cells
recapitulates some general properties of model organism
genetic networks. For example, these networks are highly
complex, with query genes showing dozens of confirmed
interactions on average (Figure 2). We next considered how
the DiE network of negative genetic interactions could be used
for: (a) assessing functional conservation, (b) building
functional modules, (c) discovering functions for uncharacter-
ized genes, (d) revealing targetable vulnerabilities and (e)
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evaluating the relationship between differential essentiality
and differential mRNA expression.

Functional conservation
One objective of the genetic interaction mapping in model
systems such as S. cerevisiae is to provide a template for
predicting conserved interactions in mammalian cells. Using
InParanoid and MP-eggNOG to map orthologs, we did not find
significant conservation of genetic interactions between our
data and the yeast genetic interaction network (Supplementary
Table S7), which may reflect the sparse overlap between genes
tested in both networks. For example, genetic networks in
yeast are currently underrepresented for highly conserved
essential genes (Li et al, 2011). Nonetheless, we identified
several biologically compelling examples of conserved genetic

interactions and predicted 65 non-redundant conserved
interactions in different model systems across all five of our
queries (Supplementary Figure S2A and Supplementary
Table S7). For example, several interactions we identified for
KRAS were supported by data from other species including:
P91029, UNC62 and Q8l120 in worms and PP2A, MPIP
and TFDP in fly cells (Supplementary Figure S3E and
Supplementary Table S7).

One of the queries in our screens, PTTG1, encodes the
evolutionarily conserved protein securin, which inhibits
separase (encoded by ESPL1), a protein that is important for
progression through mitosis (Figure 1D and Zou et al, 1999).
As mentioned above, we observed a strong negative genetic
interaction between PTTG1 and ESPL1/separase (Po0.001;
Figure 1I and Supplementary Figure S4A). Separase is a
protease that cleaves cohesin to promote sister chromatid
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separation during mitosis, and loss of securin or separase leads
to genome instability and a delay in anaphase progression in
HCT116 colon cells (Supplementary Figure S4B and Jallepalli
et al, 2001) and in model systems. It is noteworthy that securin
and separase have a negative genetic interaction in budding
yeast (Ciosk et al, 1998), suggesting that the functional
connection between the securin and separase genes is
evolutionarily conserved.

We also recovered a conserved negative genetic interaction
with BLM and TOPBP1 (Figure 1G). Deletion of the
orthologous genes, SGS1 and DPB11, in S. cerevisiae results
in synthetic lethality manifested as a synergistic increase in
the gross chromosomal rearrangement rate, a characteristic
feature of genomic instability, and DNA replication damage
(Myung and Kolodner, 2002). In mammalian cells, TOPBP1
activates ATR, a major regulator of the DNA damage response
that is present at sites of replication damage, which can be
assayed by measuring g-H2AX foci, a reporter of DNA
damage that marks DNA double-strand breaks and stalled
replication forks (Paulsen et al, 2009). Accordingly, we
examined whether the absence of both BLM and TOPBP1
causes accumulation of unrepaired DNA breaks by monitor-
ing g-H2AX foci in BLM� /� cells knocked down for TOPBP1
and found that the BLM-TOPBP1 double-mutant cells
displayed 3.5-fold more g-H2AX foci (Supplementary
Figures S5A–C), suggesting that loss of both BLM and

TOPBP1 compromises ATR signaling in response to sponta-
neous DNA damage, resulting in stalled DNA replication
forks, enhanced genome instability and subsequent lethality
(Supplementary Figure S5D).

Functional modules
One possible outcome of the DiE network is that the genes that
are connected to each of the query genes are more functionally
related to each other than a random set of expressed genes. In
order to investigate the relationship between genes in the DiE
network, we gathered evidence of genetic or physical
interaction data in the literature, including data from model
organism studies, then propagated subnetworks for each
query. Clusters of densely connected functional modules
emerged for each of the five query genes (Supplementary
Figures S6A–E and Supplementary Table S8). For example, one
functional module with the query gene MUS81 revealed a
densely connected network of genetic and physical relation-
ships (Figure 3A), including negative genetic interactions with
different members of the same protein complex, including
FANCD2, UAF1 and USP1 (Cohn et al, 2007; Murai et al, 2011).

MUS81 encodes an endonuclease that cleaves 30-ends at stalled
replication forks to help repair DNA interstrand crosslinks (ICLs)
along with other nucleases (Wang et al, 2011), and FANCD2
encodes a key regulator of the Fanconi Anemia (FA) pathway that
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also repairs ICLs. ICLs present a threat to genome stability, as
they inhibit essential processes such as DNA replication and
transcription (Cohn et al, 2007). Chromatin-associated FANCD2
must be de-ubiquitinated in order to maintain a non-chromatin-
bound pool of FANCD2 to repair ICLs throughout the genome,
and UAF1 and USP1 physically interact in a complex with
FANCD2 to promote de-ubiquitination of FANCD2 and main-
tenance of the non-chromatin-bound pool of FANCD2 (Cohn
et al, 2007). Consistent with the idea that MUS81 functions in a
pathway parallel to the FA pathway to repair persistent ICLs
along with other nucleases (Wang et al, 2011), we observed that
MUS81� /� cells depleted for UAF1 contained 3.5-fold more
g-H2AX foci than isogenic MUS81þ /þ cells (Figure 3B). We also
observed a significant increase in g-H2AX foci in MUS81� /�

cells depleted for either USP1 or FANCD2 compared with
MUS81þ /þ control cells (Figure 3B). Taken together, our results
indicate that UAF1, USP1 and FANCD2 are critical in the absence
of MUS81 for the repair of damaged DNA and help delineate a
parallel genetic pathway involved in repair of ICLs (Figure 3C).
To date, it has been difficult to compare genetic interaction data
across species and between different studies; however, the idea of
combining genetic and physical interaction data from studies in
model systems with different orthology mapping tools to predict
‘functional modules’ can lead to dense clusters of genes that are
functionally related in human cells.

Functional discovery
As observed for the genetic interaction landscape of
S. cerevisiae, the position and connectivity of genes on the
genetic interaction network provides a precise prediction of
gene function, resolving pathways and identifying their
regulators and functional connections (Costanzo et al, 2010).
Approximately 23% of the genes in our high-confidence DiE
network had uncharacterized functions (see Supplementary
Information). For example, TTC31 is an uncharacterized gene
that encodes a tetratricopeptide repeat-containing protein that
was found to be more essential for proliferation in PTTG1� /�

and PTEN� /� cells compared with their PTTG1þ /þ and
PTENþ /þ counterparts, respectively (Figure 2). We validated
these observations by rescuing the synthetic lethal effect in
PTTG1� /� cells following knockdown with sh2-TTC31 by
expressing a TTC31 shRNA-resistant construct. Briefly, we
constructed wild-type (TTC31-V5) and shRNA-resistant
(TTC31-shR-V5) versions of TTC31 that were epitope tagged
with V5 and found that the expression of TTC31-shR-V5
allowed for proliferation in PTTG1� /� cells in the presence of
sh2-TTC31, whereas TTC31-V5 did not allow for proliferation
in the presence of sh2-TTC31 expression (Figures 4A and B).

On the basis of its genetic interaction with PTTG1, we
hypothesized that TTC31 functions in maintaining chromo-
some stability, and found that knockdown of TTC31 with two
independent shRNAs in HCT116 cells resulted in bipolar
spindles that contained multiple NEDD1/Pericentrin struc-
tures, which are considered structural markers of the centro-
some (Figures 4C and D). Notably, cells depleted for TTC31
displayed chromosome congression defects (Figures 4C and
E), which were validated by immunostaining for Aurora B, a
kinase that regulates bi-orientation of the mitotic spindle
(Supplementary Figure S7A). Knockdown of TTC31 in

PTTG1� /� cells resulted in lethality with most of the cells
having high heterogeneity in nuclear morphology and multiple
centrosomes (Supplementary Figures S7B and C). We
observed a similar phenotype of supernumerary centrosomes
in HeLa cells depleted for TTC31 (Supplementary Figure S7D),
suggesting that TTC31 regulates centrosome duplication.

To further explore the function of TTC31 in centrosome
duplication, we performed time-lapse microscopy in HeLa
cells stably expressing NEDD1-GFP (Lawo et al, 2009) in the
presence and absence of TTC31 following knockdown of
TTC31 with two independent shRNAs. Formation of additional
centrosome structures was observed in B15% of mitotic cells
(Figure 4F). We hypothesized that these additional centrosome
structures may be due to either overduplication of centrioles or
defects in centrosome integrity. To test this idea, we monitored
centrioles in HCT116 cells and found that TTC31-depleted cells
in mitosis frequently had more than four centrioles within a
single cell (Figure 4G). Taken together, these results suggest
that overduplication of centrioles are the cause of multiple
centrosomes in TTC31-depleted cells. Moreover, the negative
genetic interaction between TTC31 and PTTG1 likely reflects
both the failure of TTC31-depleted cells to properly regulate
centrosome duplication and chromosome instability in
PTTG1� /� cells, the combination of which results in mitotic
catastrophe.

An additional example of a gene with a strong negative
genetic interaction with PTTG1� /� was ZC3H13 (Po0.05), a
previously uncharacterized gene exhibiting frame-shift muta-
tions in gastric and colorectal cancers with microsatellite
instability (Wang et al, 2004). We confirmed this synthetic
sick/lethal effect using two independent shRNAs targeting
ZC3H13, each of which were capable of knocking down the
75-kDa isoform of ZC3H13; sh2-ZC3H13 also knocked down
the 240-kDa isoform of ZC3H13 (Figure 4H). Importantly, we
also noticed that the levels of two ZC3H13 isoforms fluctuated
across multiple pancreatic cancer lines and that a portion of
the ZC3H13 protein shared sequence homology with the yeast
PDS1/securin protein (Supplementary Figures S8A and B).
ZC3H13 is regulated in a cell cycle-dependant manner, with
levels peaking in the G1–S phase of the cell cycle and
degradation occurring before the G2–M phase and accumula-
tion of PTTG1/securin (Figure 4I). In the absence of PTTG1,
ZC3H13 levels persist into mitosis as indicated by the peak
level of cyclin B1 (Figure 4I), suggesting that accumulation of
PTTG1 correlates with destruction of ZC3H13 in cells that
express PTTG1.

We next explored the effects of knocking down ZC3H13 on
mitotic phenotypes using the mitotic marker phospho-histone
H3 and the centrosomal marker NEDD1. In control cells when
the NEDD1 markers were 6–7 mm apart, a metaphase plate
was clearly evident (Figures 4J and K). By contrast, in cells
knocked down for ZC3H13, where the NEDD1 markers were
46–7 mm apart, the chromosomes were largely dispersed and
not congressed to the metaphase plate (Figures 4J and K).
Notably, proteomic approaches identified ZC3H13 copurifying
with centromeric proteins such as CENP-A (Obuse et al, 2004),
suggesting that ZC3H13 might have a key role in chromosome
segregation. Consequently, we monitored two key spindle
checkpoint proteins, BUBR1 and CENP-E, in the presence of a
control shRNA (shRFP), and found that in PTTG1þ /þ cells the
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levels of BUBR1 and CENP-E increased at the kinetochore
during prometaphase and decreased at metaphase (Figures
4L–N). By contrast, in PTTG1þ /þ cells depleted of ZC3H13
with two independent shRNAs (sh1- and sh2-ZC3H13), BUBR1
and CENP-E did not increase substantially at the kinetochores
even during prometaphase (Figures 4L–N). These observa-
tions suggest that ZC3H13 has a functional role in the spindle
assembly checkpoint (Supplementary Figure S8D). Taken

together, we have implicated both TTC31 and ZC3H13 in
critical cell cycle processes by inferring these roles from
genetic interactions with PTTG1.

Targetable vulnerabilities
Another reason to map synthetic lethal networks in tumor cells
is to identify chemical–genetic relationships that reveal
possible susceptibilities. We highlight two examples of genetic
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interactions in our high-confidence DiE network that represent
potential cancer cell vulnerabilities. The first example is a
strong negative genetic interaction between PTTG1 and DHFR,
an enzyme that reduces dihydrofolic acid to tetrahydrofolic
acid (Figures 1I and O). It is noteworthy that this relationship
was predicted in yeast based on chemical–genetic profiling
experiments, which found that the yeast securin gene, PDS1, is
haplo-insufficient when cells are treated with methotrexate
(MTX), a potent and specific inhibitor of DHFR activity
(Po1.5e� 7; Hillenmeyer et al, 2008). Both PDS1 and DHFR
yeast genes are essential in yeast cells; hence, we first
confirmed this chemical–genetic observation in yeast by
treating a haploid mutant yeast strain carrying a tempera-
ture-sensitive hypomorphic allele of yeast securin, pds1-128,
with MTX and found that these cells were indeed hypersensi-
tive to MTX as compared with the isogenic wild-type yeast
strain (Supplementary Figure S9A; Po0.01). These results
demonstrate that the PTTG1–DHFR negative genetic interac-
tion in human cells is evolutionarily conserved and consistent
with the chemical–genetic interaction in yeast between MTX
and PDS1. On further examination of the PTTG1–DHFR
negative genetic interaction in human HCT116 cells, we
noticed that knockdown of DHFR with two independent
shRNAs in PTTG1þ /þ cells, or treatment of these cells with
MTX, resulted in abnormal spindles and binucleated cells
consistent with genomic instability (Figures 5A–C). Similar
observations were also made in HeLa cells (Supplementary
Figure S9B) and in HT29 cells (de Anta et al, 2006).

As DHFR is important for maintaining cellular nucleotide
pools necessary for DNA synthesis and PTTG1 functions in cell
cycle progression to prevent precocious separation of sister
chromatids, we reasoned that DHFR and PTTG1 might be
co-expressed. By analyzing the expression data across a set of
B300 cancer cell lines, we found a positive correlation
between PTTG1 and DHFR expression (Supplementary
Figure S9C; R¼ 0.458; P-valueo0.01). Given the clinical
importance of MTX and associated resistance mechanisms

linked to cancer relapse (Schimke, 1986), we re-examined the
expression profiles previously generated from seven MTX-
sensitive and -resistant paired cell lines (Selga et al, 2009) and
observed that both PTTG1 and ESPL1 expression were tightly
correlated with sensitivity and resistance to MTX (Figure 5D;
Po2.2�10�16). These results suggest that PTTG1 and ESPL1
expression may be useful markers to predict heightened
resistance to MTX.

The second example of a chemical–genetic relationship that
represents a possible vulnerability stems from the observation
of a negative genetic interaction between KRASG13D and CD83,
which are genes that encode a cell surface protein whose
function is unclear but is thought to be involved in
immunosuppression (Breloer and Fleischer, 2008). Normally,
wild-type KRAS is thought to act downstream of EGFR to
promote proliferation, survival, motility and a number of other
biological functions necessary for cellular proliferation,
whereas mutant gain-of-function KRASG13D circumvents many
EGFR functions by acting downstream of EGFR (Figure 4E).
We discovered a strong negative genetic interaction between
KRASG13D and CD83 in our primary HCT116 screens
(Figure 1K) and in the secondary competition assay between
KRASG13D/þ and KRAS� /þ cells (Figure 1Q). In addition to
these screens, which were performed in the HCT116 genetic
background, we also screened a different colorectal cancer cell
line, LIM1215 cells, which harbor wild-type alleles of KRAS
and EGFR, and are sensitive to the antibody drug Cetuximab
(also known as Erbitux), which blocks EGFR signaling
(Figure 5E). The dropout screens in LIM1215 cells were carried
out using the same genome-scale lentiviral-based shRNA-
pooled approach as described above for the HCT116 query cell
lines, both in the presence and absence 10mg/ml of Cetuximab
(i.e., IC20), in order to discover genes that would sensitize
LIM1215 cells to Cetuximab (Figure 5F). CD83 showed a strong
synthetic lethal effect with the addition of Cetuximab to
LIM1215 cells (Figure 5G; Po0.05). The synthetic lethal
interaction between Cetuximab or KRASG13D and CD83 was

Figure 4 Functional discovery based on genetic interactions. (A) Top panels shows the western blot of total cell lysates expressing both wild-type (TTC31-V5) and
shRNA-resistant (TTC31-shR-V5) TTC31 protein tagged with V5 in PTTG1� /� and PTTG1þ /þ cell lines. The bottom panel shows the effect of two independent
shRNAs in TTC31-V5 and TTC31-shR-V5. TTC31 was knocked down by infecting HCT116 cells with two independent hairpins targeting TTC31, followed by a western
blot with anti-V5 antibody to confirm on-target knockdown. (B) Rescue experiment showing the on-target effect of sh2-TTC31 as evaluated by the percentage inhibition in
growth WT-TTC31-expressing cells relative to shR-TTC31-expressing cells. (C) Immunofluorescence microscopy images of PTTG1þ /þ cells expressing control shLacZ
(top) or sh2-TTC31 (bottom). Centrosomes are indicated by pericentrin (red) and NEDD1 (green) staining, and the nucleus was detected with DAPI (blue). Arrowheads
indicate lagging chromosomes. (D and E) Quantification of cells with abnormal spindle morphology and cells with congression defects was performed by analyzing at
least 100 cells (n¼ 3). **P-valueo0.01 calculated using w2-test. Scale bar, 4 mm. (F) Time-lapse imaging of HeLa cells stably expressing the centrosome marker
NEDD1-GFP. Cells were either infected with the negative control shRNA targeting LacZ or with two independent shRNAs against TTC31 (sh1- or sh2-TTC31). Frames
taken at the indicated time points (h:min) relative to entry into mitosis are shown. Scale bar, 10 mm. (G) Localization of centrin structures in PTTG1þ /þ cells expressing
shLacZ control or one of two independent shRNAs against TTC31 (sh1- or sh2-TTC31). DNA and centrosomes were labeled as in C. Representative prometaphase,
metaphase and anaphase cells with supernumerary centriole phenotypes are shown. Insets are fourfold magnifications of centrosomal regions. Scale bar, 10 mm.
(H) Top panels shows the western blot of total cell lysates expressing two isoforms of ZC3H13 in PTTG1þ /þ cells. ZC3H13 was knocked down by infecting HCT116
cells with two independent hairpins (sh1- and sh2-ZC3H13) and followed by western blot with an anti-ZC3H13 antibody (Abcam). The bottom panel shows the negative
genetic interaction of two independent shRNAs as assessed by proliferation. (I) Western blot analysis of whole-cell lysates showing the cell cycle-dependant regulation of
ZC3H13 in PTTG1� /� and PTTG1þ /þ cell lines. The first four lanes represent the time after release from double thymidine block and the last two lanes from
thymidine-nocodazole block. The levels of different cyclins fluctuate across different phases of cell cycle and are used as controls. (J) Immunofluorescence microscopy
images of PTTG1þ /þ cells expressing a negative control shRNA, shRFP (top), or sh2-ZC3H13 (bottom). NEDD1 antibody (green) was used to stain for centrosomes
and phosphohistone H3 antibody (red) to stain for mitotic cells. Nuclei were stained with Hoechst stain (blue). The distances between the poles are shown for
representative cells. (K) Quantitation of chromosome congression defects in control as well as cells following ZC3H13 knockdown from two independent experiments. A
minimum of 30 cells were counted in each case. *Po0.01, Student’s t-test. (L) Immunofluorescence microscopy of spindle checkpoint proteins CENP-E and BUBR1 in
PTTG1þ /þ cells expressing the control shRFP (top) or sh2-ZC3H13 (bottom). Cells were stained with BUBR1 antibody (green) and CENP-E antibodies (red). Nuclei
were stained with Hoechst stain (blue). (M and N) Quantitation of localization defect of spindle checkpoint proteins, measured as the sum of mean fluorescence intensity
of BUBR1 or CENP-E in each cell. The aggregate results from two independently infected cell populations are shown with either shControl, sh1-ZC3H13 or sh2-ZC3H13.
Thirty to 50 cells were counted in each case. **Po0.001, **Po0.01 by Student’s t-test.
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confirmed with three independent shRNAs targeting CD83
(sh1-, sh2- and sh3-CD83) in LIM1215 and HCT116-KRASG13D

cells, respecitively (Figures 5H and I).
In order to further confirm these results and ensure that our

observations were not due to off-target effects of the shRNAs

(Moffat et al, 2007), we rescued the growth inhibition caused
by sh1-CD83 by expressing an shRNA-resistant CD83 cDNA
construct, sh1R-CD83-GFP, in HCT116-KRASG13D cells
(Figure 5J). Both the WT-CD83-GFP and sh1R-CD83-GFP
fusion proteins were found to be properly localized to the cell
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membrane in HCT116-KRASG13D cells as determined by micro-
scopy (Figure 5K). Lastly, we examined whether the genetic
interaction between Cetuximab and CD83 still occurred in the
context of an in vivo tumor xenograft model. For this
experiment, we established LIM1215 tumor xenografts in
NOD/SCID mice with and without CD83 knockdown, using
sh1-CD83, by injecting 5e6 cells subcutaneously (Figure 5L).
Ten days post injection, we performed injections of Cetuximab,
or a sham injection, two times weekly (Figure 5L). After 35 days,
the tumors were collecetd and measured for differences in size.
The sh1-CD83 knockdown tumors were 42-fold smaller than
the tumors expressing the negative control shLacZ (P¼ 0.038)
or the untransduced LIM1215 cells (P¼ 0.0006; Figure 5M).
Taken together, these results support the idea that CD83 could
be acting in a parallel genetic pathway with EGFR and KRAS to
impinge on essential biological functions necessary for cell
growth, both in vitro and in vivo (Figure 5N).

Differential essentiality versus differential expression
Integrating differential gene expression with the DiE network
adds context to certain genetic interactions (Luscombe et al,
2004; Ideker and Krogan, 2012). We examined the union of
negative genetic interactions and differential gene expression,
as increased gene expression may indicate a proliferation
requirement for a specific gene product in the mutant query
cells used in our screens (Figures 1B–F). Although there was
no significant correlation between differential gene expression
and differential essentiality amongst the query genes in our
DiE network, there were some striking examples. For example,
we applied this approach to the PTEN screen by filtering
confirmed PTEN-negative genetic interactions with outlier
genes that showed increased expression in the PTEN� /�

mutant cells compared with the PTENþ /þ cells. Notably, the
Ras Asociation Domain Family 2 (RASSF2) exhibited a
negative genetic interaction with PTEN (Figures 1J and P)
and had higher expression levels of RASSF2 in PTEN� /� cells
relative to PTENþ /þ cells (Figure 6A and Supplementary
Figure S10A). RASSF2 is a tumor suppressor gene that
functions as an effector of RAS signaling (Akino et al, 2005).
Moreover, AKT and RASSF2 both regulate MST1/2 (Cooper
et al, 2009; Romano et al, 2010), a central kinase in the Hippo
signaling cascade that negatively regulates Yes-associated
protein 1 (YAP1), a transcriptional co-activator with both

oncogenic and tumor suppressor activities (Lapi et al, 2008;
Song et al, 2010). We reasoned that the combined loss of PTEN
and RASSF2 causes cell death through the Hippo signaling
cascade (Supplementary Figure S10B). Consistent with this
hypothesis, we found that PTEN� /� cells had elevated YAP1
protein levels, which were further increased when RASSF2
was knocked down (Figure 6B and Supplementary Figure
S10C). We also observed that HCT116-PTEN� /� cells depleted
for either RASSF2 or the Hippo pathway component LATS1
showed a greater apoptotic response to cisplatin treatment
(Figure 6C), consistent with the observation that YAP1
mediates apoptosis in response to cisplatin treatment in
HCT116 cells (Lapi et al, 2008). The dual oncogenic and
tumor suppressor activities of YAP1 provide an explanation for
how the loss of two proapoptotic tumor suppressor proteins
(RASSF2 and PTEN) results in decreased cell survival mediated
by the Hippo signaling pathway (Supplementary Figure S10B).

It is well known that the PTEN/AKT pathway promotes
glucose uptake and metabolic reprogramming in cancer cells
(Elstrom et al, 2004). Our data revealed a strong genetic
interaction between PTEN and the glycolytic enzyme ENO2
(Figure 1J) that was confirmed in a PTEN competition
assay (Figure 1P). Remarkably, the expression of ENO2
was upregulated 42-fold in HCT116-PTEN� /� cells relative
to isogenic HCT116-PTENþ /þ cells (Figure 6A and
Supplementary Figure S10D). ENO2 encodes g-enolase, also
known as phosphopyruvate dehydratase, and acts in the
penultimate step of glycolysis. Enolase activity is essential
and, in humans, is imparted by the functionally redundant
genes ENO1 and ENO2. Consistent with our observations in
human cells, we also observed a striking negative genetic
interaction between Pten and Eno1 in Pten� /� mouse
embryonic fibroblasts compared with Ptenþ /þ isogenic
mouse embryonic fibroblast cells (data not shown). To further
explore the mechanism of this genetic interaction, we knocked
down ENO2 protein expression with two independent shRNAs
targeting ENO2 message, and observed a significant reduction
in phospho and total AKT levels, but only in PTEN� /� cells
(Figure 6D and Supplementary Figures S10E–F). These results
are consistent with a model, whereby ENO2 may act in a
negative feedback loop to activate AKT and maintain a high
rate of glycolysis (Supplementary Figure S10G).

We extended the same analytical approach to identify
negative genetic interactions with oncogenic KRAS, and at

Figure 5 Targetable vulnerabilities revealed through genetic interactions. (A) Pericentrin (red) and NEDD1 (green) staining for centrosomes and DAPI staining (blue)
to indicate nuclei in PTTG1þ /þ cells depleted after the knockdown of DHFR. (B) Representative images from a live-cell experiment, where PTTG1þ /þ cells were
treated with 500 nM of MTX. Spindles were monitored with TUBB2C-GFP and chromosomes with H2B-BFP (see Supplementary Information for details).
(C) Quantification of abnormal spindle morphology in PTTG1� /� cells expressing a negative control shRNA, shLACZ or PTTG1þ /þ cells expressing shLacZ, shDHFR
or treated with 500 nM MTX. At least 100 cells were analyzed for each experiment (n¼ 3), **Po0.01, w2-test. Scale bar, 6mm. (D) Matrix of relative expression levels of
indicated genes (columns) in isogenic cell lines (rows). Red indicates levels are up and blue levels are down in resistant versus sensitive cells. (E) Schematic depicting
the effect of Cetuximab (CTX) inhibition on EGFR-RAS signaling. (F) Experimental workflow for the identification of synthetic lethal interactions with CTX in LIM1215
cells. (G) Scatter plot of zGARP scores for CTX-treated and -untreated LIM1215 cell lines from primary screens. Genes that are synthetic lethal with CTX (Po0.05) are
highlighted in red, whereas genes that are essential in both untreated and treated lines are highlighted in blue. (H) Synthetic lethal effect of CTX and CD83 shRNA in
LIM1215 cells. Viability/cell number is depicted relative to the negative control shLacZ. Error bars represent 1 s.d. *Po0.05 and **Po0.001 calculated using a one-tailed
Student’s t-test (n¼ 3). (I) Synthetic lethal effect of CD83 knockdown on KRASG13D/� cells is shown. Viability/cell number is depicted relative to the negative control
shLacZ. Error bars represent 1 s.d. *Po0.05 and **Po0.01, one-tailed Student’s t-test (n¼ 3). NS, not significant. (J) Rescue experiment showing the on-target effect
of shRNAs targeting CD83, including sh1-CD83 and sh2-CD83. KRASG13D/� cells expressing GFP-tagged CD83 or CD-83-shR were counted by flow cytometry 6 days
after infection with sh1-CD83, sh2-CD83 or shLacZ as a negative control. (K) Overexpression of either GFP-tagged wild-type CD83, CD83-GFP or GFP-tagged shRNA-
resistant CD83 (shR-CD83-GFP) protein in KRASG13D/� cells showing correct membrane localization. (L) Experimental setup for validation of the negative genetic
interaction between CTX and CD83 in an in vivo xenograft model. (M) Ten mice were dissected for each group and tumors were weighed (n¼ 20). Error bars represent 1
s.d. (N) Schematic depicting possible genetic relationship between EGFR-KRAS and CD83.

Differential essentiality mapping
FJ Vizeacoumar et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 11



the same time genes that are differentially expressed in
KRASþ /� compared with KRASþ /G13D cells. HKDC1, a gene
that encodes an uncharacterized hexokinase domain-containing
protein, was found to be differentially essential in KRASþ /G13D

cells and underexpressed 44-fold in KRASþ /G13D versus
KRASþ /� cells, suggesting that the overexpression of HKDC1
in KRASþ /� is compensating for loss of KRASG13D expression in
these cells (Figure 6E and Supplementary Figure S11A). The
human genome encodes five hexokinases, but only HKDC1 is
generally essential across a compendium of cancer cell lines
previously screened in our lab, many of which harbor activating
mutations in KRAS (Supplementary Figures S11B and C;
Marcotte et al, 2012). Importantly, our results are consistent
with previous observations using the hexokinase inhibitor

3-bromopyruvate, which is highly toxic to HCT116, DLD1,
VACO432 and RKO cells carrying KRAS oncogenic mutations
compared with their isogenic KRAS wild-type controls (Yun
et al, 2009).

As some level of KRAS expression is essential in HCT116
cells (Supplementary Figures S11D and E), we hypothesized
that the KRASþ /G13D cells may overcome the loss of the
KRASG13D allele by upregulating HKDC1 expression. Analysis
of published expression profiles revealed that HKDC1 expres-
sion was upregulated in 807 cell lines and 2158 tumors samples
with a high RAS dependency score (Loboda et al, 2010;
Figure 6F and Supplementary Figures S11F and G). On the
basis of these observations, we further hypothesized that
HKDC1 may have some transforming potential. To test this, we
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using Fisher’s exact test. (G) Western blot analysis showing the overexpression of HKDC1 tagged C-terminally with the VA affinity tag and the LargeT antigen in different
backgrounds. (H) Colony-formation assay in soft agar for HKDC1 overexpression. GFP (pLJM1) and HRASG12V were used as negative and positive controls.
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performed a colony-growth assay in anchorage-independent
conditions and compared the relative ability of HKDC1 and
HRASG12V expression to transform human BJ fibroblasts in the
presence of large Tantigen, a standard cellular transformation
assay. Overexpression of HKDC1 in BJ fibroblasts lead to small-
to-mid size colonies in soft agar that were visible to the human
eye but did not exceed a certain size (Figures 6G and H).
Importantly, the expression of both HKDC1 and HRASG12V was
synergistic, resulting in larger colonies than HRASG12V expres-
sion alone (Figures 6G and H). These results indicate that
upregulation of HKDC1 contributes to anchorage-independent
growth, and its expression tracks with RAS dependency in both
cell lines and tumors. Taken together, our data reveal specific
examples of genes that are both differentially essential and
differentially expressed.

Integrating differential essentiality with variable
cancer genotypes

Up to this point, our study has focused on the generation of a
high-confidence DiE network and validation of specific
negative genetic interactions that represent various network
properties. We next asked the extent to which the digenic
relationships derived from the HCT116 isogenic lines are
generalizable to other non-isogenic lines of different lineages.
As human cancer cell lines are genetically and epigenetically
diverse and there are several large-scale screens that have
defined gene essentiality in non-isogenic lines of different
lineages (Luo et al, 2008; Silva et al, 2008; Barbie et al, 2009;
Brough et al, 2011; Cheung et al, 2011), we tested whether
different negative genetic interaction profiles derived from
isogenic HCT116 cell lines could facilitate the classification of
non-isogenic cancer cell lines into groups with known
genomic features. To explore this idea, we generated negative
genetic interaction profiles for each query (dGARP;
P-valueo0.05) and then evaluated whether differentially
essential genes were enriched for genes more essential for
proliferation across a panel of screens in breast, pancreatic and
ovarian cancer cell lines (GARP; Po0.05) previously gener-
ated in our lab, using the same pooled shRNA library and
standardized screening approach (Figure 7A; Marcotte et al,
2012). As a proof of concept we focused on PTEN, because the
PTEN/PI3K/AKT pathway is frequently activated in breast
cancer cell lines (Brough et al, 2011), which were highly
represented in our compendium of non-isogenic cell line
screens (Marcotte et al, 2012). Importantly, unlike the
signature derived from the other mutant lines, the PTEN� /�

signature derived from the HCT116 isogenic screens (Figure 7A
and Supplementary Figure S13) was significantly enriched
amongst the top 5% of genes that were more essential for
proliferation in cell lines known to be PTEN/PI3K mutant
compared with cell lines harboring wild-type PTEN/PI3K genes
(Figures 7B and C; Po0.0002). Interestingly, the PTEN� /�

signature classified several pancreatic cancer cell lines as more
dependent on the PTEN/PI3K/AKT signaling pathway for
proliferation (Figure 7B), even though some of them are
known to have wild-type PIK3CA and PTEN loci (Cheng et al,
1996; Halilovic et al, 2010). Closer examination of the genes
within this PTEN� /� profile yield a set of candidates that link

diverse biological processes such as transcription, ubiquitina-
tion, metabolism and differentiation (Figure 7D and
Supplementary Table S9). These results indicate that negative
genetic interaction profiling in isogenic cancer cells reveals
gene sets that can group cancer cells into functionally relevant
classes.

Perspective

Systematically defining genetic interactions is a powerful way
to link genotype to phenotype, frequently implicating pre-
viously uncharacterized genes to specific pathways and
complexes. In yeast, the position and connectivity of genes
on a genetic interaction network is highly predictive of gene
function (Costanzo et al, 2010). Our negative genetic interac-
tion network (Figure 2 and Supplementary Figure S2A) with a
small set of queries in isogenic cancer cells recapitulated some
general properties of model organism genetic networks. First,
it is highly complex with query genes showing dozens of
interactions on average. Second, genes with related biological
functions are connected by genetic interactions more often
than expected by chance. For example, a large number of
interactions were shared among BLM, MUS81 and PTEN query
genes, all of which have functions in the DNA damage and
repair pathways (Supplementary Figure S12G; Po10e� 10). In
fact, genes showing negative genetic interactions with MUS81
or BLM were also more likely than random to have annotated
functions involving DNA damage and repair processes
(Supplementary Figures S12E and F; Po0.005), indicating
that these screens identified functionally related genes. Third,
and consistent with classic genetic relationships, our negative
genetic interaction network revealed ‘between pathway’
genetic interactions (e.g., PTEN-ENO2, PTEN-RASSF2, EGFR/
KRAS-CD83, FANCD2/USP1/UAF1-MUS81 and BLM-TOPBP1)
as well as ‘within pathway’ genetic interactions (e.g., PTTG1-
ESPL1, PTTG1-TTC31 and PTTG1-ZC3H13). This study unveils
the incredible potential for mapping genetic relationships in
human cancer cells using existing technologies.

A major objective of mapping negative genetic interactions
in tumor cells is to identify chemical–genetic relationships that
reveal possible therapeutic approaches. We highlight a few
implications of the differential essentiality map with a
possibility of therapeutic application based on the EGFR/
KRAS-CD83, PTEN-ENO2, PTTG1-DHFR and KRAS-HKDC1
negative genetic interactions. Given the clinical relevance of
MTX resistance, we suggest that PTTG1 and ESPL1 could serve
as biomarkers, as these interactions are conserved between
both human HCT116 cancer cells and yeast cells.

The notion of generating a systematic map of genetic
interactions in cancer cells represents one of the missing
links in genotype-directed cancer therapy (Bernards, 2012).
Conceptually, one can imagine using the methodology
presented in the present study to develop a large network of
genetic interactions using many query cell lines, or using
double RNAi as has recently been described (Bassik et al, 2013;
Roguev et al, 2013). In fact, the recent development of the
CRISPR genome editing technology will be highly beneficial in
constructing mutant isogenic lines for any gene of interest
(Cong et al, 2013; Mali et al, 2013). In addition, chemical
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genetic profiles can also be generated and overlaid on the map
to understand the drug’s mode of action, and provide pivotal
insight into potential mechanisms of drug resistance. As
observed for the budding yeast model system (Baryshnikova
et al, 2010), elaboration of a genetic interaction map in cancer
cells should reveal that the position and connectivity of genes
on the map provide a precise prediction of gene function,
resolving pathways and identifying their regulators and
functional connections. Recently, it has been suggested that
genetic interactions may underlie the mystery of ‘missing
heritability’ of common traits that has haunted human
genetics (Zuk et al, 2012). Decades of research have taught
us that genetic interactions have a fundamental role in biology;

hence, this insight comes at an opportune time in cancer
research, as advances in technology permit the systematic
mapping of genetic interactions in tumor cells, which will lead
to an intense understanding of pathways underlying different
cancers and reveal new strategies for therapy and prevention.

Materials and methods
A detailed description of all the methods can be found in the
Supplementary Information. Unless indicated, all the cell lines were
based on the HCT116 genotype. All Supplementary Tables can be
accessed using one of the following links (http://kimLab1.ccbr.utor-
onto.ca/projects/cancer_essential/ or http://moffatlab.ccbr.utoron-
to.ca/resources.php).
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Figure 7 Inferring genetic dependencies on variable cancer genotypes. (A) Schematic outline showing GARP profiles derived from isogenic cell lines on the left and
essential gene profile from 72 non-isogenic cell lines on the right. GARP profiles for each cell line, both isogenic and non-isogenic, is represented as sorted dot plots with
genes on the x axis and cell lines on the y axis. The yellow dots represent those genes that had a significant GARP score (P-value o0.05). Genes are sorted by their
frequency of being essential in the 72 cancer cell lines. The DiE profile contains the significant negative genetic interactions (P-value o0.05, derived as pictured for the
PTEN-null case in the lower left box: red dots, synthetic lethal or sick; blue, general essentials; black, not-influenced genes). We model that the enrichment of genes in
the DiE profile from the isogenic cell lines will be a key feature in defining the genetic dependencies of the non-isogenic cancer cell lines. (B) Jaccard index (defined as
the intersection between the DiE profile of PTEN and the essentials genes (Po0.05) of non-isogenic lines divided by their union) exhibit a higher overlap on average for
those lines that are dependent on PTEN/PI3K pathway (shift in mean is significant, P-value o0.002). (C) The Jaccard index distribution for both the PTEN-dependent
and PTEN-independent sets are plotted as box plot. Dots are extreme values (outliers; defined as having an Jaccard index more than 3/2 times higher as the upper
quartile, which represents 75% of the data), the vertical lines represent the span of maximal to minimal value of non-outliers, the boxes span the upper (75% of the data)
to lower (25% of the data) quartiles, the vertical line represents the median. (D) Heat map showing distributions of genes that exhibit negative genetic interaction with
PTEN and are at the same time more frequently essential (Po0.05) in the PTEN/PIK3-dependent cell lines compared with PTEN/PI3K-independent lines. Red color
histogram shows the frequency in cell lines that are PTEN/PI3K dependent, blue represents the PTEN/PI3K-independent cell lines. Light blue bars give the difference in
frequency between the two sets according to which the heat map is sorted (only genes with a difference in frequency 40.1 and more frequent in PTEN/PIK3-dependent
cell lines are shown).
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for plasmids. We thank Iain Wallace for curating the inhibitor
collection from different resources, Michael Costanzo for providing
updated yeast genetic interactions and Harrison Levy for technical
help. The centrin antibody is a gift from Jeffrey Salisbury. RA is
supported by an Ontario postdoctoral fellowship from the Ministry of
Research and Innovation. JTFY holds a Banting and Best Doctoral
Scholarship from the Canadian Institutes of Health Research (CIHR).
This research was supported through funds from CIHR (JM), Canadian
Foundation for Innovation (JM, CB and BA), the Ontario Ministry of
Innovation GL2 program (CB, BA and JM) and the Canadian Institute
for Advanced Research (JM, BA and CB). JM holds a Tier 2 Canada
Research Chair in Functional Genomics of Cancer.

Author contributions: FJV, JM, BVA and CB conceived the idea. FJV
performed all the primary screens. RA, FJV and PMK performed the
analysis of genetic interaction networks, ortholog mapping and
analyzed the conservation of genetic interaction across different
species. FJVand FSV performed the secondary validation screens, and
generated and analyzed the expression data for all the cell lines. KRB
analyzed the primary screen data. JTFY generated Figure 3B. SL and
FJV.. generated Figures 4Fand G. JHMK, HTand FJV generated Figures
6B, C and D. PM generated Figures 6G and H. AS and GB analyzed the
correlation of expression data for HKDC1 and DHFR. AB, YW and COB
performed the mouse xenograft experiments. YF, FSV, AS, WL, AM,
PM, AE, AD, TK, LP, AF, JW, PMK and MB provided technical support
and reagents. AB, YW, ZW, CAO and JM conceived, designed and
performed experiments related to Cetuximab. FJV and JM performed
or assisted with all the analyses, and wrote and edited the paper with
input from all the authors.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS,
Shumway SD, Toniatti C, Ashworth A, Turner NC (2012) Forced
mitotic entry of S-phase cells as a therapeutic strategy induced by
inhibition of WEE1. Cancer Discov 2: 524–539

Akino K, Toyota M, Suzuki H, Mita H, Sasaki Y, Ohe-Toyota M, Issa JP,
Hinoda Y, Imai K, Tokino T (2005) The Ras effector RASSF2 is a
novel tumor-suppressor gene in human colorectal cancer.
Gastroenterology 129: 156–169

Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF,
Schinzel AC, Sandy P, Meylan E, Scholl C, Frohling S, Chan EM,
Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng
Q, Gupta PB et al (2009) Systematic RNA interference reveals that
oncogenic KRAS-driven cancers require TBK1. Nature 462: 108–112

Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K,
Youn JY, Ou J, San Luis BJ, Bandyopadhyay S, Hibbs M, Hess D,
Gingras AC, Bader GD, Troyanskaya OG, Brown GW, Andrews B,
Boone C, Myers CL (2010) Quantitative analysis of fitness and
genetic interactions in yeast on a genome scale. Nat Methods 7:
1017–1024

Bassik MC, Kampmann M, Lebbink RJ, Wang S, Hein MY, Poser I,
Weibezahn J, Horlbeck MA, Chen S, Mann M, Hyman AA,
Leproust EM, McManus MT, Weissman JS (2013) A systematic

mammalian genetic interaction map reveals pathways underlying
ricin susceptibility. Cell 152: 909–922

Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, Dhir R,
Disaia P, Gabra H, Glenn P, Godwin AK, Gross J, Hartmann L,
Huang M, Huntsman DG, Iacocca M, Imielinski M, Kalloger S,
Karlan BY, Levine DA et al (2011) Integrated genomic analyses of
ovarian carcinoma. Nature 474: 609–615

Bernards R (2012) A missing link in genotype-directed cancer therapy.
Cell 151: 465–468

Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM,
Buck G, Chen L, Beare D, Latimer C, Widaa S, Hinton J, Fahey C, Fu
B, Swamy S, Dalgliesh GL, Teh BT, Deloukas P, Yang F, Campbell PJ
et al (2010) Signatures of mutation and selection in the cancer
genome. Nature 463: 893–898

Breloer M, Fleischer B (2008) CD83 regulates lymphocyte maturation,
activation and homeostasis. Trends Immunol 29: 186–194

Brough R, Frankum JR, Sims D, Mackay A, Mendes-Pereira AM,
Bajrami I, Costa-Cabral S, Rafiq R, Ahmad AS, Cerone MA,
Natrajan R, Sharpe R, Shiu KK, Wetterskog D, Dedes KJ,
Lambros MB, Rawjee T, Linardopoulos S, Reis-Filho JS, Turner
NC et al (2011) Functional viability profiles of breast cancer. Cancer
Discov 1: 260–273

Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle
S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-
deficient tumours with inhibitors of poly(ADP-ribose) polymerase.
Nature 434: 913–917

Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK,
Testa JR (1996) Amplification of AKT2 in human pancreatic cells
and inhibition of AKT2 expression and tumorigenicity by antisense
RNA. Proc Natl Acad Sci USA 93: 3636–3641

Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA, East A,
Ali LD, Lizotte PH, Wong TC, Jiang G, Hsiao J, Mermel CH, Getz G,
Barretina J, Gopal S, Tamayo P, Gould J, Tsherniak A, Stransky N
et al (2011) Systematic investigation of genetic vulnerabilities
across cancer cell lines reveals lineage-specific dependencies in
ovarian cancer. Proc Natl Acad Sci USA 108: 12372–12377

Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M,
Nasmyth K (1998) An ESP1/PDS1 complex regulates loss of sister
chromatid cohesion at the metaphase to anaphase transition in
yeast. Cell 93: 1067–1076

Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, D’Andrea AD
(2007) A UAF1-containing multisubunit protein complex regulates
the Fanconi anemia pathway. Mol Cell 28: 786–797

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang
W, Marraffini LA, Zhang F (2013) Multiplex genome engineering
using CRISPR/Cas systems. Science 339: 819–823

Cooper WN, Hesson LB, Matallanas D, Dallol A, von Kriegsheim A,
Ward R, Kolch W, Latif F (2009) RASSF2 associates with and
stabilizes the proapoptotic kinase MST2. Oncogene 28: 2988–2998

Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS,
Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz St J, Onge RP,
VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S,
Brost RL, Chen Y, Cokol M et al (2010) The genetic landscape of a
cell. Science 327: 425–431

de Anta JM, Mayo C, Sole F, Salido M, Espinet B, Corzo C, Petzold M,
Villa O, Serrano S, Real FX, Mayol X (2006) Methotrexate resistance
in vitro is achieved by a dynamic selectionprocess of tumor
cell variants emerging during treatment. Int J Cancer 119:
1607–1615

Dixon SJ, Fedyshyn Y, Koh JL, Prasad TS, Chahwan C, Chua G,
Toufighi K, Baryshnikova A, Hayles J, Hoe KL, Kim DU, Park HO,
Myers CL, Pandey A, Durocher D, Andrews BJ, Boone C (2008)
Significant conservation of synthetic lethal genetic interaction
networks between distantly related eukaryotes. Proc Natl Acad Sci
USA 105: 16653–16658

Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR,
Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004)
Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:
3892–3899

Differential essentiality mapping
FJ Vizeacoumar et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 15

www.nature.com/msb


Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB,
Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM,
Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA
repair defect in BRCA mutant cells as a therapeutic strategy. Nature
434: 917–921

Greenman CD, Pleasance ED, Newman S, Yang F, Fu B, Nik-Zainal S,
Jones D, Lau KW, Carter N, Edwards PA, Futreal PA, Stratton MR,
Campbell PJ (2012) Estimation of rearrangement phylogeny for
cancer genomes. Genome Res 22: 346–361

Halilovic E, She QB, Ye Q, Pagliarini R, Sellers WR, Solit DB, Rosen N
(2010) PIK3CA mutation uncouples tumor growth and cyclin D1
regulation from MEK/ERK and mutant KRAS signaling. Cancer Res
70: 6804–6814

Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997)
Integrating genetic approaches into the discovery of anticancer
drugs. Science 278: 1064–1068

Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W,
Proctor St M, Onge RP, Tyers M, Koller D, Altman RB, Davis RW,
Nislow C, Giaever G (2008) The chemical genomic portrait
of yeast: uncovering a phenotype for all genes. Science 320:
362–365

Hiyama T, Katsura M, Yoshihara T, Ishida M, Kinomura A, Tonda T,
Asahara T, Miyagawa K (2006) Haploinsufficiency of the Mus81-
Eme1 endonuclease activates the intra-S-phase and G2/M
checkpoints and promotes rereplication in human cells. Nucleic
Acids Res 34: 880–892

Horn T, Sandmann T, Fischer B, Axelsson E, Huber W, Boutros M
(2011) Mapping of signaling networks through synthetic genetic
interaction analysis by RNAi. Nat Methods 8: 341–346

Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR,
Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M,
Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J,
Lane DP, Laplace F et al (2010) International network of cancer
genome projects. Nature 464: 993–998

Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol
8: 565

Jallepalli PV, Waizenegger IC, Bunz F, Langer S, Speicher MR,
Peters JM, Kinzler KW, Vogelstein B, Lengauer C (2001) Securin is
required for chromosomal stability in human cells. Cell 105:
445–457

Kaelin Jr WG (2012) Molecular biology. Use and abuse of RNAi to study
mammalian gene function. Science 337: 421–422

Krastev DB, Slabicki M, Paszkowski-Rogacz M, Hubner NC,
Junqueira M, Shevchenko A, Mann M, Neugebauer KM,
Buchholz F (2011) A systematic RNAi synthetic interaction screen
reveals a link between p53 and snoRNP assembly. Nat Cell Biol 13:
809–818

Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G,
Pandolfi PP, Givol D, Strano S, Lu X, Blandino G (2008) PML, YAP,
and p73 are components of a proapoptotic autoregulatory feedback
loop. Mol Cell 32: 803–814

Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R, Habermann B,
Tagliaferro A, Poser I, Hutchins JR, Hegemann B, Pinchev D,
Buchholz F, Peters JM, Hyman AA, Gingras AC, Pelletier L (2009)
HAUS, the 8-subunit human Augmin complex, regulates
centrosome and spindle integrity. Curr Biol 19: 816–826

Lee C, Kim JS, Waldman T (2004) PTEN gene targeting reveals a
radiation-induced size checkpoint in human cancer cells. Cancer
Res 64: 6906–6914

Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006)
Systematic mapping of genetic interactions in Caenorhabditis
elegans identifies common modifiers of diverse signaling
pathways. Nat Genet 38: 896–903

Li Z, Vizeacoumar FJ, Bahr S, Li J, Warringer J, Vizeacoumar FS,
Min R, Vandersluis B, Bellay J, Devit M, Fleming JA, Stephens A,
Haase J, Lin ZY, Baryshnikova A, Lu H, Yan Z, Jin K, Barker S,
Datti A et al (2011) Systematic exploration of essential yeast gene
function with temperature-sensitive mutants. Nat Biotechnol 29:
361–367

Loboda A, Nebozhyn M, Klinghoffer R, Frazier J, Chastain M,
Arthur W, Roberts B, Zhang T, Chenard M, Haines B, Andersen J,
Nagashima K, Paweletz C, Lynch B, Feldman I, Dai H, Huang P,
Watters J (2010) A gene expression signature of RAS pathway
dependence predicts response to PI3K and RAS pathway inhibitors
and expands the population of RAS pathway activated tumors. BMC
Med Genomics 3: 26

Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X,
Hinkle G, Boehm JS, Beroukhim R, Weir BA, Mermel C, Barbie DA,
Awad T, Zhou X, Nguyen T, Piqani B, Li C, Golub TR, Meyerson M,
Hacohen N et al (2008) Highly parallel identification of
essential genes in cancer cells. Proc Natl Acad Sci USA 105:
20380–20385

Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF,
Wong KK, Elledge SJ (2009a) A genome-wide RNAi screen
identifies multiple synthetic lethal interactions with the Ras
oncogene. Cell 137: 835–848

Luo J, Solimini NL, Elledge SJ (2009b) Principles of cancer therapy:
oncogene and non-oncogene addiction. Cell 136: 823–837

Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M
(2004) Genomic analysis of regulatory network dynamics reveals
large topological changes. Nature 431: 308–312

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE,
Church GM (2013) RNA-guided human genome engineering via
Cas9. Science 339: 823–826

Marcotte R, Brown KR, Suarez F, Sayad A, Karamboulas K,
Krzyzanowski PM, Sircoulomb F, Medrano M, Fedyshyn Y,
Koh JL, van Dyk D, Fedyshyn B, Luhova M, Brito GC,
Vizeacoumar FJ, Vizeacoumar FS, Datti A, Kasimer D, Buzina A,
Mero P et al (2012) Essential gene profiles in breast, pancreatic, and
ovarian cancer cells. Cancer Discov 2: 172–189

McManus KJ, Barrett IJ, Nouhi Y, Hieter P (2009) Specific
synthetic lethal killing of RAD54B-deficient human colorectal
cancer cells by FEN1 silencing. Proc Natl Acad Sci USA 106:
3276–3281

Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G,
Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY,
Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES,
Sabatini DM, Root DE (2006) A lentiviral RNAi library for human
and mouse genes applied to an arrayed viral high-content screen.
Cell 124: 1283–1298

Moffat J, Reiling JH, Sabatini DM (2007) Off-target effects associated
with long dsRNAs in Drosophila RNAi screens. Trends Pharmacol
Sci 28: 149–151

Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S,
von Mering C, Doerks T, Jensen LJ, Bork P (2010) eggNOG v2.0:
extending the evolutionary genealogy of genes with enhanced non-
supervised orthologous groups, species and functional
annotations. Nucleic Acids Res 38: D190–D195

Murai J, Yang K, Dejsuphong D, Hirota K, Takeda S, D’Andrea AD
(2011) The USP1/UAF1 complex promotes double-strand break
repair through homologous recombination. Mol Cell Biol 31:
2462–2469

Myung K, Kolodner RD (2002) Suppression of genome instability by
redundant S-phase checkpoint pathways in Saccharomyces
cerevisiae. Proc Natl Acad Sci USA 99: 4500–4507

Nijhawan D, Zack TI, Ren Y, Strickland MR, Lamothe R, Schumacher SE,
Tsherniak A, Besche HC, Rosenbluh J, Shehata S, Cowley GS,
Weir BA, Goldberg AL, Mesirov JP, Root DE, Bhatia SN, Beroukhim R,
Hahn WC (2012) Cancer vulnerabilities unveiled by genomic loss.
Cell 150: 842–854

O’Brien KP, Remm M, Sonnhammer EL (2005) Inparanoid: a
comprehensive database of eukaryotic orthologs. Nucleic Acids
Res 33: D476–D480

Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004)
Proteomics analysis of the centromere complex from HeLa
interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is
a component of the CEN-complex, while BMI-1 is transiently co-

Differential essentiality mapping
FJ Vizeacoumar et al

16 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited



localized with the centromeric region in interphase. Genes Cells 9:
105–120

Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A,
Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, Meyer T,
Cimprich KA (2009) A genome-wide siRNA screen reveals diverse
cellular processes and pathways that mediate genome stability. Mol
Cell 35: 228–239

Roguev A, Talbot D, Negri GL, Shales M, Cagney G, Bandyopadhyay S,
Panning B, Krogan NJ (2013) Quantitative genetic-interaction
mapping in mammalian cells. Nat Methods 10: 432–437

Romano D, Matallanas D, Weitsman G, Preisinger C, Ng T,
Kolch W (2010) Proapoptotic kinase MST2 coordinates signaling
crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res 70:
1195–1203

Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI,
Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE,
Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R,
Kuo CJ, Goessling W et al (2012) Beta-catenin-driven cancers
require a YAP1 transcriptional complex for survival and
tumorigenesis. Cell 151: 1457–1473

Schimke RT (1986) Methotrexate resistance and gene amplification.
Mechanisms and implications. Cancer 57: 1912–1917

Selga E, Oleaga C, Ramirez S, de Almagro MC, Noe V, Ciudad CJ (2009)
Networking of differentially expressed genes in human cancer cells
resistant to methotrexate. Genome Med 1: 83

Shirasawa S, Furuse M, Yokoyama N, Sasazuki T (1993) Altered
growth of human colon cancer cell lines disrupted at activated Ki-
ras. Science 260: 85–88

Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR,
Elledge SJ, Hannon GJ, Chang K (2008) Profiling essential genes in
human mammary cells by multiplex RNAi screening. Science 319:
617–620

Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, Chen Y, Park O,
Chang J, Simpson RM, Wang CY, Gao B, Jiang J, Yang Y (2010)
Mammalian Mst1 and Mst2 kinases play essential roles in organ
size control and tumor suppression. Proc Natl Acad Sci USA 107:
1431–1436

Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT,
Stebbings LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M,
Latimer C, Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H,

Churcher C, Natrajan R et al (2009) Complex landscapes of somatic
rearrangement in human breast cancer genomes. Nature 462: 1005–1010

Traverso G, Bettegowda C, Kraus J, Speicher MR, Kinzler KW,
Vogelstein B, Lengauer C (2003) Hyper-recombination and
genetic instability in BLM-deficient epithelial cells. Cancer Res 63:
8578–8581

Waldman T, Lengauer C, Kinzler KW, Vogelstein B (1996) Uncoupling
of S phase and mitosis induced by anticancer agents in cells lacking
p21. Nature 381: 713–716

Wang LR, Zhang GB, Chen J, Li J, Li MW, Xu N, Wang Y, Shentu JZ
(2011) RRM1 gene expression in peripheral blood is predictive of
shorter survival in Chinese patients with advanced non-small-cell
lung cancer treated by gemcitabine and platinum. Journal Zhejiang
Univ Sci B 12: 174–179

Wang Z, Cummins JM, Shen D, Cahill DP, Jallepalli PV, Wang TL,
Parsons DW, Traverso G, Awad M, Silliman N, Ptak J, Szabo S,
Willson JK, Markowitz SD, Goldberg ML, Karess R, Kinzler KW,
Vogelstein B, Velculescu VE, Lengauer C (2004) Three classes of
genes mutated in colorectal cancers with chromosomal instability.
Cancer Res 64: 2998–3001

Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H,
Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz Jr. LA,
Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B,
Papadopoulos N (2009) Glucose deprivation contributes to the
development of KRAS pathway mutations in tumor cells. Science
325: 1555–1559

Zou H, McGarry TJ, Bernal T, Kirschner MW (1999) Identification of a
vertebrate sister-chromatid separation inhibitor involved in
transformation and tumorigenesis. Science 285: 418–422

Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of
missing heritability: Genetic interactions create phantom
heritability. Proc Natl Acad Sci USA 109: 1193–1198

Molecular Systems Biology is an open-access
journal published by the European Molecular

Biology Organization and Nature Publishing Group. This
work is licensed under a Creative Commons Attribution 3.0
Unported Licence. To view a copy of this licence visit http://
creativecommons.org/licenses/by/3.0/.

Differential essentiality mapping
FJ Vizeacoumar et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 17

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	title_link
	Introduction
	Results and discussion
	Identification of genetic interactions in isogenic cancer cell lines

	Figure™1(A) Workflow for the identification of genetic interactions using pooled shRNA screens. E, essential gene; NGI, negative genetic interaction. (B-F) Simplified schematics showing the major functions of the five query genes (boxed in bold) that were
	Properties of the differential essentiality network
	Functional conservation


	Figure™2Differential essentiality or DiE map. High-confidence network of confirmed andsolor conserved negative genetic interactions represented as edges connected to one or more of the five query genotypes described in the text, including KRAS, PTTG1, PTE
	Outline placeholder
	Functional modules


	Figure™3Propagation of MUS81 interaction module using comparative genetics. (A) A subnetwork of genetic and physical interactions between genes identified as negative interactions with MUS81-sol- propagated after comparative cross-species analysis. Solid 
	Outline placeholder
	Functional discovery
	Targetable vulnerabilities


	Figure™4Functional discovery based on genetic interactions. (A) Top panels shows the western blot of total cell lysates expressing both wild-type (TTC31-V5) and shRNA-resistant (TTC31-shR-V5) TTC31 protein tagged with V5 in PTTG1-sol- and PTTG1+sol+ cell 
	Outline placeholder
	Differential essentiality versus differential expression


	Figure™5Targetable vulnerabilities revealed through genetic interactions. (A) Pericentrin (red) and NEDD1 (green) staining for centrosomes and DAPI staining (blue) to indicate nuclei in PTTG1+sol+ cells depleted after the knockdown of DHFR. (B) Representa
	Figure™6Differential essentiality versus differential expression. (A) Scatter plot of fold-change in transcript levels in PTEN-sol- cells compared with PTEN+sol+ cells (x axis) versus dGARP (y axis). The red points indicate genes that are SSL with the PTE
	Integrating differential essentiality with variable cancer genotypes
	Perspective

	Materials and methods
	Figure™7Inferring genetic dependencies on variable cancer genotypes. (A) Schematic outline showing GARP profiles derived from isogenic cell lines on the left and essential gene profile from 72 non-isogenic cell lines on the right. GARP profiles for each c
	A4
	Supplementary informationSupplementary information is available at the Molecular Systems Biology website (www.nature.com/msb).We thank the members of the Moffat laboratory for their input and discussions. We thank Bert Vogelstein, Kiyoshi Miyagawa and Tod

	ACKNOWLEDGEMENTS
	A5




