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Abstract 
 

Brain is the most complex computing device which performs the high level 
cognitive functions such as pattern classification, recognition etc., with high 
efficiency and low power consumption. Neuromorphic Engineering takes the 
lessons from biological systems and try to emulate such circuits in the sate-of-
art of current microelectronics. On chip learning has been pursued intensively 
by neuromorphic researchers. Any system which is capable of Learning and 
Adapting is said to be Intelligent. The Bio-inspired architectures of 
Neuromorphic VLSI Chips aim towards Intelligence. This paper presents a 
versatile study on the neuromorphic implementation of learning. In particular, 
the paper aims at reviewing architectures intended for Learning and adaptation 
that advances neuromorphic design more towards human like intelligence. The 
various abstraction levels for implementing learning is the main contribution of 
the paper. Methods, issues and challenges in and at every level is analyzed. We 
have identified research gaps in modelling brain on hardware and motivations 
behind the current study of Neuromorphic chips are outlined. 
 
Index Terms— Cognitive Sciences, Learning and Adaptation, Machine 
learning, Neuroscience, Neuromorphic Engineering, Synaptic Plasticity. 
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I. INTRODUCTION 
BRAIN has always amazed us by its complex nature, though reliable and robust for 
many cognitive and metacognitive functions with a minimum amount of power 
consumption on the order of 25W [1, 2]. Scientists are putting all their brain to 
understanding the mysterious ways of information processing in the 1.5Kg wetware [3, 
4]. Human brain is the subject matter due to its evolved neocortex as compared to 
other species [2]. One straight forward method to understand brain functionality is to 
create one. 

There has been many Bio-inspired approaches to imitate human cognition [5], 
but that uses existing engineering products to mimic some of the behaviors of 
biological systems. There lies a huge gap between existing computing systems and their 
biological counterparts. 

There are about 100 billion neurons in an adult human brain [6-8] weighing 
about 2% of total weight which are responsible for distributed and parallel 
computation. This analogous machine has dedicated point to point connections. Brain 
exhibits pattern classification, image recognition, motor control, learning, adaptation 
etc., whose performance cannot be matched with modern day super computers. 
Neuroscientist are of opinion that the difference in architecture is the main reason. To 
imitate human behavior and cognition we need to build computing devices whose 
architecture is not based on Von Neumann architecture but rather based on human 
nervous system. 

Neuromorphic engineers take the lessons from biology and intend to reproduce 
into custom silicon VLSI (very large scale integration) chips. Neuromorphic 
Engineering aims at morphing neuroanatomy and neurophysiology into circuits which 
would not only depict human behavior with accuracy but also with efficiency [9]. 

Neuromorphic engineering attracted many researchers from various domain 
since its inception by Carver Mead in 1980s [10-13]. Inspired by the idea of hardware 
implementation of brain, Scientists from diverse group came under a single umbrella 
and started exploring neuro-biology and exploiting state-of-the art of Microelectronics 
Engineering. 

In pursuit of understanding how the neurons, networks, systems and 
architectures collaborate and give rise to complex behaviors and cognitive aspects, 
neuromorphic engineering arises as an interdisciplinary domain. it takes lessons from 
biology (on neuroscience, brain structure, network interconnection, synaptic activity, 
information processing etc.), kinesiology (physiological, mechanical, and psychological 
mechanisms), Psychology (understanding behaviour, )physics (on semiconductor 
physics, sensors, potentials, voltages, diffusion in channel between source and drain 
etc.) chemistry (on ion-exchange, information exchange, coding etc.) cognition 
(learning, perception, attention, recognition) mathematics (on computations, complex 
algorithms etc.) computers (on parallel processing, decision making, artificial 
intelligence etc.), electronics engineering (on hardware implementation using 
transistor, circuits for dendrites, soma, neuron, cell, system and architectures, ICs and 
chips, Memristors, AERs, FPGAs, FPAAs, VLSI etc.). 
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Neuromorphic engineering also takes inspiration from interdisciplinary domains 
such as computational science, Cognitive neuroscience, Autonomous systems, Hybrid 
Intelligent systems etc. 

Section II describes the Brain Anatomy, where selected structures and 
functions are abstracted. Section III explains various modelling approaches used to 
model a neuron as a whole and also parts such as dendrites, synapses, membrane 
potentials. Section IV describes various architectures and chips being proposed and 
implemented with a focus on implementation of Learning. Section V outlines the 
various issues in implementing Learning and Adaptation in VLSI Chips. Memory 
modelling is being discussed along with learning. In section VI we summarize the 
levels of implementation, approaches at every level, services provided and expected by 
every layer for hardware realization of Learning and Adaptation. At last paper 
concludes with open research issues and future work. 
 
 
II. BRAIN MODEL ABSTRACTION 
A. Placement and Arrangement 
Brain is always placed (placement) very near to primary sensory organs which are used 
to see, smell, taste and hear. A typical operating frequency of neurons is around 100Hz 
as in [14], which is much smaller when compared to current speed of super computers. 
In spite of this brain processing outsmarts any existing computing device till date. For 
example: Visual perception is considered to happen in 200msec [15] and if every 
neuron is considered to have an individual delay of 10msec, then it would have taken 
less than 20 processing steps. This shows the (arrangement) massive point to point 
connectivity of neurons. This also challenges our existing parallel processing schemes 
[16]. 
 
B. Learning and Adaptation 
Body adapts through exercise and brain adapts by learning [17]. The most astonishing 
function of brain is its ability to learn and adapt to the existing environment. Learning 
is output of both passive experiences and active search for knowledge. Learning is an 
Emergent phenomena [18]. Learning includes unlearning [19] the previous things, 
updating the previous conclusions and abstractions, understanding the best suitable 
decision i.e. Reinforcement Learning [20]. 

Marvin Minsky in his book [21] said “The principal activities of brains are 
making changes in themselves”. Learning happens by the virtue of plasticity of brain. 
Gopnick in his book [22] explains that Neural Network is like a telephone network, 
neurons transmit signals to target cells over long distances [23]. For instance the 
information sensed from eye is routed to primary visual area in occipital lobe. All these 
information processing happens through synapses which grow from 2500 
synapses/neuron to 15000 synapses/neuron from birth to early childhood, which sums 
to 100 trillion synapse in a brain [24]. 

Learning takes place at synapses, the junction between neurons. When a new 
information is perceived it will be stored in short term memory which depends on 
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chemical [25] (ion exchange) and electrical (spikes) events in brain [26-28]. As time 
precedes the information will be moved to long term memory which is accomplished by 
structural changes such as formation of new synapses [29]. 

 

 
 

Fig. 1. Neuron is the basic component of human nervous system. Which has 
dendrites (receivers), axon (transmission line) and synapse (transmitters). 
Whenever a new learning happens there is change in synaptic activity due to 
which membrane potential changes and ion exchange happens. The connection 
will be for a long time if the learning results in Long term memory. This is 
abstraction of a neuron with a focus for learning and memory modelling. 
 
 
C. Neuroscience and Abstraction levels 
The fundamental step in designing Neuromorphic hardware is to choose the proper 
level of abstraction. The abstractions extracted from neuroscience about learning at the 
level of Neuron is explained here starting from Ion exchange to behaviour. 
 
1)  Ion Membrane Channel Abstraction:  
The Action potentials (nerve impulses) also known as “spikes” are short duration 
events used for cell to cell communication [30] which lasts than a thousandth of a sec 
[31] and travel with a speed of 120 m/sec [32]. In the short duration the electrical 
membrane potential suddenly rises to a peak and immediately falls due to opening and 
closing of sodium ion channels followed by opening and closing of potassium ion 
channels [33-35]. 
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Any resting neuron when triggered will become a spiking neuron as described 
in [36, 37]. The trigger for sensory organs can be corresponding stimuli [38, 39], 
obtained from a presynaptic axon which emits neurotransmitters in synaptic cleft which 
in turn bind to receptors (NMDA and non-NMDA receptors) of the postsynaptic 
neuron. Excitatory potential or inhibitory potential arises when the binding between 
two neurons opens ion channels and increases or decreases the ionic permeabilities of 
membrane and its potential respectively. Electrical synapses in [40, 41] may also result 
in transmission of action potential from one neuron to another by the virtue of gap 
potential and without any aid of chemicals as in [42, 43]. 
 
2)  Synapse Abstraction:  
The space between two neurons which includes presynaptic membrane, post synaptic 
membrane and synaptic cleft is called as synapse. Synapse plays an important role in 
information processing [23, 44, 45]. Learning and memory are associated with changes 
in synaptic connections between neurons [46, 47], which was evident by long term 
potentiation. Synaptic connections weakens over time and strengthens if activity is 
more, this reconfiguration of synaptic connections is termed as synaptic plasticity [48]. 
According to Hebbian theory, synaptic plasticity is one of the neurochemical 
foundations of memory and learning. Synaptic plasticity has many lessons about 
learning and memory [49, 50]. Adaptation in connections is postulated as learning and 
interconnected network of synapses are postulated to represent memory [51]. 
According to Hebbian learning theory “Cells that fire together, Wire together”, here 
together means which stimulate one another i.e. one cell has to fire and then the 
connected one will fire after a temporal time delay, hence termed as spike-timing-
dependent plasticity [52]. When cells fire in sync, long lasting changes of synaptic 
efficacies were found [53, 54] they create Long Term Potentiation (LTP) occurs which 
help us to remember whereas if the firing is out of sync then Long Term Depression 
(LTD) occurs which helps to forget [55-57]. 

The synaptic abstraction considers the phenomenological models which are 
based on simple I/O relationship between neuronal activity and synaptic plasticity, 
which accounts for higher level phenomena such as memory and development of 
neuronal selectivity [58]. 
 
3)  Single Neuron Abstraction:  
Neurons are the electrically excitable brain cells which transmit information by 
electrochemical signaling [59]. Neurons vary from 0.4 microns to 0.1mm in diameter 
and from fraction of inch to several feet [60] in length. There are about 10000 types of 
neurons but based on functionality, neurons can be classified as sensory neurons which 
convey information from sensory organs to central nervous systems, motor neurons 
which transmit information from central nervous system to effector cells and 
interneurons which interconnect neurons [61]. The basic information processing unit in 
brain is neuron. Neurons process all the information flowing within, in and out of 
Central nervous system [62]. It processes the information we receive from sensory 
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tissues/organs, all the motor information and all the cognitive information through 
which we are capable of reasoning and thinking. 

Glia cells are also nerve cells which forms 90% of brain. They are not involved 
in signaling but responsible for maintenance of neurons, by creating myelin [63] and by 
providing mechanical and nutritional support [64-66] and all housekeeping work of 
neurons. Types of glial cells include Schwann's Cells, Satellite Cells, Microglia, 
Oligodendroglia, and Astroglia [67]. 
 
4)  Neural Network abstraction: 
An average human brain contains around 100 billion neurons [68]. If every neuron is 
assumed to have 10000 synaptic connections then our brain is a computer made of a 
processor which processes at least 1 trillion bit per sec [69, 70], and the memory 
ranges from 1 to 1000 terabytes [71]. Obviously all neurons don’t network in a same 
fashion as there are many diverse functionality to be achieved. Neural networks can be 
best studied in considering one system at a time. 

In vision system there are a series of events. Light falls on an object, gets 
reflected and travels through cornea, passes through lens which focuses light on retina 
(sensory tissue), where rods detect light and cones detect color. Rods and cones are 
transducers which convert light rays into electrical impulses and pass it to brain 
through optic nerve we then “see” what we are looking it [72]. Retina is the functional 
sensory receptor of eye, which contains 3 layers of interconnected neurons: rods and 
cones form the first layer which is then connected to interneurons (forms second layer) 
which relays the signals to ganglion cells (forms the third layer). The axons of ganglion 
cells form optic nerve. 

In auditory system, the sound waves perceived by outer ear are modulated by 
middle ear and transmitted to cochlear nerve by inner ear. The inner ear receives 
vibrations from middle and outer ear, convert them into nerve impulse. Within the 
inner ear is cochlea which acts as functional sensory receptor of ear. Ear is also 
involved in providing balance to body in both moving and stationary condition. 
 
5) Brain system Abstraction:  
Human brain is largely divided in to 3 parts: cerebrum, cerebellum and brain stem. 
Brain stem controls respiration digestion heartrate etc., as in [73-75]. Cerebellum 
known as little brain [76], is responsible for motor control and also involved in 
cognitive functions such as attention, language, fear regulation, pain and pleasure [77-
83]. Cerebrum is the superior most part in central nervous system [84, 85], is 
responsible for all voluntary actions. 

Cerebrum is divided into right and left hemisphere (which controls signal 
processing of left part and right part of the body respectively) by a longitudinal fissure 
[86, 87]. The cerebrum has cortex and subcortical structures such as hippocampus, 
basal ganglia and olfactory bulb which are intended for information consolidation from 
short term memory to long term memory [88-91], decision making [92-94] and smell 
[95-97] respectively. Cortex communicate with subcortical structures via thalamus 
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[98-101]. Thalamus mediate all sensory information perceived from subcortical 
structures to neocortex except olfactory system [102]. 

Cortex is highly interconnected and about 99% connections are between 
different areas of cortex [103] only 1% is dedicated for communication with 
subcortical parts. Cortex is comprised of three parts: sensory, motor and association 
areas [104]. The sensory information received from sense organs are processed in 
sensory areas such as Visual cortex, auditory cortex and somatosensory cortex which 
takes care of vision, audition and touch [105, 106]. Association areas play a vital role 
in planning, actions and abstract thinking. The organization or networking of 
association areas is highly debated [107, 108]. 

Cerebral cortex is divided into four sections [109] called lobes, frontal lobe 
(contains dopamine-sensitive neurons and involved in conscious thought and higher 
mental functions such as reward, attention, decision making, reasoning, planning, 
processing short term memory and retaining long term memory), parietal lobe 
(involved in integrating sensory information, spatial sense, navigation, recognition, 
perception of stimuli), temporal lobe (involved in processing sensory information into 
meaningful abstractions for retention of visual memories, speech, emotional association 
and plays a vital role in long term memory) and occipital lobe ( visual processing). The 
media temporal lobe present inside temporal lobe is involved in declarative and 
episodic memory [110]. 

Hippocampus is only region which can grow new neurons [111]. Long term 
potentiation – one of the mechanism responsible for memory was first discovered in 
hippocampus [47, 112, 113]. It is responsible for spatial memory and navigation. Due 
to the densely packed neural layers, hippocampus generate largest EEG signals by 
brain. These waves not only modulate the spikes of hippocampal neurons but also 
synchronize [114]. The EEG pattern is called theta rhythm [115]. Many theories 
suggest that the theta rhythm has effects on learning and memory [116]. Basal ganglia 
(especially striatum) is responsible for formation and retrieval of procedural memory 
[117]. 
 
6) Behavioral abstraction:  
If a group of neurons (cell assemblies) are constantly simulating each other to maintain 
activity, so as to create a temporal representation of current task, then it is termed as 
working memory [118]. If new long lasting connections are created, so as to remember 
a specific event, then it is termed as episodic memory in [119], this is where 
hippocampus comes into picture. To learn and remember ideas, concepts and things 
which cannot be drawn from personnel experience (such as sounds of letters) there 
need to be changes in connections between some cells which represent specific types of 
information as explained in [120]. This is termed as semantic memory where cerebral 
cortex come into picture. Centered around basal ganglia a network of brain areas 
implement reward and punishment based learning called instrumental learning [121]. 
Motor learning involves micro adjustments of parameters of movements for which 
basal ganglia and cerebellum are included [122]. 
 



31602  Mohammed Riyaz Ahmed and Dr. B.K. Sujatha 

III. IMPLEMENTATION LEVELS OF BRAIN MODELS 
Modelling is a reductionist approach. Models reduce complexity and provide simplified 
representation of real systems. All neuronal dynamics is not yet understood, hence 
creating an exact replica is not under our grasp. Abstraction is done at every level to 
make our life simple. 

Brain being the most complex system, its implementation can be studied in a 
hierarchy. The interactions of different neuronal components give rise to behaviour. 
Since behaviour is a collective function of different neural components, its abstraction 
is placed above system level. 

Protein/Genetic level describes the genes structure. It’s a neglected/not yet 
explored field in Neuromorphic Engineering. 

At Membrane Level, electrical and ion exchange happens. Transistor is often 
abstracted as switch: ON or OFF. But the V-I characteristics shows that current 
flowing is smooth and steep function of applied Voltage. Transistors work in 
subthreshold region where the V-I characteristics resemble the current voltage 
relationships in molecular structures on surface of brain cells. Hence membrane level 
abstractions and implementations are done at transistor level. 

Intra-neuron communication happens through synapses. Synaptic plasticity is 
the reason for the emergent animal behaviors: adaptation and Learning. In recent years 
the learning process has dragged more attention. Selective attention is the main 
functionality of this abstraction level. 

The synaptic plasticity can be implemented using CMOS circuits. Memristors 
are an alternative, which also has answers to memory modelling. Large scale 
memristive fabric is yet to be realized. Selective attention, Efficient learning and 
memory modelling is the biggest open research issue at synaptic level. 

Perceptron’s implementation in 1950’s was the pioneering work, which was 
foundation for implementation of Artificial Neural Networks on hardware. Perceptron 
is computational model of Neuron. Hodgkin-Huxley and Morris-Lecar [123, 124] 
models are conductance based which has high biological precision but comes with 
huge cost. Another type (Type II) are spike based such as Integrate and fire model 
which describe temporal behaviour of spikes which are earliest and simplest models 
[37]. 

Spikes are used in nervous system for information transmission. Intra neuron 
Communication is important aspect at system level. Address event representation 
protocol proposed in 1991 to mimic information coding of brain. AER assigns a fixed 
address to every neuron, by using which neurons continuously update their central 
system about their excitation levels. This updated info is sent to upper/higher layers. 
AER is a communication protocol for spiking neurons between different layers [125-
128].This field has attracted a huge community of researchers who are engineering 
various protocols for inter and intra chip communication. AER scheme resembles to 
the Internet Protocol (IP) addressing in computer networking where information is 
routed to individual host corresponding to the IP address. 

Selecting the appropriate level of abstraction is very important [129]. We have 
choice of Top-down approach, where we arrive to the neuron model keeping 
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behaviour in our mind. Here we intend to reflect all biological components due to 
which it may be expensive, and the models become too complex. In Bottom-up 
approach we generalize one model of neuron and climb up to behavior level where 
most of the time the models fail to replicate the biological counterpart. This ambiguity 
whether to choose top down approach (complex biological implementation, Biology 
has the upper hand) or Bottom-up approach (abstract level implementations, existing 
engineering technology has the upper hand) leads us to the Valley of Death. 
 

TABLE I.  LEVELS OF IMPLEMENTATION 
 

levels Neuromorphic Correspondence for Implementation Hierarchy 
Hierarchy Neuroscience Electrical science 

7 Behavior Level Mind Architecture 
6 System Level Brain system Macro Block 
5 Circuit Level Local Neuronal population Block/Cell 
4 Component Level Single Neuron Perceptron 
3 Device Level Synapses CMOS/ Memristors 
2 Membrrane Level Channel Ions Transistor 
1 Protein/ Genetic Genes ------ 

 
 

The 2 approaches are in fact 2 faces of same coin, no matter which approach 
we inculcate, the million dollar question is : “Is the machine Intelligent ?” finding the 
right trade off and compromises to make it more real (to humans) and realizable is the 
open research issue. 

 

 
 

Fig. 2. Implementation Approaches 
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IV. CONCLUSION 
This paper has done a brief review of various tradeoffs to be considered during 
Hardware implementation of Bio-inspired Computing Architectures. Levels of 
Implementation is an important contribution of this paper. Implementation approaches 
provide a clear idea for a researcher to start at what level and what to expect from the 
upper layer and what services are necessary to the lower layer. This paper brings out 
many open research issues pertaining to morphed circuits. Some milestones achieved 
are mentioned, and the things yet to be achieved are discussed. This has also discussed 
the gap between the software simulation results and Hardware emulation results. 
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