Hahn-Banach Theorem in Vector Spaces

M. R. Haddadi
Yazd University

H. Mazaheri
Yazd University

Abstract. In this paper we introduce a new extension to Hahn-Banach Theorem and consider its relation with the linear operators. At the end we give some applications of this theorem.

AMS Subject Classification: 41A65; 46B50; 46B20; 41A50.
Keywords and Phrases: Normal cone, proximinal subspaces, Chebychev subspaces, Hahn-Banach theorem.

1. Introduction

Huang and Zhang [2] introduced the notion of cone metric spaces and some fixed point theorems for contractive mappings were proved in these spaces. The results in [2] were generalized by Sh.Rezapour and R. Hamlbarani in [6]. Suppose that \preceq is a partial order on a set S and $A \subseteq S$. The greatest lower bound of A is unique, if it exists. It is denoted by $\inf(A)$. Similarly, the least upper bound of A is unique, if it exists, and is denoted by $\sup(A)$.

Let E be a linear space and P a subset of E. P is called a cone if

(i) P is closed, non-empty and $P \neq \{0\}$.
(ii) $ax + by \in P$ for all $x, y \in P$ and non-negative real numbers a, b.
(iii) $P \cap -P = \{0\}$.

Received: November 2009; Final Revised February 2010
*Corresponding author
For a given cone \(P \subseteq E \), we can define a partial ordering \(\leq \) with respect to \(P \) by \(x \leq y \) if and only if \(y - x \in P \). Note that \(x < y \) will stand for \(x \leq y \) and \(x \neq y \), while \(x \ll y \) will stand for \(y - x \in \text{int}P \), where \(\text{int}P \) denotes the interior of \(P \).

\(P \) is called the normal cone of \(E \), if there is a number \(M > 0 \) such that for all \(x, y \in P \), \(0 \leq x \leq y \) implies \(\|x\| \leq M\|y\| \).

The least positive number satisfying the above inequality is called the normal constant of \(P \).

2. Main Results

Hahn-Banach Theorem is one of the important theorems in analysis and many authors have investigated on this theorem and its applications ([2-6]).

In the sequel we assume that \((E, \|\cdot\|)\) is a Banach algebra that is ordered by a normal cone \(P \) with constant normal \(M=1 \), \(\text{int}P \neq \emptyset \) and \(\leq \) is partial ordering with respect to \(P \). We recall that a Banach algebra is a pair \((E, \|\cdot\|)\), where \(E \) is an algebra and \(\|\cdot\| \) is a complete norm such that \(\|xy\| \leq \|x\| \|y\| \).

Definition 2.1. Let \(X \) be a vector space and \(p \) be a map from vector space \(X \) into \(E \). We call that \(p \) is a sublinear map if \(p(tx)=tp(x) \) and \(p(x+y) \leq p(x) + p(y) \) whenever \(t > 0 \) and \(x, y \in X \).

Theorem 2.2. [Hahn- Banach Theorem] Let \(Y \) be a subspace of a vector space \(X \) and \(p : X \to E \) a sublinear map. If the linear map \(T_0 : Y \to E \) satisfies \(T_0(y) \leq p(y) \) for every \(y \in Y \), then there is a linear map \(T : X \to E \) such that \(T|_Y = T_0 \) and \(T(x) \leq p(x) \) whenever \(x \in X \).

Proof. Let \(x_1 \in X \setminus Y \) and \(Y_1 = Y \oplus \{x_1\} \). Note that each member of \(Y_1 \) can be expressed in the form \(y + tx_1 \), where \(y \in Y \) and \(t \) is a scalar, in exactly one way. For \(y_1, y_2 \in Y \),

\[
T_0(y_1) + T_0(y_2) = T_0(y_1 + y_2) \\
\leq p(y_1 - x_1 + y_2 + x_1) \\
\leq p(y_1 - x_1) + p(y_2 + x_1).
\]
Then
\[\sup \{ T_0(y) - p(y - x_1) : y \in Y \} \leq \inf \{ p(y + x_1) - T_0(y) : y \in Y \} \]
and so for some \(t_1 \in E \)
\[\sup \{ T_0(y) - p(y - x_1) : y \in Y \} \leq t_1 \leq \inf \{ p(y + x_1) - T_0(y) : y \in Y \}. \]

For any \(y \in Y \) and scalar \(t \), define \(T_1(y + tx_1) = T_0(y) + t.t_1 \). It is easy to check that \(T_1 \) is a linear map whose restriction to \(Y \) is \(T_0 \). Therefore
\[T_1(y + tx_1) = t(T_0(t^{-1}y) + t_1) \leq tp(t^{-1}y + x_1) = p(y + tx_1) \]
and
\[T_1(y - tx_1) = t(T_0(t^{-1}y) - t_1) \leq tp(t^{-1}y - x_1) = p(y - tx_1). \]

So \(T_1(x) \leq p(x) \) whenever \(x \in Y_1 \).

The second step of the proof is to show that the first step can be repeated until a linear map is obtained. It is dominated by \(p \) and its restriction to \(Y \) is \(T_0 \). Let \(\mathcal{U} \) be the collection of all linear maps \(G \) such that the domain of \(G \) is a subspace of \(X \) that includes \(Y \), the restriction of \(G \) to \(Y \) is \(T_0 \), and \(G \) dominated by \(p \). Define a preorder \(\preceq \) on \(\mathcal{U} \) by declaring that \(G_1 \preceq G_2 \) whenever \(G_1 \) is the restriction of \(G_2 \) to a subspace of the domain of \(G_2 \).

It is easy to see that each nonempty chain \(\mathcal{C} \) in \(\mathcal{U} \) has an upper bound in \(\mathcal{U} \). Consider the linear map whose domain is the union of the domains of the members of \(\mathcal{C} \) and which agrees at each point \(z \) of \(Z \) with every member of \(\mathcal{C} \) that is defined at \(z \). By Zorn’s lemma, the preorder set \(\mathcal{U} \) has a maximal element \(T \). The domain of \(T \) is all of \(X \). On the other hand with by applying the first step there is a \(T_1 \) in \(\mathcal{U} \) such that \(T \preceq T_1 \), but \(T_1 \not\preceq T \). This \(T \) satisfies all that is required. \(\square \)

Proposition 2.3. Let \(Y \) be a closed subspace of a linear normed space \(X \) and \(T_0 : Y \to E \) be an injective bounded linear map. Then there exists a bounded linear map \(T : X \to E \) such that \(\|T\| = \|T_0\| \) and \(T|_Y = T_0 \).

Proof. For every nonzero element \(x \in X \) define \(p(x) = \|T_0\| \|x\| \frac{1}{\|T_0(x)\|} \) and \(p(0) = 0 \). Since for every nonzero element \(x \in X \), we have
\[\|T_0(x)\| \leq \|T_0\| \|x\| T_0(x). \]
and so \(T_0(x) \leq p(x) \). Now by Theorem 2.2., there exists a linear map
\(T : X \rightarrow E \) such that \(T|_Y = T_0 \) and \(T(x) \leq p(x) \) whenever \(x \in X \).
Since \(P \) is a normal cone with constant normal 1, \(\|T(x)\| \leq \|T_0\| \|x\| \)
and \(\|T(x)\| \leq \|T_0\| \). Therefore \(\|T\| = \|T_0\| \). □

Theorem 2.4. Let \(X \) be a linear normed space and \(0 \neq x \in X \). Then
for every \(e \in S_E \) there is a linear map \(T_e : X \rightarrow E \) such that
\(\|T_e\| = 1 \), \(T_e(x) = \|x\| e \), where \(S_E = \{x \in E : \|x\| = 1\} \).

Proof. Define \(G_e : \langle x \rangle \rightarrow E \) by \(G_e(\alpha x) = \alpha \|x\| e \) for every scalar \(\alpha \).
Clearly \(G_e \) is injective, linear and \(G_e(x) = \|x\| e \). Also for \(\alpha \neq 0 \),
\[
\|G_e(\alpha x)\| = |\alpha| \|x\| = \|\alpha x\|.
\]
Since \(E \) is ordered by a normal cone \(P \) with constant normal \(M = 1 \),
then \(\|G_e\| \leq 1 \). Also since,
\[
\|G_e\| \|x\| \geq \|G_e(x)\| = \|x\|,
\]
so \(\|G_e\| \geq 1 \). Hence \(\|G_e\| = 1 \). Let \(T_e \) be then Hahn-Banach extension
of \(G_e \) from proposition 2.3, so the proof is complete. □

In the following we introduce immediate consequence of the above theorem.

Corollary 2.5. Let \(X \) be a linear normed space and \(x \neq y \in X \). Then
there is a linear map \(T : X \rightarrow E \) such that \(Tx \neq Ty \).

Corollary 2.6. Let \(X \) be a linear normed space and \(x \in X \). Then
\[
\|x\| = \sup_{T \in \mathcal{B}} \|Tx\|,
\]
where \(\mathcal{B} = \{T : X \rightarrow E : T \) is a linear map and \(\|T\| = 1\} \).

Proof. By Theorem 2.4., there is a linear map \(T : X \rightarrow E \) such that
\(\|T\| = 1 \), \(\|T(x)\| = \|x\| \). Then \(\|x\| = \|T(x)\| \leq \sup_{T \in \mathcal{B}} \|Tx\| \). On the
other hand since \(\|T(x)\| \leq \|T\| \|x\| \), and so \(\sup_{T \in \mathcal{B}} \|Tx\| \leq \|x\| \). □
We recall that a point \(g_0 \in Y \) is said to be a best approximation for \(x \in X \) if and only if \(\|x - g_0\| = \|x + Y\| = d(x,Y) \). The set of all best approximations of \(x \in X \) in \(Y \) is shown by \(P_Y(x) \). In the other words,

\[
P_Y(x) = \{ g_0 \in Y : \|x - g_0\| = d(x,Y) \},
\]

If \(P_Y(x) \) is non-empty for every \(x \in X \), then \(Y \) is called a Proximinal set. The set \(Y \) is Chebyshev if \(P_Y(x) \) is a singleton set for every \(x \in X \) (see [2-6]).

Now we want to present some applications of new extension Hahn-Banach theorem in approximation theory.

Proposition 2.7. Let \(Y \) be a closed subspace of a linear normed space \(X \), and \(x \in X \setminus Y \). Then for every \(e \in S_E \) there is a linear map \(T_e : Y \oplus \langle x \rangle \to E \) such that \(\|T_e\| = 1 \), \(T_e x = d(x,Y)e, T_e|Y = 0 \).

Proof. Define \(T_e : Y \oplus \langle x \rangle \to E \) by \(T_e(y + \alpha x) = \alpha d(x,Y)e \) for every \(y \in Y \) and scalar \(\alpha \). It is clear that \(T_e \) is linear, \(T_e x = d(x,Y)e \) and \(T_e|Y = 0 \). For any \(y \in Y \) and scalar \(\alpha \neq 0 \),

\[
\|T_e(y + \alpha x)\| = |\alpha|d(x,Y) \leq \|y + \alpha x\|,
\]

so \(\|T_e\| \leq 1 \). Also since,

\[
\|T_e\| \|x - y\| \geq \|T_e(x - y)\| = d(x,Y) \quad y \in Y,
\]

so \(\|T_e\| \geq 1 \). Hence \(\|T_e\| = 1 \). \(\square \)

Theorem 2.8. Let \(Y \) be a closed subspace of a cone norm space \(X \). Suppose that \(x \in X \setminus Y \) and \(g_0 \in Y \). Then \(g_0 \in P_Y(x) \) iff for every \(e \in S_E \) there is a linear map \(T_e : Y \oplus \langle x \rangle \to E \) such that

\[
\|T_e\| = 1, \quad T_e(x - g_0) = \|x - g_0\|e, T_e|Y = 0.
\]

Proof. Assume \(g_0 \in P_Y(x) \). Since \(x \in X \setminus Y \), \(\|x - g_0\| = d(x,Y) \) and so by Proposition 2.7., there is a linear map \(T_e : Y \oplus \langle x \rangle \to E \) such that

\[
\|T_e\| = 1, \quad T_e(x - g_0) = \|x - g_0\|e, T_e|Y = 0.
\]
Conversely suppose there is a linear map \(T : Y \oplus \langle x \rangle \to E \) such that \(\|T_e\| = 1 \), \(T_e(x - g_0) = \|x - g_0\|e, T_e|_Y = 0 \). Then
\[
\|x - g_0\| = \|T_e(x - g_0)\| = \|T_e(x - g)\| \leq \|T_e\| \|x - g\| = \|x - g\|
\]
and so \(g_0 \in P_Y(x) \). □

Corollary 2.9. Suppose \(X \) is a normed linear spaces and \(x, y \in X \). Then \(x \perp y \) iff for every \(e \in S_E \) there is a linear map \(T_e : \langle y \rangle \oplus \langle x \rangle \to E \) such that \(\|T_e\| = 1 \), \(T_e(x) = \|x\|e, T_e(y) = 0 \).

It is clear that \(\ell_\infty \) is a Banach algebra and \(P = \{ \{x_n\} \in \ell_\infty : x_n \geq 0, \ for \ all \ n \} \) is a normal cone with constant normal \(M = 1 \). Also in [1] proved that for every linear map \(T_0 : Y \to \ell_\infty \) there is a linear map \(T : X \to \ell_\infty \) such that \(\|T\| = \|T_0\| \) and \(T|_Y = T_0 \). Consequently we have following result.

Corollary 2.10. Let \(Y \) be a closed subspace of a linear normed space \(X \), and \(x \in X \setminus Y \). Then \(M \subseteq P_Y(x) \) iff for every \(e \in S_{\ell_\infty} \), there is a linear map \(T : X \to \ell_\infty \) such that for every \(g \in M \)
\[
\|T_e\| = 1, \ T_e x = \|x - g\|e, T_e|_Y = 0.
\]

References

Archive of SID

HAHN-BANACH THEOREM IN VECTOR SPACES

Archive of SID

Mohammad Reza Haddadi
Department of Mathematics
Assistant Professor of Mathematics
Yazd University
Yazd, Iran
E-mail: haddadi83@math.iut.ac.ir

Hamid Mazaheri
Department of Mathematics
Associated Professor of Mathematics
Yazd University
Yazd, Iran
E-mail: hmazaheri@yazduni.ac.ir