
Received: 3 September 2021 Revised: 18 November 2021 Accepted: 5 January 2022 IET Communications

DOI: 10.1049/cmu2.12328

ORIGINAL RESEARCH PAPER

An intelligent method for reducing the overhead of analysing big

data flows in Openflow switch

Mahdi Abbasi1 Shima Maleki1 Gwanggil Jeon2 Mohammad R. Khosravi3

Hatam Abdoli1

1 Department of Computer Engineering, Faculty of
Engineering, Bu-Ali Sina University, Hamedan, Iran

2 Department of Embedded Systems Engineering,
College of Information Technology, Incheon
National University, Yeonsu-gu, Incheon, Korea

3 Computer Engineering Department, Persian Gulf
University, Bushehr, Iran

Correspondence

Mahdi Abbasi, Department of Computer
Engineering, Shahid Ahmadi Roushan BLVD,
Bu-Ali Sina University, Hamedan, Iran, P.O. Box
65178-38695.
Email: abbasi@basu.ac.ir

Abstract

Software-defined networks have been developed to allow the entire network to be managed
as a programmable entity. As a well-known protocol in this field, OpenFlow installs new
packet forwarding rules of the distinct packets of Big Data flows (known as flow entries) in
the flow tables of network switches in order to implement the desired management policies.
Despite the high speed, flow tables have limited capacity to store the information of Big
Data flows. As a result of inefficient policy for replacing the entries of the flow table, lack
of flow entries corresponding to the incoming packets in the flow table of the switch will
increase the references to the controller for forwarding this packet as well as the amount of
delay in packet forwarding. The underlying idea of the proposed method is to make use of
the popularity of traffic flows in the table to select the intended flow for the replacement.
For replacement of flow table entries, a novel and intelligent method is proposed in this
research which uses a reference history of flows to assign an importance degree to each
table entry. Comparison of the simulation results confirms the superiority of the method
for reducing the controller’s overflow.

1 INTRODUCTION

SDN has recently become popular among researchers and
industrial practitioners. Figure 1 illustrates the general structure
of SDN. The main advantage of this network is its flexibility
which is due to the separation of the control plane and data
plane. Using software-defined networks, the entire network
along with elements can be regarded as a single virtual network.
Regarding this brilliant feature, the SDN is not specifically
recommended for edge computing, but in practice, it can
lower the complexity barriers associated with it and act as a
pioneer in unleashing the true potential of edge computing.
This technology helps bridge the gap between edge computing
and traditional cloud combinations. For example, SDN can act
as a decision-maker on whether to upload a task to the cloud
or upload it at the edge for processing. The SDN controller
has built-in AI that can determine when a particular link
will experience high network traffic. The controller can then

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2022 The Authors. IET Communications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

request further processing at the edge to eliminate the network
bottleneck [1, 2].

Overall, Big Data is branded by 5Vs including volume, verac-
ity, variety, velocity, and value. The excellent properties of SDN
make it much easier to collect, send, store, and process Big Data.
SDN demonstrates that it can also benefit from big data such
as traffic engineering [3], cross-layer design, defence against
security attacks, and SDN-based intra-datacentre and inter-
datacentre networks [4]. It is shown that OpenFlow-enabled
SDNs improve system performance for Hadoop-based Big
Data applications by fully taking advantage of cloud infrastruc-
ture opportunities and challenges and using OpenFlow’s net-
work control capabilities to resolve network congestion [5].

These networks are controlled using certain designed soft-
ware and APIs. Therefore, such networks require a communica-
tion protocol between software and hardware which could apply
control software codes to all tools developed by various manu-
facturers [6].

IET Commun. 2022;1–12. wileyonlinelibrary.com/iet-com 1

mailto:abbasi@basu.ac.ir
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-com

2 ABBASI ET AL.

FIGURE 1 Architecture of a software-defined network

This task can be done by OpenFlow protocol. In the archi-
tecture of this protocol, that is, depicted in Figure 2, each
OpenFlow switch which is responsible for forwarding network
packets consists of one or more tables as well as an abstract
layer. This abstract layer uses OpenFlow protocol for secure
communication with the controller [7].

The most important components of each OpenFlow switch
are its flow tables. Flow tables contain flow entries each of
which determines how the packets belonging to a flow should
be processed and sent. Flow entries are defined by the controller
in flow tables [8]. These tables have limited capacity. Therefore,
the number of flow entries used for storage is pre-determined
and limited. Flow tables are composed of TCAMs (Ternary
Content Addressable Memory). TCAMs are expensive and have
a very high level of power consumption. This is why increasing

FIGURE 2 The structure of OpenFlow switch

the size of flow tables is costly and is likely to increase power
consumption [9–11]. In a flow table, the information of each
incoming flow packet is compared with the entries in the table.
If it matches a table entry, the policy specified in that entry
will be applied to the packet. If there is no matching entry,
a message called Packet_in is issued to be processed by the
controller. In this case, the processing time of the packet will
increase. As a result, with increasing delay in the processing
of packets, the packets of the incoming flow will accumulate
in the switch’s buffer and the buffer will ultimately overflow.
This inefficient behaviour causes the incoming packets to be
discarded at the outset. As multiple switches are connected to
the controller, transmitting these messages to the controller
will increase communication overload between the controller
and the switch. Given this, one of the most important criteria
for replacement of flow entries is to reduce the controller’s
overload. This is the main motivation behind the present
research. As the controller is in charge of updating and replac-
ing entries in a flow table, inefficient replacement policies will
make the flow table unstable and increase the controller’s com-
putation overload. Given this important issue, the approach
adopted in this study is to update the entries of the flow
table based on the statistical features of their corresponding
flows.

In what follows, Section 2 will review the literature and
focus on the major studies which have addressed the reduction
of controller’s overload using algorithms for replacing the
entries of the flow table. Next, we shall describe the proposed
algorithm for the replacement of flow table entries to reduce
the overload. Section 4 explains in detail the implementation
environment of our method as well as the other methods to be
compared, evaluation criteria, and comparison results. Finally,
Section 5 concludes the discussion and makes suggestions for
further development of the current work.

ABBASI ET AL. 3

2 REVIEW OF LITERATURE

As mentioned above, one of the challenges ahead of software-
defined networks is the limited capacity of flow tables. Given
the increasing variety of applications, currently, there are more
than a thousand types of flow per second in data centres. The
limited capacity of flow tables in OpenFlow switches leads to
increased overload in the controller because all the entries to
be matched against the flows cannot be stored in it and lack of
a matching entry is reported to the controller. As these tables
are made up of TCAM, any increase in size will lead to higher
cost and power consumption. Several solutions have been pro-
posed by researchers [12, 13], for example, eviction techniques
for removing entries from the flow table before installing
new entries, compression-based techniques which decrease the
accumulation of information among the flow entries of the
tables as much as possible, and split-and-distribution tech-
niques in which switches create a general distributed system
whose components are dependent on each other. Eviction-
based methods include replacement algorithms and mecha-
nisms based on timeout [13]. Replacement algorithms that have
so far been used in different studies and have proved to be
applicable to software-based networks are FIFO, Random, and
LRU.

In a 2012 study, Adam Zarek from Toronto University com-
pared replacement algorithms (Random, FIFO, and LRU). In
these algorithms, the flow table is taken merely as a cache and
the entries are removed only when the table is full. Based on the
mentioned replacement policies, the intended entry is selected
and deleted. Zarek’s study showed that FIFO is better than
Random, although with a relatively slight difference. The prob-
lem with Random is that it may select those table entries for the
replacement that have numerous references. LRU is better than
the other two algorithms and its hit rate is higher. However, it
cannot be implemented in software-defined networks. Finally,
the study also examined the performance of the combination of
different timeouts using the LRU algorithm. The results show
that, when the length of the table is shorter than the number of
active entries, the timeout size does not have a remarkable effect
and any enhancement in performance depends on the replace-
ment algorithm. The larger the size of the table, the more varied
the miss rate is for different timeouts (lower miss rates for
greater timeouts); after a certain point, however, the increase
in table size will not affect performance [14]. In 2013, Bu-Sung
Lee et al. [15] proposed a solution to reduce miss rate in flow
tables and establish fairness between small and large flows in the
data centre of software-defined networks. One of the features of
traffic usually observed in data centres is that large flows have a
very big size but are smaller in number in comparison with small
flows. Therefore, large flows are more likely to be excluded
due to the limited capacity of the flow table. The flooding of
small flows permanently results in the exclusion of large flows
from the table. As a result, when large flows arrive, the hit rate
will decrease, and references to the controller increase. Thus,
to overcome these issues, a cache layer is inserted between the
switches and the controller. These memories can be shared

by several switches. When flow entries are removed from the
flow table, they are inserted into this memory. The memory
contains buckets that are separately specified for small and
large flows. When a flow arrives in a switch, it is first compared
with the flow table. If there is no matching entry, the memory
will be consulted, and if the appropriate entry is not found in
the memory, the controller will be engaged. This requires extra
hardware. As the size of this memory is limited, replacement
algorithms will be used if the memory is full. The algorithm
used in this work is LRU. When a new entry is installed in the
memory, it will be replaced using LRU if the memory is full.
Entries in large flows will be replaced with entries from large
flows and entries in small flows with those in small flows. In
2014, Eun-Do Kim et al. developed a solution to reduce the
overload of the controller of software-defined networks which
is due to table miss during incoming flows. They used the LRU
algorithm to manage the flow table during the replacement
of flow entries. In this method, the entries are not removed
when they are expired, rather they are maintained in the table
as long as possible along with their age. When a flow entry is
deactivated, the switch sets its counter to 0 and increments the
counter of the remaining inactive entries by 1. Thus, the entry
with the greatest counter is the entry recently used least. If one
of the inactive entries matches the incoming packets, its timeout
and counter values are reset to default and it is put among active
flows. When the table size exceeds a threshold, LRU removes
some of the expired entries from the table. By doing this, the hit
rate of the flow table entries is relatively increased, but this will
increase the number of entries in the table. The study makes
use of the concept of vacancy which was added to OpenFlow
switch v1.4. Thus, the switch can limit the number of inactive
flow entries by vacancy-up and vacancy-down parameters and,
as inactive entries remain in the table, prevent the table from
overflowing. In the proposed method of this paper, the max-
imum number of inactive entries can be equal to vacancyUp
- vacancyDown. The results have shown that this algorithm
performs better than FIFO and Random [16, 17]. However, this
method was implemented in OpenFlow switch while control-
ling tasks in software-defined networks should be implemented
in the controller. Implementation of the LRU algorithm in the
controller requires that the controller be informed about the
last entry that matched the incoming flows, but this will impose
a huge load on the controller. As this study evaluates algorithms
that can be implemented in the controller and are based on
software-defined networks, this algorithm will not be discussed
here. Another issue to be considered is that OpenFlow con-
trollers install flow entries with a fixed timeout in the flow table.
There are some disadvantages to this. For example, in the flows
with short packet intervals, if the timeout is large, the flow entry
will remain in the flow table for a long time and occupy space.
Conversely, if packet intervals in a flow are long and the timeout
of the corresponding flow entry is small, the intended entry
will be removed before the arrival of each packet of the flow,
which will lead to the generation of too many packet-ins and
increase the controller’s overload. For this reason, Anilkumar
Vishnoi et al. [18] proposed an OpenFlow controller called

4 ABBASI ET AL.

Smart Time in 2014 which combined appropriate idle timeout
calculation with active eviction of flow entries. They aimed to
use TCAM efficiently. This was the first real implementation of
a smart flow management strategy in an OpenFlow controller.
Its design was based on the analysis of authentic data (retrieved
from data centres) and certain clues observed in the data. For
example, some flows will never repeat, or some flows have only
1–2 packets and 1 s (idle timeout in OpenFlow switches) is
too much for these flows. In general, since traffic is constantly
changing and the parameters of flows are different, idle timeout
must be allocated according to the traffic pattern. For this
purpose, on installing a flow entry for the first time, a low idle
timeout is allocated to it (100 ms which has been obtained
during experiments). This value ensures that short flows, as
well as non-repeating flows, will not remain in TCAM for a
long time. For the next repetitions of flow installation, the
value of idle timeout will be calculated based on the number of
repetitions:

Idle Timeout = MinIdle Timeout ∗ 2Flow Repeat Count (1)

For repetitive flows, this value rises until a certain MaxIdle-
Timeout (10 s in this study) is achieved because it is rising expo-
nentially and too big a rise occupies the space of TCAM. Also,
the value of timeout is subtracted for short flows which repeat
over long intervals. Finally, when TCAM exceeds a threshold, a
flow entry will be removed from the table by use of the FIFO
or the Random algorithm. In this paper, Random was selected
and used. In the same year, Liang Xie et al. [19] presented a
solution based on the setting of the timeout of flow entries.
In their study, an adaptive control mechanism was proposed
with the aim of readjusting the idle timeout using flow tables
and cooperation of controller and switch. Instead of conven-
tional methods which re-set the idle timeout of a flow entry that
is activated and used, this mechanism (called Accflow) which
has been used for management of the flow tables of Open-
Flow switches adds the remaining idle timeout with the time-
out which is allocated to an entry upon activation and takes it as
the new timeout. Thus, active flows could have higher chances
of remaining in the table and the mismatch rate of the table
will decrease. (Idle timeout refers to the time during which a
flow can remain idle and if this time ends, the flow will be
removed.)

In a 2015 study, Huikang Zhu et al. [20] proposed their Intelli-
gent Timeout Master which was aimed at calculating the suitable
timeout for flows according to their features. Based on the occu-
pation of the flow table, this model also calculates the maximum
timeout to prevent overflow in the flow table. This task requires
the storage of the previous information of flow entries. In 2015,
He Li et al. [21] developed a storage algorithm with low com-
plexity to achieve a higher rate of the flow table. It used prefetch
and replacement techniques for predictable and unpredictable
flows, respectively. The underlying idea of the algorithm is as
follows: (1) When a rule is required to be installed on the switch
for each flow fi, it must be stored on all switches on the path of
the flow (prefetching the rule); (2) the timer ti is associated with

the flow entry fi, with an estimated time for the next hit with
this entry. When an entry replacement takes place in a switch,
the entry with the maximum timer value will be selected in the
switch. Whenever the timer ti is to be set, two types of flow
are considered: predictable flows (i.e. flows coming from net-
work disconnection services) and unpredictable flows (i.e. Auto-
matic flows). For the former, the timer is simply set to the arrival
time of the next packet. For unpredictable flows, when the esti-
mated arrival time of the next packet is earlier than expected,
the timer is updated with the interval of the arrival of the next
packet; otherwise, the timer must be re-set with a doubled value
(but not exceeding t-max). The evaluation criteria included the
comparison of hit rate in FIFO and LRU with that in the pro-
posed algorithm. The results suggest that the hit rate of the
proposed algorithm was more than the mentioned replacement
algorithms.

Zehua Guo et al. [22] proposed a method called STAR
which was a routing method for software-defined networks.
This method can determine the productivity of flow tables
in real-time and evict the expired flows when a new flow is
required. This method, too, makes use of LRU replacement and
the dynamic setting of the idle timeout. Each flow entry has a
tag that specifies whether it is active or inactive. When the con-
troller installs a new flow, this tag is set to ‘active’ and when
the last packet of the flow arrives, it is set to ‘inactive’. There-
fore, the controller can estimate the productivity of the flow
based on active entries and remove inactive flows even before
being expired. In line with this, Linlian Zhang et al. [23] pro-
posed a method called TimeoutX that sets the idle timeout of
a flow based on three parameters: the estimated duration of the
flow, the type of flow, and the productivity rate of the flow table.
Then, in a 2019 study, Qing Li et al. [24] developed a mecha-
nism called HQ-Timer which is based on machine learning. This
method assigns different timeout values to different flows based
on the dynamicity of the traffic. It uses the Q-learning method
for allocating the proper idle timeout to flows during their instal-
lation and issuing necessary commands for their eviction to
improve the productivity rate of TCAM. However, the method
needs a big learning dataset which requires a huge memory. In
addition, the switch has limited resources and the controller’s
processing unit. In the same year, Abinas Panda et al. [25] pro-
posed a method that emphasized the management of the hard
timeout of flow table entries. This method dynamically assigns
different hard timeouts to both predictable and unpredictable
flows. For this purpose, it uses average inter-arrival time and,
for eviction and replacement, it uses the LRU algorithm. One
year later, Babngida Isyaku et al. [26] proposed a similar method
called IHTA in which, in addition to hard timeout, the idle time-
out was also set according to the traffic pattern. This too was
done through inter-arrival time. The flow entry is removed from
the table when there is no packet matching it at a certain time.
This and other similar methods lack a mechanism for remov-
ing invalid and finished flows from the table to maintain more
active networks.

Heming yang et al. [27] proposed a method (stereos) using
machine learning to classify flow entries into two active and

ABBASI ET AL. 5

inactive classes to form an intelligent eviction strategy. In [28],
D Wu et al. presented a scheme based on the LRU algorithm
which can use flow table space to increase the matching rate of
table entries and also raise active flow priority to reduce match-
ing time in flow tables. In this method, when the table is full
and a new entry is received, the oldest flow entry which is not
matched with incoming flows for a while, will be removed. Yi
shen et al. [29], proposed another management scheme (FATM)
on controllers which combines the dynamic timeout and proac-
tive eviction to manage the flow table resources. The timeout
is set by a timeout assignment module according to the flow
characteristics. So, the entries of short-lived flows are removed
sooner than flow entries with larger packet intervals. When the
space of the table is not sufficient, the proactive eviction mod-
ule eliminates flow entries to prevent the table overflow. In
this design, the eviction thresholds and the other parameters
in both modules are set and adjusted according to the network
load.

Leo Mendibourne et al. [30] developed a method for manag-
ing flow tables in software-defined vehicle access networks. This
method allocates the hard timeout value based on the prediction
of vehicle mobility as well as the load level of network devices.
Given the relatively new emergence of the field of software-
defined networks and in light of the literature reviewed above, it
can be seen that none of the discussed methods were compre-
hensive. The techniques used in the related work are summa-
rized in Table 1.

Only a few studies have attempted to use the attributes of
flows for removing and replacing entries. In addition, only
simple algorithms such as FIFO and Random have been imple-
mented for replacement and no study has utilized dynamic
methods to manage flow tables that could remarkably optimize
the management of flow table entries. Therefore, our aim here
is to optimize the management of flow tables by using the
information obtained from the flows. In the next section, the
proposed solution is explained in detail. The results of the
proposed method will be compared with those of FIFO and
Random algorithms.

3 THE PROPOSED METHOD

The method proposed in this study is a novel dynamic method
for the replacement of flow table entries which uses the his-
tory of reference to flows for determining the degree of impor-
tance of entries. Our method is dynamic because it is based on
flow’s features. It assigns a degree of importance to each flow
entry according to the reference history of flows. The impor-
tance degrees are dynamically changed and updated. They are
used to determine the most appropriate entry to be removed
from the table. Hence, more important entries with more refer-
ences in their history will remain in the table.

On installing a new entry in the flow table by the controller
in the versions prior to OpenFlow 1.4, if the table is full, the
switch will send a message to the controller to inform the
controller about the entry not being installed due to the fullness
of the table. In OpenFlow 1.4, the concept of eviction was

introduced. If this feature is activated by the controller, during
the installation of a new entry in a full table, one of the existing
entries will be selected to be replaced based on its degree of
importance. The entry with the least importance will be selected
for replacement. The proposed method makes use of this fea-
ture. Thus, the importance attribute is assigned using a certain
algorithm that considers the statistical features of the flow. As
can be seen in Figure 3, when a flow entry is removed from
the flow table for any reason and the flow_removed event is
sent to the controller, the information about this flow is stored
in the controller. On the other hand, when a packet enters the
switch and matches none of the flow table entries, a Packet_in
message containing the necessary information for forwarding
the packet and installing its corresponding flow is sent to the
controller. When installing the entry corresponding to this flow,
it is first specified whether or not the entry has already been
installed in the table. This fast search has been implemented
using a hash table. If it is revealed that the flow has already been
installed in the switch’s flow table, its importance is calculated
based on one of the proposed algorithms; otherwise, it is
initialized with 1. Table 2 shows the parameters in the proposed
method.

3.1 The first proposed replacement method

In this method, three attributes are considered in determining
the importance of the flows. The first attribute is Fi which is
the average number of packets matching a flow in the previous
time it was in the flow table. This attribute denotes the number
of references to a certain flow. Its value has a direct relation-
ship with the degree of importance such that a greater num-
ber of references means that it should remain for longer in the
table and assume higher importance. The next attribute (Bi) is
the average number of bytes matching the flow which, like the
previous attribute, is directly related to the importance of the
flow. The third attribute is the time between removing and rein-
stalling a flow in the table. This attribute is inversely related to
the degree of importance. The reason is that if a flow does not
have any reference for a long time, it is useless and should be
removed to free the space of the table. This attribute is denoted
by ∆Ti.

∙ Fi is the ratio of the number of packets (packet_count)
matching the i-th flow to the duration in which the entry
remains in the flow table (tactive).

∙ Bi is the ratio of the number of bytes (Byte_count) matching
the i-th flow to the duration in which the entry remains in the
flow table (tactive).

∙ ∆Ti is calculated as following:

ΔTi = Teviction − Tnew_install (2)

In Equation (2), Teviction is the time in which the flow
entry is removed from the table and Flow_Removed mes-
sage is sent to the controller. Tnew_install is the time in that

6 ABBASI ET AL.

TABLE 1 Taxonomy table describing the related trends

Author Proposed scheme Used technique

Adam Zarek The replacement algorithms (Random, FIFO, and LRU) are compared. In these
algorithms, the flow table is taken merely as a cache and the entries are
removed only when the table is full.

Replacement (LRU, FIFO,
Random)

Bu-Sung Lee et al Their solution tries to reduce miss rate in flow tables and establish fairness
between small and large flows in the data center of software-defined networks.

Replacement (LRU)

Eun-Do Kim et al They used the LRU algorithm to manage the flow table during the replacement of
flow entries.

Replacement (LRU)

Anilkumar Vishnoi et al They exploited an Adaptive Idle_timeout method in combination with Random
replacement to manage the flow table entries.

Idle_timeout and replacement
(Random)

Liang Xie et al Their mechanism, called Accflow, has been used for the management of the flow
tables of OpenFlow switches. It adds the remaining idle timeout with the
timeout which is allocated to an entry upon activation and takes it as the new
timeout.

Idle_timeout

Huikang Zhu et al Their method, Intelligent Timeout Master, aims at calculating the suitable timeout
for flows according to their features.

Idle_timeout

He Li et al They developed a low complexity algorithm to achieve a higher rate in managing
the flow table. It uses prefetch and replacement techniques for predictable and
unpredictable flows, respectively.

Replacement (LRU, FIFO)

Zehua Guo et al This method can determine the productivity of flow tables in real-time and evict
the expired flows when a new flow is specified. This method uses the LRU
replacement and dynamic tuning of the idle timeout.

Idle_timeout, Replacement (LRU)

Linlian Zhang et al They proposed a method called TimeoutX that sets the idle timeout of a flow
based on three parameters: the estimated duration of the flow, the type of flow,
and the productivity rate of the flow table.

Idle_timeout

Qing Li et al They developed a mechanism called HQ-Timer which is based on machine
learning. This method assigns different timeout values to different flows based
on the dynamicity of their traffic.

Idle_timeout

Abinas Panda et al This method dynamically assigns different hard timeouts to both predictable and
unpredictable flows. For this purpose, it uses average inter-arrival time and, for
eviction and replacement, it uses the LRU algorithm.

Hard_timeout, replacement (LRU)

Babngida Isyaku et al In their method, in addition to hard timeout, the idle timeout was also used
according to the traffic pattern.

Hard_timeout, Idle_timeout

Leo Mendibourne et al Their method manages flow tables in software-defined vehicle access networks. It
allocates the hard timeout value based on the prediction of vehicle mobility as
well as the traffic load level of the network devices.

Hard_timeout

D Wu et al Their LRU-based algorithm uses the space of the flow table to increase the
matching rate of the flow entries and to raise the active flow priorities which in
turn decreases the matching time in the flow table.

Replacement (LRU)

Yi shen et al Their management method, naming FATM, runs on the controller and combines
the dynamic timeout and the proactive eviction to manage the flow table
resources.

Hard_timeout

Packet_in message is re-sent to the controller for installing
the new flow.

Given these three factors, the degree of importance is
obtained as following:

Importancei = (Fi)
q
× (Bi)

r
× (ΔTi)

s (3)

In Equation (3), q, r, and s are the powers of the parame-
ters and their value depends on the importance of each of these
parameters. r and q are positive while s is negative. In this study,
q and r equal +1, and s equals -1. According to this algorithm,
therefore, the importance of flows with more references and
repetition is higher and these flows will remain in the flow table

for a longer time. Less important entries will be replaced by new
ones. This method is known as importance prediction replace-
ment (IPR) and its pseudocode is shown in Algorithm 1.

3.2 The second proposed replacement
method

The second proposed algorithm is an optimized version of
the first one. The same parameters are also used in the sec-
ond method. However, a history of the information about
flows is maintained and the degree of importance is assigned
based on this history as well as a weight function called

ABBASI ET AL. 7

FIGURE 3 Flowchart of the proposed method

gi(x) which is based on exponential weighting moving average
(EWMA).

EWMA is the simplest forecasting method that determines
the amount of data at a new time point based on the average of
a time interval. In this method, the data are regularly updated by
replacing previous items with new ones. The number of refer-
ences to previous installations of flows plays a role in calculating
this value. Therefore, whenever a flow is removed from the table
and Flow_Removed message is sent to the controller, the infor-
mation about the flow is stored. i is the ID of the flow and x
is the number of references to the controller for installing the
flow. The degree of importance of the flow i in the n-th time is
calculated as follows:

IMPi(n) =
t∑

k=0

gi (j − k), j = n − 1 (4)

Here, t denotes the sample window size. For example, if t= 3,
only the information of the last three times where the flow has
been installed in the flow table is considered in the calculation
of the degree of importance. The weighting function gi(x) is
a non-incremental function that increases the importance of
flows that have been referred to more times and whose number
of matching bytes is greater. If j is less than k, gi(j−k) is 0.

This function predicts the identity of future references to the
flow and the importance of each flow is dynamically measured
according to the statistical information previously recorded
about the attributes of the flow. Therefore, in accordance with
Fang [31], we have assumed a weighting function like gi(x)
which could adapt itself to changes in traffic pattern:

gi (x) =

⎧⎪⎨⎪⎩

(1−𝛽) j−x

(j−x)𝜆
ci (x) , j − t ≤ x ≤ j − 1

Ci (x) , x = j

(5)

In this equation, the closer we get to the present time (the
n-th time), the greater the weight assigned to it, and vice versa.
Thus, the effect of more recent values on the calculation of the
degree of importance is more than the effect of more distant
values.
λ is a positive number which is the power of the denominator.

β ranges between 0 and 1 and equals to
2

t+1
[31–33]. Ci(x) is the

product of the average number of packets matching the flow i
in the unit of time in the x-th time and the average number of
bytes matching the flow i in the x-th time. That is:

Ci (x) = Fi (x) Bi (x) (6)

8 ABBASI ET AL.

TABLE 2 The parameters used in the proposed method

Fi The average number of packets matching a flow in the
previous time it was in the flow table

Bi The average number of bytes that match the flow

∆Ti The time between removing and reinstalling a flow in the table

T eviction The time in which the flow entry is removed from the table
and Flow_Removed message is sent to the controller

T new_install The time in which Packet_in message is re-sent to the
controller for installing the new flow

q, r, s The parameters that show the importance of each of above
timing parameters

i The ID of the flow

x The number of requests received by the controller for
installing a new flow

Ci (x) Fi (x) × Bi (x)

t This parameter denotes the sample window size

λ A positive number which is the power of the denominator of
weighing function

β A Positive number between 0 and 1

IMpi (n) The degree of importance of the flowi in the n-th time slot

ALGORITHM 1 Algorithm of the first proposed method

If x is less than 0, this value will be 0. Therefore, using Equa-
tions (4) and (5), we obtain the below equation:

IM pi (n) = ci (j) + (1 − 𝛽) ci (j − 1) +
(1 − 𝛽)2ci (j − 2)

2𝜆

+⋯+
(1 − 𝛽)t ci (j − t)

t 𝜆
(7)

Among the flows that enter the switch, there may be flows
that repeat frequently in long intervals. Therefore, the equations
should finally be combined with ∆Ti:

Importancei = IM pi (n)∕ΔTi (8)

The degree of importance of a flow can be calculated in this
way. During eviction or replacement, therefore, less important

ALGORITHM 2 Algorithm of the second proposed method

flows are evicted and replaced earlier. This method is known
as flow history-based replacement (FHR) and its pseudocode is
shown in Algorithm 2.

Not that all components and steps of the work have been
expounded, we briefly explain the method using the flowchart
of the proposed method. As can be seen in Figure 3, when a
flow entry is removed from the table for any reason and the
flow_removed event is sent to the controller, the information
about the flow (including the attributes described in the third
step) is stored in the controller. On the other hand, when a
packet enters the switch and matches none of the flow table
entries, a Packet_in message containing the necessary informa-
tion for forwarding the packet and installing its corresponding
flow is sent to the controller. When installing the entry corre-
sponding to this flow, it is first specified whether or not the
entry has already been installed in the table. This fast search
has been implemented using a hash table. If it is revealed that
the flow has already been installed in the switch’s flow table,
its importance will be calculated based on one of the algo-
rithms described in step 4 above; otherwise, it will be initialized
with 1.

4 IMPLEMENTATION AND
EVALUATION

As can be seen in Table 3, implementation was performed using
Mininet [34] which is and an emulator for software-defined net-
works. As with the switch, OpenVswitch [35] was used which
supports OpenFlow 1.4 [8, 36]. The controller used was Ryu
[37] which has been written in Python and supports all versions
of OpenFlow. To produce the traffic that resembles real-world
traffic, we used real traffic and forwarded it on the network
using TcpReplay [29].

To evaluate the method, we used two datasets called
Trace_file1 and Trace_file2 for generating traffic. The sample

ABBASI ET AL. 9

TABLE 3 Implementation environment

Operating system Ubuntu 15.04

Processor Core i3

Emulator Mininet

Switch OpenV Switch

Controller RYU

Traffic forwarding
tool

TCP Replay

TABLE 4 Specifications of the traffics

Dataset

Number of

packets

Size of

dataset Time

Trace_file1 M11 8787 MB 1146 s

Trace_file2 3041K 1749 MB 858 s

traffics belonged to the data centres of universities [38], and are
described in Table 4.

The proposed method is compared with FIFO and Random
replacement methods because this method is network-based
and has been implemented in the controller. Only FIFO and
Random algorithms can be implemented in the controller.

The reasons why we have not compared it with LRU are as
following: (1) If LRU is within the switch, it will problema-
tize the notion of separation between the controller and the
data in software-defined networks because in these networks all
the control tasks should take place in the controller; and (2) if
LRU is to be implemented in the controller, it needs to be con-
stantly informed by the switch about the latest accesses to flow
entries. This will lead to overload in the controller and the com-
munication channel. Therefore, it is not correct to implement
LRU in the controller [18]. Our evaluations with two tables with
500 and 750 flows and both our datasets indicate that even
if the table size becomes smaller, the proposed method will
still have a high performance. The maximum size of the flow
table in OpenFlow switches is 2000, but here we have consid-
ered smaller sizes so that the dataset could fill the table and the
results of the proposed method could be observed. The values
of Hard_timeout and Idle_timeout in these experiments should
be in a way that they do not affect the performance of replace-
ment methods. (These parameters denote the maximum time
an entry can remain in the table and the maximum time an entry
can remain inactive in a table.) The only operator of flow table
management must be the replacement method and no other
element must interfere. Therefore, Idle_timeout is assumed as
0, and Hard_timeout is assumed as greater than the simulation
time. Hard_timeout can be set to zero, but when both values are
0, both flows are permanent and will be never removed from the
table unless the controller commands to do so. The sample win-
dow size (t) is set at 5. The evaluated parameters in this paper
are as follows:

Miss_Rate: Miss_rate in the table is the most impor-
tant parameter to evaluate the performance of replacement

FIGURE 4 The effect of λ on the performance (miss rate of flow table)
of the proposed method (with a table size of 500) to selecting the best λ.
Datasets are trace_file1 and trace_file2

methods. Missing means that packets that enter the switch do
not match any entry and are therefore sent to the controller for
forwarding. As a result, the higher the miss rate, the greater the
controller’s overload, and vice versa.

Miss_ByteRate (miss rate in bytes): Another parameter for
evaluation of the performance of replacement algorithms is
Miss_ByteRate. In the OpenFlow switch, when the packets do
not match flow entries and the switch’s buffer does not have
enough space, the packet header along with the controller is sent
to the controller. Therefore, higher Miss_ByteRate means more
overload in the controller and lower Miss_ByteRate means less
overload.

Calculation of the best value of λ in FHR
By doing several experiments with FHR on both datasets

(trace_file1, trace_file2) and with a table size of 500, we exam-
ined the effect of λ on the performance of the proposed algo-
rithm and selected the best λ value.

As can be seen in Figure 4, the miss rate of the flow table with
λ = 2 is lower for both datasets. As a result, the value of λ was
determined to be 2 for the following experiments

4.1 The effect of the proposed method on
the performance for the proposed method in
terms of Miss_Rate

The miss rate of the flow table is the most important parame-
ter for observing the reduction of the controller’s overload and
the performance of the proposed algorithm. Experiments 1 and
2 measure this rate for both datasets as well as the different
replacement methods in comparison with IIR and FHR meth-
ods which were described in Section 3. The size of the flow table
is 750 in the first experiment, and 500 in the second experiment.

As can be seen in Figures 5 and 6, the performance of the
proposed method is better for both datasets. In the second
experiment, the proposed method still shows a better perfor-
mance after reducing the size of the flow table. On the other
hand, the Random method has a better performance than
FIFO in the first experiment and worse performance in the
second experiment. The reason is that replacement in these
methods is not based on solid logic. However, the proposed

10 ABBASI ET AL.

FIGURE 5 The effect of common replacement methods (Random,
FIFO) in comparison with the proposed methods (IRR, FHR) on the
performance (Miss Rate%) of the flow table (with a table size of 750)- this
experiment done on both data sets (tarce_file1, trace_file2)

FIGURE 6 The effect of common replacement methods (Random,
FIFO) in comparison with the proposed methods (IRR, FHR) on the
performance (Miss Rate%) of flow table (with a table size of 500)- this
experiment done on both data sets (tarce_file1, trace_file2)

method had a higher performance under different conditions.
FHR was better than IIR because it considers the history of
references in calculating the degree of importance.

4.2 Comparison of the proposed method
with Idle_timeout management method

The next experiment was intended to compare the effect of flow
table management using the proposed replacement method and
using the allocation of Idle_timeout to the flows. The least
Idle_timeout value that OpenFlow switches accept is 1 s and
the maximum value according to research findings [18] is 10 s.

As can be seen in Figure 7, the proposed FHR method was
compared with the Idle_timeout management method only for
the Trace_file1 dataset. It is clear that the proposed method
performs better than the best Idle_timeout (i.e. 10 s) in this
experiment and could reduce the miss rate of the flow table.
This can be compared with the results of [14, 39] which con-
sidered the values of 5 and 2–3 s, respectively, as the best value
for the experimental datasets. Our proposed method, however,
performed better than these two studies. The reason is that
the entire space of the flow table is used in replacement meth-
ods and the flows are replaced according to attributes obtained
through their history in the table.

Therefore, those flows that have been referred to most,
remain in the table. Also, Figure 6 shows that, with a table
size of 500, the proposed method has reduced Miss_Rate

FIGURE 7 Comparison of the performance (Miss Rate% of flow table)
of the proposed method with the Idle_timeout management methods,
Random and FIFO (with a table size of 750). The dataset in this experiment is
trace_file1

FIGURE 8 The effect of replacement algorithms on MissByte_Rate (%)
in the flow table (with a table size of 750) in proposed methods (IRR, FHR)
compared with FIFO and Random. This experiment done on both data sets
(tarce_file1, trace_file2)

more than the methods of dynamic setting of Idle_timeout
and Hard_timeout presented in [23, 25] (called TimeoutX and
DHTA, respectively) which have been compared with FIFO
and Random. The reason is that although setting the value
of timeout can be compatible with network traffic, it cannot
act adaptively and the invalid and finished flows could not be
removed from the flow table in time.

4.3 The effect of the proposed replacement
algorithms on MissByte_Rate

The next experiment deals with the last evaluation parameter
called Miss_ByteRate which is the miss rate of packets in bytes.
When the packet information that misses the flow table is sent
to the controller, if the switch’s buffer has no more capacity,
the entire data of the packet are also sent to the controller and
create overload in the controller as well as in the communication
channel between the switch and the controller. The results are
shown in Figures 8 and 9 which represent a table size of 750 and
500, respectively. It can be seen that the proposed algorithms
have still better performance and reduce MissByte_Rate more
than other methods. The reason for reducing Miss_ByteRate in
IRR and FHR is that they take into account the average of bytes
matching the flow in calculating the degree of importance.

To select the suitable entry and replace the entries to
update the flow table, the proposed methods make use of the

ABBASI ET AL. 11

FIGURE 9 The effect of replacement algorithms on MissByte_Rate (%)
in the flow table (with a table size of 500) in the proposed method (IRR, FHR)
compared with FIFO and Random. This experiment done on both data sets
(tarce_file1, trace_file2)

popularity of flows when they are in the table as well as the
time distance between installation and removal of the flow.
The implementation of the proposed method indicated that,
along with FIFO and Random, it could increase hit rate and
reduce the controller’s overload significantly more than the
other existing methods.

Therefore, to enhance the performance of the OpenFlow
switch it is required to implement the proposed algorithm in
the controller. On installing a new entry by the controller,
the importance degree of the new flow entry is calculated
and updated using the proposed algorithm. Since in the SDN
networks, the controller is responsible for running all of the
required operations, the switch settings remain unchanged.

In addition, the proposed method will increase the scalabil-
ity in SDN networks. Scalability is considered a subject with
multiple aspects in SDN. One of its aspects is the through-
put. When the load of a controller decreases and the hit-
rate increases, more flows can be handled in any time slot.
Another aspect of scalability is reducing the delay in installing
new flow entries. When the entries of flows with higher impor-
tance are included in the table, repetitive installations are not
reduced. Hence, this scheme reduces the controller overhead,
and increases the importance degree of highly referenced flows.
Accordingly, keeping the selected flows in the table will increase
the network capability for scalability.

5 CONCLUSION

As mentioned earlier, flow tables contain flow entries each of
which determines how the packets belonging to a flow of Big
Data streams should be analysed and sent. Flow entries are
defined by the controller in flow tables. These tables have lim-
ited capacity. They are made of TCAM memories. TCAM has a
high-power consumption. Therefore, large tables are costly and
have high power consumption. The incoming flows are com-
pared with table entries and if there is no match, a message is
sent to the controller for processing the flow. Thus, more time is
needed for processing such a flow. If the incoming flows remain
in the switch’s buffer, the buffer will be filled and new packets
will be discarded on arrival. As multiple switches are connected
to the controller, transmitting these messages to the controller
will increase communication overload between the controller

and the switch. The main criterion for the replacement of the
entries is the reduction of overload. The reason behind select-
ing this criterion is that the controller is responsible for updat-
ing flow table entries and, if entries become unstable, the con-
troller’s computation overload will increase. Lack of an entry in
the table corresponding to the incoming packet will lead to ref-
erence to the controller and increase its overload.

To this end, the present paper proposed an intelligent method
for replacing flow table entries to reduce the controller’s over-
load. The focus of this study is on developing a dynamic replace-
ment method. This intelligent method utilizes the statistical fea-
tures of the traffic flows in the table to select a table for replace-
ment and makes use of the popularity of flows in the flow table
for replacing entries and updating the flow table. The method
aims to evaluate the existing entries according to the history of
the activities of the flow, which was neglected in previous stud-
ies. For this purpose, we used the ‘importance’ feature which
has been introduced in OpenFlow 1.4.

Finally, we implemented the proposed mechanism in an emu-
lator for software-defined networks and evaluated its perfor-
mance in terms of several criteria. The results of the proposed
method along with FIFO and Random methods show that
our method could increase the hit rate and reduce the con-
troller’s overload significantly more than the existing methods.
Also, this method performs better than flow management based
on Idle_timeout. As mentioned in the evaluation section, this
replacement method alone has a better performance than the
methods of dynamic setting of timeout and will certainly bring
about more successful results if combined with timeout setting.
In addition, this is the first dynamic replacement method that
has been implemented in the controller.

In this work, all the statistical features of flows are not used in
the proposed algorithm. Hence, using all of them seems to lead
to better results. For future research, this method can be imple-
mented in real-world software-defined networks. Also, other
statistical features which are obtained from the flow (for exam-
ple, protocol type, flow capacity, QoS level etc.) may be used
alone or in combination for developing new replacement algo-
rithms and suitable setting of Idle_time in the flow table. Since
more details of flow information will be considered, the accu-
racy and quality would be improved and the flows with higher
hit probability would remain in the table. All these techniques
can be combined to obtain better results.

CONFLICT OF INTEREST

No

FUNDING

None

DATA AVAILABILITY STATEMENT

Data available on request due to privacy/ethical restrictions

REFERENCES

1. Dinh, P.T., Park, M.: BDF-SDN: A big data framework for DDOS attack
detection in large-scale SDN-based cloud. In: 2021 IEEE Conference on
Dependable and Secure Computing (DSC), Fukushima, Japan (2021)

12 ABBASI ET AL.

2. Chu, X., et al.: Big data and its V’s with IoT to develop sustainability. Sci.
Program. 2021 3780594 (2021)

3. Abbasi, M., et al.: Efficient flow processing in 5 G-envisioned SDN-based
Internet of Vehicles using GPUs. IEEE Trans. Intell. Transp. Syst. 22(8),
5283–5292 (2021)

4. Montaño, M.: IoT management analysis using SDN: Survey. Applied Tech-
nologies, Springer, Berlin (2021)

5. Tarek, A., et al.: Software-defined networks towards Big Data: A sur-
vey. Advanced Machine Learning Technologies and Applications, Springer,
Berlin (2021)

6. Kreutz, D., et al.: Software-defined networking: A comprehensive survey.
Proc. IEEE 103(1), 14–76 (2015)

7. McKeown, N., et al.: OpenFlow: Enabling innovation in campus net-
works (OpenFlow White Paper). http://www.openflowswitch.org (2008).
Accessed 15 November 2021

8. <openflow-spec-v1.4.0.pdf>
9. Sezer, S., Scott-Hayward, S., Kaur Chouhan, P., Fraser, B., Lake, D.,

Finnegan, J., Vilijoen, N., Miller, M., Rao, N.: Are we ready for SDN?
Implementation challenges for software-defined networks. IEEE Commu-
nications Magazine 51(7), 36–43 (2013)

10. Abbasi, M., et al.: Ingredients to enhance the performance of two-stage
TCAM-based packet classifiers in internet of things: Greedy layering, bit
auctioning and range encoding. EURASIP J. Wireless Commun. Network-
ing 2019(1), 1–15 (2019)

11. Vakilian, S., Abbasi, M., Fanian, A.: Increasing the efficiency of TCAM-
based packet classifiers using dynamic cut technique in geometric space. J.
Adv. Def. Sci. Technol. 6(1), 65–71 (2015)

12. Alsaeedi, M., Mohamad, M.M., Al-Roubaiey, A.A.: Toward adaptive and
scalable OpenFlow-SDN flow control: A survey. IEEE Access 7, 107346–
107379 (2019)

13. Nguyen, X.-N., et al.: Rules placement problem in OpenFlow networks: A
survey. IEEE Commun. Surv. Tutorials 18(2), 1273–1286 (2016)

14. Zarek, A., Ganjali, Y., Lie, D.: Openflow timeouts demystified. Computer
Engineering Research Group: University of Toronto (2012)

15. Lee, B.-S., Kanagavelu, R., Aung, K.M.M.: An efficient flow cache algo-
rithm with improved fairness in software-defined data center networks. In:
2013 IEEE 2nd International Conference on Cloud Networking (Cloud-
Net), San Francisco (2013)

16. Kim, E.-D., et al.: Flow table management scheme applying an LRU
caching algorithm. In: 2014 International Conference on Information and
Communication Technology Convergence (ICTC), Busan, Korea (2014)

17. Kim, E.-D., et al.: A flow entry management scheme for reducing con-
troller overhead. In: 16th International Conference on Advanced Commu-
nication Technology (ICACT), Pyeongchang, Korea (2014)

18. Vishnoi, A., et al.: Effective switch memory management in openflow net-
works. In: Proceedings of the 8th ACM International Conference on Dis-
tributed Event-Based Systems, Mumbai (2014)

19. Xie, L., et al.: An adaptive scheme for data forwarding in software defined
network. In: Sixth International Conference on Wireless Communications
and Signal Processing (WCSP), Chennai (2014)

20. Zhu, H., et al.: Intelligent timeout master: Dynamic timeout for SDN-
based data centers. In: 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), Ottawa, Canada (2015)

21. Li, H., et al.: FDRC: Flow-driven rule caching optimization in software
defined networking. In: 2015 IEEE International Conference on Commu-
nications (ICC), London (2015)

22. Guo, Z., et al.: STAR: Preventing flow-table overflow in software-defined
networks. Comput. Networks 125, 15–25 (2017)

23. Zhang, L., et al.: TimeoutX: An adaptive flow table management method in
software defined networks. In: 2015 IEEE Global Communications Con-
ference (GLOBECOM), San Diego, CA (2015)

24. Li, Q., et al.: HQTimer: A Hybrid ${Q} $-Learning-Based Timeout Mech-
anism in Software-Defined Networks. IEEE Trans. Network Serv. Man-
age. 16(1), 153–166 (2019)

25. Panda, A., et al.: Dynamic Hard Timeout based Flow Table Management
in Openflow enabled SDN. In: 2019 International Conference on Vision
Towards Emerging Trends in Communication and Networking (ViTE-
CoN), Vellore, India (2019)

26. Isyaku, B., et al.: IHTA: Dynamic idle-hard timeout allocation algorithm
based OpenFlow switch. In: 2020 IEEE 10th Symposium on Computer
Applications & Industrial Electronics (ISCAIE), Malaysia (2020)

27. Yang, H., Riley, G.F., Blough, D.M.: STEREOS: Smart table EntRy evic-
tion for OpenFlow switches. IEEE J. Sel. Areas Commun. 38(2), 377–388
(2019)

28. Wu, D., Qiao, L., Chen, Q.: Research and implementation of LRU-based
flow table management for onboard switch. In: 2020 Prognostics and
Health Management Conference (PHM-Besançon) (2020)

29. Shen, Y., et al.: AFTM: An adaptive flow table management scheme for
OpenFlow switches. In: 2020 IEEE 22nd International Conference on
High Performance Computing and Communications; IEEE 18th Interna-
tional Conference on Smart City; IEEE 6th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS) (2020)

30. Mendiboure, L., Chalouf, M.A., Krief, F.: Load-aware and mobility-aware
flow rules management in software defined vehicular access networks.
IEEE Access 8, 167411–167424 (2020)

31. Fang, C., Huang, T., Liu, J., Chen, J.-y., Liu, Y.-j.: Fast convergence caching
replacement algorithm based on dynamic classification for content-centric
networks. J. China Univ. Posts Telecommun. 20(5), 45–50 (2013)

32. Montgomery, D.C., Johnson, L.A., Gardiner, J.S., Forecasting and Time
Series Analysis. McGraw-Hill Companies, New York (1990)

33. Kachru, U., Production & Operations Management. New Delhi, Excel
Books (2009)

34. Mininet: An instant virtual network on your laptop (or other PC). http:
//mininet.org/. Accessed 20 January 2021

35. Open vSwitch: an open virtual switch: http://openvswitch.org/. Accessed
20 January 2021

36. Specification-Version, O.S., 1.4. 0. Open Networking Foundation (2013).
Accessed 20 January 2021

37. https://osrg.github.io/ryu/-ryu-controller. Accessed 20 January 2021
38. Sekaran, R., et al.: Survival study on Blockchain based 6 G-enabled mobile

edge computation for IoT automation. IEEE Access 8, 143453–143463
(2020)

39. Metter, C., et al.: Analytical model for SDN signaling traffic and flow table
occupancy and its application for various types of traffic. IEEE Trans. Net-
work Serv. Manage. 14(3), 603–615 (2017)

How to cite this article: Abbasi M., Maleki, S., Jeon,
G., Khosravi, M.R., Abdoli, H.: An intelligent method
for reducing the overhead of analysing big data flows in
openflow switch. IET Commun. 1–12 (2022).
https://doi.org/10.1049/cmu2.12328.

http://www.openflowswitch.org
http://mininet.org/
http://mininet.org/
http://openvswitch.org/
https://osrg.github.io/ryu/-ryu-controller
https://doi.org/10.1049/cmu2.12328

	An intelligent method for reducing the overhead of analysing big data flows in Openflow switch
	Abstract
	1 | INTRODUCTION
	2 | REVIEW OF LITERATURE
	3 | THE PROPOSED METHOD
	3.1 | The first proposed replacement method
	3.2 | The second proposed replacement method

	4 | IMPLEMENTATION AND EVALUATION
	4.1 | The effect of the proposed method on the performance for the proposed method in terms of Miss_Rate
	4.2 | Comparison of the proposed method with Idle_timeout management method
	4.3 | The effect of the proposed replacement algorithms on MissByte_Rate

	5 | CONCLUSION
	CONFLICT OF INTEREST
	FUNDING
	DATA AVAILABILITY STATEMENT

	REFERENCES

