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Abstract 
Air quality and pollution have recently become a major concern; vehicle emissions significantly pollute the air, 
especially in large and crowded cities. There are various factors that affect vehicle emissions; this research aims to 
find the most influential factors affecting CO2 and NOx emissions using Adaptive Neural Fuzzy Inference System 
(ANFIS) as well as a systematic approach. The Modified ANFIS (MANFIS) was developed to enhance modelling 
and Root Mean Square Error was used to evaluate the model performance. The results show that percentages of 
CO2 from trucks represent the best input combination to model. While for NOx modelling, the best pair combination 
is the vehicle delay and percentage of heavy trucks. However, the final MANFIS structure involves two inputs, 
three membership functions and nine rules. For CO2 modelling the triangular membership function is the best, 
while for NOx the membership function is two-sided Gaussian. 
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1. Introduction 

The growth in urban traffic congestion has become a serious problem in all large 

metropolitan areas; it significantly affects the economy and travel behaviour. In addition, it is 

a cause of discomfort for millions of motorists [1, 2], and has harmful impacts on human 

health and metropolitan air quality [3]. For instance, in the US, congestion is responsible for 

wasting 101 billion USD annually. This figure accounts for an extra 2 billion gallons of fuel 

and 4.8 billion hours of wasted time [4]. Traffic congestion involves major contributing 

factors such as human, vehicle, and traffic composition [5]. Traffic composition is the 

distribution of vehicle type; this includes passenger car, mini bus and/or heavy vehicles. 

 Congestion causes chronic environmental problems such as air and noise pollution. 

Researchers have recently developed various models to estimate air pollutants resulting from 

transportation sectors. For instance, multivariate linear regression was implemented to link 

traffic density and the presence of diesel vehicles emitting air pollutants [6]. Real time 

information on traffic density, diesel vehicles, and traffic voice (noise) was used to model 

indoor and outdoor air pollutants [7]. In addition, Adaptive Neural Fuzzy Inference System 

(ANFIS) was implemented to predict the traffic flow over a short period using 104 

changeable parameters [8]. ANFIS has been implemented to determine the level of safety on 

roads in relation with traffic density, speed and road plane visibility [9]. The results have 

shown ANFIS ability to enhance safety levels on roads; ANFIS was used to improve the 

work of Traffic Controllers in decreasing traffic congestion.  

 The performance of ANFIS controllers in terms of delay, average waiting time and queue 

length, was analysed and compared with the performances of traditional controllers and 

normal fuzzy controllers [10]. The results showed that ANFIS performance was superior. 

ANFIS has become popular for modelling environmental systems due to its accuracy, 

1 
 



 

efficiency and capacity to handle large amount of stochastic (linear, nonlinear) data. For 

example, ANFIS was used to model driver behaviour using their reaction time and delay [11]. 

Furthermore, to help developing countries properly estimate solar radiation and benefit from 

it, ANFIS was implemented to model solar radiation based on metrological variables [12]. 

 Despite its advantages, the complexity of ANFIS model topology, especially at a large 

number of input variables, is considered the main limitation of its wide implementation. This 

is because ANFIS generates and tries all possible combinations of premises, which are a 

function of the number of variables. For instance, if a system has (n) inputs and (P) premises, 

then the number of available rules equals (N = Pn). Thus, ANFIS implementation may not be 

feasible for several variable reasons. Furthermore, human expertise is necessary to optimize 

the ANFIS structure; however, this is solution is not always viable. For instance, if five inputs 

and three membership are used in a system, then the rule number becomes (35 = 243 rules), 

which significantly increases the total number of parameters and computing time [13]. 

However, a Modified Adaptive Neural Fuzzy Inference System (MANFIS) is recommended 

to overcome this limitation.  

 This study aims to propose a model to estimate CO2 and NOx at the signalized 

roundabouts. It links the traffic conditions, including delays and percentages of heavy trucks, 

with the vehicle emissions to estimate air pollution. It applies a systematic search algorithm 

to choose the best available representative input variables. After that, it modifies the model to 

minimize the modelling complexity and error as well as providing effective tools to simulate 

such environmental applications. Such approach could assist decision makers in properly 

establishing sustainable traffic plans to reduce the impact of traffic congestion on air quality.  
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2. Methodology  

2.1. Study Area and Data Collection 

Corum city is the centre of the Corum governorate that is located at the north of Turkey. To 

analyse the traffic situation in the city, the main intersections were categorized into signalized 

and non-signalized intersections. This study analysed signalized roundabouts resulting in a 

total of eight intersections during the summer of 2015. Cameras were also placed on each 

intersection (numbers according to the size of the intersection) with the aim of defining traffic 

volume at rush hours. Rush hour periods were divided into three periods, these included 

mornings, (7:30-9:30) to cover business time in Turkey that starts at 9:00 AM. The second 

period was between 12:00-14:00 (end of schools), and the third period was between 16:30-

18:30 (end of business day). Thus, for each of these intersections six hours of traffic video 

were recorded. 

 The recorded data for each intersection yielded vehicle counts and speeds of 6-types of 

vehicles: automobile, taxi, minibus, van, bus and heavy trucks. The analysis time of the 

recorded data was 54 h. Fig. 1 shows the 6th signalized roundabout as a Satellite photo. It 

shows the location of the leg recorder. Table 1 shows a sample of traffic recorded data along 

the morning rush hours (7:30-9:30). Moreover, it represents an example of how data was 

extracted. For instance, 1-4 represent the total number of each vehicle type that is leaving leg 

one into leg number four. Furthermore, the total column at the table represents the total 

number of vehicles that are leaving from each leg at the roundabout to other legs. Air quality 

was also monitored during the same period, in a single site at each intersection that is located 

downwind [14], using Genesis portable air monitoring made by Thermo Fisher at around 15-
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30 m from the intersection. The measurement was taken every fifteen minutes then the hourly 

average was used to represent the concentration at peak hour. Finally, modelling and data 

analysis were performed using MATLAB (7.14). 

 

     

 Fig. 1. Abide signalized roundabout satellite photo (6th roundabout). 

 

2.2. Selection of Optimum Inputs and MANFIS Model Development 

In order to minimize the data input and simplify the model structure, input selection was 

implemented. Initially, five inputs were used against each output; these were NOx and CO2, 

respectively. The inputs represent vehicle average speed, traffic delay per second, percentage 

of mini trucks (%MT) (2.5 PCU), heavy truck percentage (%HT), and the total of heavy and 

mini trucks (%H&M). The optimum pair combination (input-output pair) was then 

determined by searching for the combination with lowest Root Mean Square Error (RMSE). 

The selection of optimum input number was based on a single iteration using the general bell 

shape fuzzy function and two membership functions by using a hybrid of least-squares and 

4 
 



 

back-propagation gradient descent methods. In addition, the model performance was 

evaluated using the following statistical equation [15, 16]. 

RMSE =            (1) 

 

Where Xt is the actual output and Xo is the predicted output, n is the number of the outputs. 
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             Table 1. Abide Signalized Roundabout Traffic Volume for Leg1 

 

Recording 
time 

Automobile Minibus Taxi Public buses Heavy trucks Subtotal Total 

 
1-2 1-3 1-4 1-2 1-3 1-4 1-2 1-3 1-4 1-2 1-3 1-4 1-2 1-3 1-4 1-2 1-3 1-4  

M
or

ni
ng

 p
er

io
d 

7:30 7:45 36 14 34 8 2 7 3 0 2 1 0 2 1 1 1 49 17 46 112 

7:45 8:00 52 24 34 8 4 8 0 0 0 2 0 2 2 0 4 64 28 48 140 

8:00 8:15 65 16 36 7 4 7 4 1 4 1 0 2 5 0 1 82 21 50 153 

8:15 8:30 48 22 40 5 5 5 0 0 3 2 0 5 2 0 1 57 27 54 138 

8:30 8:45 61 14 27 9 2 4 0 0 2 5 0 3 0 0 0 75 16 36 127 

8:45 9:00 63 14 36 12 2 6 3 0 2 4 0 3 6 0 2 88 16 49 153 

9:00 9:15 58 21 30 10 7 5 2 1 1 1 0 3 2 1 2 73 30 41 144 

9:15 9:30 40 20 40 6 6 4 2 0 0 1 1 3 0 1 0 49 28 47 124 
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 ANFIS is a multilayer feed-forward network; it performs a fuzzy logic function on incoming 

signals. To build the fuzzy logic structure, it is essential to (i) select the model inputs                        

(ii) determine the membership functions, and (iii) generate the fuzzy rules. Meanwhile, 

minimizing the model error needs an optimizing epoch’s number, membership type and number. 

During the training phase, the shape of the membership function was modified in order to define 

the relation between input and output. This stage was repeated on several occasions (epochs) 

until the desired convergence was acquired (usually until the specified minimum square error 

between the ANFIS output and the actual one is achieved). However, for a first-order Sugeno 

fuzzy model, a common set of two fuzzy rules and a set of if-then rules are described as follows:  

Rule 1: 111111 ryqxpfTHENBisyandAisxIf ++=             (2) 

Rule 2: 222222 ryqxpfTHENBisyandAisxIf ++=           (3) 

where Ai or Bj is a linguistic label (grade),such as “low” or “less”, and 2211 ,,, qpqp  are the 

design parameters that are determined by the system developer [17]. Fig. 2 presents the ANFIS 

model structures, where the circular nodes are fixed and the square nodes have parameters to be 

learned. The shown five layers are characterized by training and testing phases. The model 

developer has the capability to choose among the available membership function types in 

accordance with system demand, simplicity, speed and convenience. The membership function is 

a parameterized function in which any changes in the corresponding parameters produce a 

change in the function shape. However, the selection of membership function should fall 

between 0 and 1. 
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Fig. 2. ANFIS architecture Sugeno system. 

 In this study, to develop MANFIS structure, several steps were implemented. First, 

optimizing the number of inputs and then determining the best input-output combinations by 

searching for the lowest error RMSE for training and checking. After that, altering the type of 

membership functions to determine the best one. Finally, determining the number of membership 

functions that reduce the RMSE [19, 20]. 

 

3. Results and Discussion 

3.1. Inputs Selection for CO2 Modelling 

The collected input variables were divided into training (the odd readings) and testing (the 

evenreadings). The available variables that may affect vehicles (gasoline and diesel) emissions 

were selected. It was imperative to choose the factors (inputs) that are relevant to the simulated 

system. The summary of the optimum twelve inputs and their combinations are shown in Fig. 3. 
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To obtain these results, twenty-five combinations were tested. These combinations were single 

input-output, double input-output and tribal inputs-output. For levels of single input, the total 

heavy and mini trucks, and car speed, represent the best results with training RMSE are equal to 

494 and 731 and checking RMSE are equal to 1,357 and 1,214, respectively.  

 For double inputs, the best combination is between the percentage of heavy trucks and 

average vehicle speed, its training RMSE equalled 0.005 and checking RMSE equalled 1,300. 

However other double inputs combination has relatively similar results, which combination is 

between the percentage of heavy trucks and the percentage of mini trucks which has RMSEfor 

training equals to 303 and RMSE for checking equals to 861. For three inputs and single output, 

the best combination is between the average car’s speed, percentage of heavy trucks and 

percentage of mini trucks as RMSEtraining = 0.002 and RMSEchecking = 973. However, using three 

variables as inputs for the model did not significantly enhance performance. Thus, the optimum 

number of inputs is assumed to be two, and the best combination is between the heavy truck 

percentage and vehicle speed.  

 

Fig. 3. Summary of optimum input combinations for CO2 modelling. 
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3.2. Inputs Selection for NOx Modelling  

Fig. 4 shows a summary of the best input combinations for modelling NOx by testing all twenty-

five possible combinations for single, double and tribal inputs. For a single input and one output 

that is NOx, the percentage of heavy truck represents the best input with RMSEtraining = 59.2 and 

RMSEchecking = 489.4, respectively. While for the combination of two inputs, the optimum one is 

between the delay and percentage of heavy trucks, its results are RMSEtraining = 59.02 and 

RMSEchecking = 167.6, respectively. However, for NOx modelling the combination of two input 

variables is considered as the optimum combination, since increasing the input number does not 

enhance the process significantly as shown in Fig. 4. 

 

Fig. 4. Summary of optimum input combinations for NOx modeling. 

3.3. Final Structure of MANFIS Model 

The performance of two input-output combinations for CO2 and NOx modelling is shown in 

Table 2. For carbon dioxide, the best representing pair combination is number five that is 

between the vehicle speed and the percentage of heavy trucks with RMSEtraining equals 0.06 and 
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RMSEtesting equals 1,300.7. However, the high testing error may be due to limited training 

readings which could have been avoided by increasing the number of readings. In addition, the 

first combination generates a smaller error for the training phase, but it is not considered due to 

its high testing phase error. On the other hand, for NOx modelling, the traffic delay and the 

percentage of heavy trucks are considered as the optimum input pair. It produces 0.02 and 253.0 

for RMSEtraining and RMSEtesting, respectively. 

 After selecting the best input combination for both CO2 and NOx the best membership 

functions were determined. This was done by choosing from eight types of membership 

functions as shown in Table 3. In this phase, the hybrid training algorithm has been used. 

Furthermore, three membership functions and three epochs were implemented during the search 

process. The results show that the triangular membership function best represents CO2 emission 

with RMSEtraining = 0.05 and RMSEtesting = 1,034.2.While for NOx modelling the best 

membership function is two-sided Gaussian with 0.007 and241.7 for RMSEtraining and RMSEtesting, 

respectively. 

Table 2. Summary of Optimum Inputs Selection Using Two Input Variables for CO2 and NOx 

 CO2  NOx 

No Inputs RMSEtraining RMSEtesting No Inputs RMSEtraining RMSEtesting 

1 

Delay; Speed 0.03 3,594.8 

1 Delay; 

Speed 

0.02 699.4 

2 

Delay; % HT 1.48 5,889.0 

2b Delay; % 

HT 

0.02 253.0 

3 Delay; % MT 0.22 5,918.4 3 Delay; % 0. 44 1,151.5 
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MT 

4 

Delay; (H&M) 2.30 10,964.4 

4 Delay; 

(H&M) 

0. 50 2,133.3 

5a 

Speed; % HT 0.06 1,300.7 

5 Speed; % 

HT 

0. 29 1,145.8 

6 

Speed; % MT 0. 48 8,932.7 

6 Speed; % 

MT 

0.09 1,738.0 

7 

Speed;% (H&M) 0. 19 1,944.0 

7 Speed;% 

(H&M) 

0.04 378.2 

8 

% HT; % MT 304.3 861.6 

8 % HT; % 

MT 

59.05 167.6 

9 

% HT; (H&M) 303.3 1,784.4 

9 % HT; 

(H&M) 

59.0 347.2 

10 

% MT; (H&M) 303.4 572.0 

10 % MT; 

(H&M) 

59.1 111.3 

a best combination for CO2 modeling, b best combination for NOx modeling 

 

     Table 3. Summary of the Performance of Various Membership Functions for CO2 and NOx 

  CO2 NOx 

Code Function Description RMSEtrain RMSEtest RMSEtrain RMSEtest 

Trimf Triangular MF 0.05a 1,034.2a 0.013 315.1 

trapmf 
Trapezoidal MF  

0.03 1,449.8 0.004 310.4 
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gbellmf 
Generalized bell curve 
MF 0.05 1,139.2 0.18 339.7 

gaussmf Gaussian curve MF 0.2 1,106.9 0.007 279.0 

gauss2mf 
Two-sided Gaussian 
MF 0.04 1,393.4 0.007b 241.7b 

pimf Pi-shaped curve MF 0.03 1,392.0 0.004 310.5 

dsigmf 

Composed of the 
difference between two 
sigmoidal MF 0.04 1,321.6 0.005 309.4 

psigmf 
Product of two sigmoid 
MF 0.36 1,325.6 0.005 309.4 

      aThe best membership function performance for CO2 ; b The best performance of the      
membership function for NOx 

 

 To accomplish the MANFIS structure, the optimum number of membership function was 

determined by keeping the epoch number constant (3 epochs) and altering the number of 

membership functions from 2 to 7. However, the selected optimum input combinations for both 

CO2 and NOx were used in this search. The optimum number of membership function was 

selected based on the generated smallest RMSE for training and testing phases. Table 4 shows 

the performance of the model with different function numbers. The best performance for both 

CO2 and NOx was achieved with three functions. The training RMSE of CO2 and NOx were 0.05 

and 0.007, respectively, while for the testing phase it was 1,034.2 and 241.7 for CO2 and NOx, 

respectively. However, as shown in Table (4) increasing the numbers of membership functions 

does not enhance the model performance. 
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Table 4. Performance Summary of Various Membership Functions for CO2 and NOx 

 

CO2 NOx 

No of function RMSEtrain RMSEtest RMSEtrain RMSEtest 

2 355.1 967.8 67.1 322.7 

3a 0.05 1,034.2 0.007 241.7 

4 0.04 1,460 0.006 403.1 

5 0.05 1,365 0.07 416.7 

6 0.04 1,731 0.08 421.9 

7 2,068 2,578 0.07 423.1 

a The best function number 

Developing the model structure by applying MANFIS enhances the overall modelling 

performance. For instance, it reduces the training RMSE for CO2 by 16% and for NOx by 65%, 

respectively, while it reduces the testing RMSE for CO2 by 71% and for NOx by 4%, 

respectively. Finally, the final MANFIS structure shown in Fig. 5 illustrates structures of 

MANFIS model for both CO2 and NOx, respectively. It shows the two inputs, membership 

functions, the three membership functions, the nine fuzzy rules and the desired output.  
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Fig. 5. Final MANFIS structures for CO2 and NOx models. 

Fig. 6 shows the effect of the vehicles' speed and percentage of heavy truck on CO2 emission. 

For instance, for a speed value of 10 km/h, as the percentage of heavy trucks decreases, CO2 

emission increases. This is related to the increase the number of lighter, or gasoline trucks which 

have more CO2 emission than the heavy truck [6]. On the other hand, increasing the speed will 

reduce CO2 emissions. This goes back to different densities of diesel and gasoline. Thus, the 

consumption varies, and diesel consumption is less than gasoline.  

 

Fig. 6. Surface viewer of % of heavy truck, speed and CO2  

 Fig. 7 shows the effects of delay and the heavy truck percentage on NOx emission. The NOx 

emission can be divided into two categories. The first being 20 s per vehicle; in this region, 

increasing the percentage of trucks will decreased the NOx emissions. Otherwise, the second 

region is for delays of more than 20 s; in this region, increasing the percentage of heavy truck 

increased the NOx emission. Moreover, the highest NOx emission was at the largest delay (55 s) 

and highest heavy truck percentage.Increasing the heavy truck percentage reduced the traffic 

movement and increased the waiting time for all vehicles at the road; therefore, emissions 
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increased. In addition, heavy trucks, usually diesel vehicles, comparatively emit higher NOx than 

gasoline vehicles during times of being stationary. Therefore, its contribution is tangible for NOx 

emission [21].  

 

Fig. 7. Surface viewer of % of heavy truck, delay and NOx 

 

4. Conclusions 

This study analyses negative implications of traffic congestion on air quality, especially under 

signalized roundabouts and possibly elsewhere. The developed model could assist municipal 

planning boards, traffic and environmental engineers to identify planning and management 

measures and policies for reducing air pollution as a result of traffic congestion in urban zones. 

The main objective of this research was to investigate the effect of traffic composition variables 

on CO2 and NOx density on signalized roundabouts, whilst maintaining an accepted degree of 

accuracy using MANFIS in order to reduce complexity and data collection time. The traffic 

composition variables included in this study were the percentage of minibuses, percentage of 
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heavy trucks, average delay, and average speed. Proper input selection enhanced model 

performance. However, environmental systems have limitations to data records. These 

limitations are essentially related to accuracy, budget, time, and reliability of the data. Therefore, 

modelling environmental systems saves time, effort and cost whilst maximizing model usability. 

The results indicate that vehicle speed and the percentage of heavy trucks are the main input 

variables to estimate the emission of CO2. Meanwhile, delays and percentage of heavy trucks are 

the main inputs fortheNOx modelling. However, there is some suggestion of potential conflicts 

with some aspects of current planning ideas; specific questions about the advisability of heavy 

truck entry permission to the city centre, especially during peak periods have arisen. These 

suggest that environmental and safety consequences of these concepts in specific places should 

be dealt with. Finally, it is recommended to replicate the investigation of the relation between 

traffic conditions and air pollutants elsewhere to see if similar findings are obtained to support 

the confidence in our conclusions. 

 

Acknowledgments  

The authors are grateful and thankful for the head of Corum City Council and all the people in 

the City Council for their help and support during data collection and analysis. Moreover, high 

appreciation is shown for Philadelphia University and Aqaba University of Technology for 

funding the project. 

 

References 

17 
 



 

1. Jin J, Rafferty P. Does congestion negatively affect income growth and employment 

growth? Empirical evidence from US metropolitan regions. Transport Policy 2017;55:1-8. 

2. Suleiman GM, Bezgin NÖ, Ergun M, Gürsoy M, Karaşahin M. Effects of speed 

management and roadway parameters on traffic flow along arterials. In: Proceedings of 

the Institution of Civil Engineers-Transport. Thomas Telford Ltd.; 2017. 

3. Zhou H, Li Y, Liu H, et al. Temporal distribution, influencing factors and pollution 

sources of urban ambient air quality in Nanchong, China. Environ. Eng. Res. 

2015;20:260-267. 

4. Studer L, Ketabdari M, Marchionni G. Analysis of adaptive traffic control systems design 

of a decision support system for better choices. J. Civil Environ. Eng. 2015;5:195. 

5. Solomon S. Segmental assessment of level of traffic congestion on Kality Ring Road to 

Dukem Bridge [dissertation].  Addis Ababa: Univ. of Addis Ababa; 2015. 

6. Sullivan JL, Baker RE, Boyer BA, et al. CO2 emission benefit of diesel (versus gasoline) 

powered vehicles. Environ. Sci. Technol. 2004;38:3217-3223. 

7. Weichenthal S, Ryswyk KV, Kulka R, Sun L, Wallace L, Joseph L. In-vehicle exposures 

to particulate air pollution in canadian metropolitan areas: The urban transportation 

exposure study. Environ. Sci. Technol. 2014;49:597-605. 

8. Chen BP, Ma ZQ. Short-term Traffic Flow Prediction Based on ANFIS. In: International 

Conference on Communication Software and Networks; 27-28 February 2009; Macau, 

China: IEEE. 

9. Zengqiang M, Cunzhi P, Yongqiang W. Road safety evaluation from traffic information 

based on ANFIS. In: Control Conference, 2008. CCC 2008. 27th Chinese. 2008. IEEE. 

18 
 



 

10. Soh AC, Rahman RZA, Rhung LG, Sarkan HM. Traffic signal control based on adaptive 

neural-fuzzy inference system applied to intersection. In: 2011 IEEE Conference on Open 

Systems (ICOS); 25-28 September 2011; Langkawi, Malaysia: IEEE. 

11. Khodayari A, Ghaffari A, Kazemi R, Manavizadeh N. ANFIS based modeling and 

prediction car following behavior in real traffic flow based on instantaneous reaction 

delay. In: 2010 13th International IEEE Conference on Intelligent Transportation 

Systems (ITSC),; 19-22 September 2010; Funchal, Portugal: IEEE. 

12. Piri J, Kisi O. Modelling solar radiation reached to the Earth using ANFIS, NN-ARX, 

and empirical models (Case studies: Zahedan and Bojnurd stations). J. Atmos. Sol-Terr. 

Phy. 2015;123:39-47. 

13. Younes MK, Nopiah ZM, Basri NE, Basri H, Abushammala MF, Maulud KNA. Solid 

waste forecasting using modified ANFIS modeling. J. Air Waste Manage. Assoc. 

2015;65:1229-1238. 

14. Karner AA, Eisinger DS, Niemeier DA. Near-roadway air quality: Synthesizing the 

findings from real-world data. Environ. Sci. Technol. 2010;44:5334-5344. 

15. Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the root 

mean square error (RMSE) in assessing average model performance. Climate Res. 

2005;30:79. 

16. Antanasijević DZ, Pocajt VV, Povrenović DS, Ristić MĐ, Perić-Grujić AA. PM10 

emission forecasting using artificial neural networks and genetic algorithm input variable 

optimization. Sci. Total Environ. 2013;443:511-519. 

19 
 



 

17. Younes MK, Nopiah ZM, Ahmad Basri NE, et al. Landfill area estimation based on 

integrated waste disposal options and solid waste forecasting using modified ANFIS 

model. Waste Manage. 2016;55:3-11. 

18. Pramanik N, Panda RK. Application of neural network and adaptive neuro-fuzzy 

inference systems for river flow prediction. Hydrol. Sci. J. 2009;54:247-260. 

19. Khatibinia M, Salajegheh J, Fadaee MJ, Salajegheh E. Prediction of failure probability 

for soil–structure interaction system using modified ANFIS by hybrid of FCM-FPSO. 

Asian J. Civil Eng. 2012;13:1-27. 

20. Lin KP, Pai PF, Lu YM, Chang PT. Revenue forecasting using a least-squares support 

vector regression model in a fuzzy environment. Inform. Sci. 2013;220:196-209. 

21. Shancita I, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Rashed MM, Rashedul HK. A 

review on idling reduction strategies to improve fuel economy and reduce exhaust 

emissions of transport vehicles. Energ. Convers. Manage. 2014;88:794-807. 

 

20 
 


	abstract pdf_17_93
	uncorrected manu_17_93
	3.3. Final Structure of MANFIS Model


