Mohammadreza Amirian

Mohammadreza Amirian
  • Doctor of Philosophy
  • Postdoctoral research assistant at HES-SO Valais-Wallis

About

35
Publications
13,950
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
862
Citations
Current institution
HES-SO Valais-Wallis
Current position
  • Postdoctoral research assistant

Publications

Publications (35)
Article
Full-text available
Deep learning based approaches have been used to improve image quality in cone-beam computed tomography (CBCT), a medical imaging technique often used in applications such as image-guided radiation therapy, implant dentistry or orthopaedics. In particular, while deep learning methods have been applied to reduce various types of CBCT image artifacts...
Article
Full-text available
Background Cone beam computed tomography (CBCT) is often employed on radiation therapy treatment devices (linear accelerators) used in image‐guided radiation therapy (IGRT). For each treatment session, it is necessary to obtain the image of the day in order to accurately position the patient and to enable adaptive treatment capabilities including a...
Preprint
Full-text available
The existence of adversarial attacks on convolutional neural networks (CNN) questions the fitness of such models for serious applications. The attacks manipulate an input image such that misclassification is evoked while still looking normal to a human observer -- they are thus not easily detectable. In a different context, backpropagated activatio...
Preprint
Radial basis function neural networks (RBFs) are prime candidates for pattern classification and regression and have been used extensively in classical machine learning applications. However, RBFs have not been integrated into contemporary deep learning research and computer vision using conventional convolutional neural networks (CNNs) due to thei...
Preprint
Full-text available
With the spread of COVID-19 over the world, the need arose for fast and precise automatic triage mechanisms to decelerate the spread of the disease by reducing human efforts e.g. for image-based diagnosis. Although the literature has shown promising efforts in this direction, reported results do not consider the variability of CT scans acquired und...
Article
Full-text available
Face Recognition (FR) is increasingly influencing our lives: we use it to unlock our phones; police uses it to identify suspects. Two main concerns are associated with this increase in facial recognition: (1) the fact that these systems are typically less accurate for marginalized groups, which can be described as “bias”, and (2) the increased surv...
Conference Paper
Full-text available
With the spread of COVID-19 over the world, the need arose for fast and precise automatic triage mechanisms to decelerate the spread of the disease by reducing human efforts e.g. for image-based diagnosis. Although the literature has shown promising efforts in this direction, reported results do not consider the variability of CT scans acquired und...
Chapter
Full-text available
With great power comes great responsibility. The success of machine learning, especially deep learning, in research and practice has attracted a great deal of interest, which in turn necessitates increased trust. Sources of mistrust include matters of model genesis (“Is this really the appropriate model?”) and interpretability (“Why did the model c...
Article
Full-text available
We present an extensive evaluation of a wide variety of promising design patterns for automated deep-learning (AutoDL) methods, organized according to the problem categories of the 2019 AutoDL challenges, which set the task of optimizing both model accuracy and search efficiency under tight time and computing constraints. We propose structured empi...
Chapter
Full-text available
Within the last years Face Recognition (FR) systems have achieved human-like (or better) performance, leading to extensive deployment in large-scale practical settings. Yet, especially for sensible domains such as FR we expect algorithms to work equally well for everyone, regardless of somebody’s age, gender, skin colour and/or origin. In this pape...
Conference Paper
Full-text available
Within the last years Face Recognition (FR) systems have achieved human-like (or better) performance, leading to extensive deployment in large-scale practical settings. Yet, especially for sensible domains such as FR we expect algorithms to work equally well for everyone, regardless of somebody’s age, gender, skin colour and/or origin. In this pape...
Article
Full-text available
Radial basis function neural networks (RBFs) are prime candidates for pattern classification and regression and have been used extensively in classical machine learning applications. However, RBFs have not been integrated into contemporary deep learning research and computer vision using conventional convolutional neural networks (CNNs) due to thei...
Conference Paper
Full-text available
With great power comes great responsibility. The success of machine learning, especially deep learning, in research and practice has attracted a great deal of interest, which in turn necessitates increased trust. Sources of mistrust include matters of model genesis ("Is this really the appropriate model?") and interpretability ("Why did the model c...
Article
Full-text available
We present an extensive evaluation of a wide variety of promising design patterns for automated deep-learning (AutoDL) methods, organized according to the problem categories of the 2019 AutoDL challenges, which set the task of optimizing both model accuracy and search efficiency under tight time and computing constraints. We propose structured empi...
Conference Paper
Full-text available
We present an automated computer vision architecture to handle video and image data using the same backbone networks. We show empirical results that lead us to adopt MOBILENETV2 as this backbone architecture. The paper demonstrates that neural architectures are transferable from images to videos through suitable preprocessing and temporal informati...
Article
Full-text available
In this paper, a modified adaptive K-means (MAKM) method is proposed to extract the region of interest (ROI) from the local and public datasets. The local image datasets are collected from Bethezata General Hospital (BGH) and the public datasets are from Mammographic Image Analysis Society (MIAS). The same image number is used for both datasets, 11...
Preprint
Full-text available
A main driver behind the digitization of industry and society is the belief that data-driven model building and decision making can contribute to higher degrees of automation and more informed decisions. Building such models from data often involves the application of some form of machine learning. Thus, there is an ever growing demand in work forc...
Chapter
Full-text available
A key resource in data analytics projects is the data to be analyzed. What can be done in the middle of a project if this data is not available as planned? This chapter explores a potential solution based on a use case from the manufacturing industry where the drivers of production complexity (and thus costs) were supposed to be determined by analy...
Article
The subjective nature of pain makes it a very challenging phenomenon to assess. Most of the current pain assessment approaches rely on an individual’s ability to recognise and report an observed pain episode. However, pain perception and expression are affected by numerous factors ranging from personality traits to physical and psychological health...
Chapter
Full-text available
We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters k, and for each \(1 \le k \le k_\mathrm {max}\), a distribution over the individual cluster assignment for each data point. The ne...
Chapter
Full-text available
The existence of adversarial attacks on convolutional neural networks (CNN) questions the fitness of such models for serious applications. The attacks manipulate an input image such that misclassification is evoked while still looking normal to a human observer—they are thus not easily detectable. In a different context, backpropagated activations...
Chapter
Full-text available
Deep learning with neural networks is applied by an increasing number of people outside of classic research environments, due to the vast success of the methodology on a wide range of machine perception tasks. While this interest is fueled by beautiful success stories, practical work in deep learning on novel tasks without existing baselines remain...
Preprint
Full-text available
Deep learning with neural networks is applied by an increasing number of people outside of classic research environments, due to the vast success of the methodology on a wide range of machine perception tasks. While this interest is fueled by beautiful success stories, practical work in deep learning on novel tasks without existing baselines remain...
Preprint
Full-text available
We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters $k$, and for each $1 \leq k \leq k_\mathrm{max}$, a distribution over the individual cluster assignment for each data point. The n...
Chapter
Breast cancer is the most common cause of death among women in the entire world and the second cause of death after lung cancer. The use of automatic breast cancer detection and classification might possibly enhance the survival rate of the patients through starting early treatment. In this paper, the convolutional Neural Networks (CNN) based featu...
Conference Paper
In this paper, a robust system for viewindependent action unit intensity estimation is presented. Based on the theory of sparse coding, region-specific dictionaries are trained to approximate the characteristic of the individual action units. The system incorporates landmark detection, face alignment and contrast normalization to handle a large var...
Article
Full-text available
In this work, a method is presented for the continuous estimation of pain intensity based on fusion of bio-physiological and video features. Furthermore, a method is proposed for the adaptation of the system to unknown test persons based on unlabeled data. First, an analysis is presented that shows which modalities and feature sets are suited best...
Conference Paper
A continuous multimodal human affect recognition for both arousal and valence dimensions in a non-acted spontaneous scenario is investigated in this paper. Different regression models based on Random Forests and Echo State Networks are evaluated and compared in terms of robustness and accuracy. Moreover, an extension of Echo State Networks to a bi-...
Conference Paper
In this work we present extensions for Radial Basis Function networks to improve their ability for discrete and continuous pain intensity estimation. Besides proposing a mid-level fusion scheme, the use of standardization and unconventional loss functions are covered. We show that RBF networks can be improved in this way and present extensive exper...
Article
In this work, we present methods for the personalization of a system for the continuous estimation of pain intensity from bio-physiological channels. We investigate various ways to estimate the similarity of persons and to retrieve the most informative ones using metainformation, personality traits, and machine learning techniques. Given this infor...
Conference Paper
Full-text available
In this work, a method is presented for the continuous estimation of pain intensity based on fusion of bio-physiological and video features. The focus of the paper is to analyse which modalities and feature sets are suited best for the task of recognizing pain levels in a person-independent setting. A large set of features is extracted from the ava...
Article
Full-text available
The S-transform presents arbitrary time series as localized invertible time–frequency spectra. This transformation improves the short-time Fourier transform and the wavelet transform by merging the multiresolution and frequency-dependent analysis properties of wavelet transform with the absolute phase retaining of Fourier transform. The generalized...

Network

Cited By