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Abstract—With the potential of implementing computing-intensive applications, edge computing is combined with digital twinning
(DT) empowered Internet of Vehicles (IoV) to enhance intelligent transportation capabilities. By updating digital twins of vehicles and
offloading services to edge computing devices (ECDs), the insufficiency in vehicles’ computational resources can be complemented.
However, owing to the computational intensity of DT empowered IoV, ECD would overload under excessive service requests, which
deteriorates the quality of service (QoS). To address the problem, a multi-user offloading system is analyzed, where the QoS is reflected
through the response time of services. Then, a service offloading method with deep reinforcement learning, named SOL, is proposed
for DT empowered IoV in edge computing. To obtain optimized offloading decisions, SOL leverages deep Q-network (DQN), which
combines the value function approximation of deep learning and reinforcement learning. Eventually, experiments with comparative
methods indicate that SOL is effective and adaptable in diverse environments.

Index Terms—Internet of Vehicles; Edge Computing; Digital Twinning; Service Offloading; Deep Reinforcement Learning
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1 INTRODUCTION

THE Internet of Vehicles (IoV) is an evolution of vehic-
ular ad hoc networks (VANETs), where vehicles are

equipped with a variety of Internet of Things (IoT) equip-
ments and envisioned as intelligent objects [1]. In the IoV, an
intelligent vehicle is capable of V2X (vehicle to everything)
communication. Specifically, an intelligent vehicle can share
information with other vehicles through V2V (vehicle to ve-
hicle) communications. Rather than observing the condition
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by a single car, V2V enables a broader view by sharing the
traffic information observed by multiple vehicles, which can
significantly reduce accidents caused by the blind spot [2].
Meanwhile, intelligent infrastructures like roadside units
(RSUs) and smart traffic lights are deployed to analyze the
vehicles in a specific region, then provide vehicles with
external information through V2I (vehicle to infrastructure)
communications [3]. Similarly, V2P (vehicle to pedestrian)
communication enables vehicles and pedestrians to deliver
commands and safety warnings [4]. With V2X communi-
cation in the IoV, intelligent vehicles have the potential to
adjust the driving status in time and avoid the occurrence of
traffic accidents and enhance the users driving experience.

Further, the digital twinning (DT) technology leverages
machine learning and IoT technologies to create digital
replicas of physical objects. The replica has its properties
cloned from their original versions, and constantly update
themselves with real-time data from sensors. Empowered
by DT technology, a virtual twin of vehicle in the IoV is
generated and mapped to the physical vehicle with IoT
technologies [5]. The DT empowered IoV focuses on collect-
ing the state information of the vehicle and surroundings
through the smart sensor devices, and sharing the infor-
mation with surrounding vehicles and infrastructures [6].
With the collected information, the digital twins are updated
constantly to keep consistent with the physical vehicles.
Then, through the technologies including augmented reality
(AR) simulation and artificial intelligence (AI) predictive
analytics, vehicles are provided with enhanced intelligence.
Comparing with the traditional IoV, DT empowered IoV
can easily access to the digital twins of vehicles instead
of applying for and integrating numerous external data
sources like the surveillance system and the remote sensing
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(RS) system. Under such circumstances, the data mining,
simulation, and analytics of the IoV can be enhanced by DT.

As most of the collected data in the DT empowered IoV
are in the raw form (i.e., unprocessed images and videos),
they cannot be directly used for control and services [7].
Thus, a powerful computing platform is required to refine
the massive collected data, then feedback the extracted
instructions to vehicles and passengers [8]. Usually, the
processing of vehicular data requires technologies such as
object detection and AR, which are computationally inten-
sive operations [9]. To extend intelligent vehicles’ capabil-
ities, the cloud and edge computing solutions provide DT
empowered IoV with a platform as a service (PaaS) [10]. The
data and service requests collected by vehicles are offloaded
to the cloud data center through RSU. After data being pro-
cessed at the cloud infrastructure, the refined data are fed
back in the form of instructions or services [11]. Technically,
the cloud data center is composed of centralized large-scale
computer clusters with high performance. To reduce the
cost of construction and facility maintenance, it is usually
built in areas far away from end-users. Therefore, service
offloading to the cloud will generate high latency during
data transmission and is easy to cause bandwidth tension
[12]. As a complementary paradigm of cloud computing,
edge computing provides appropriate solutions in the DT
empowered IoV by offloading service requests to edge com-
puting devices (ECDs), servers deployed close to vehicles
and other end-users, for execution and data extraction [13].

Despite the advantages of fast transmission and suffi-
cient bandwidth resources, edge computing has its own
challenges. Considering the distributed manner of ECDs,
the computing capacity of each independent ECD is smaller
than the cloud data center. Thus, the resources in each ECD
are supposed to be fully utilized to attain higher efficiency
and quality of service (QoS) [14]. Further, the load balancing
in ECD is an important issue, and mishandling of service
offloading can cause load imbalance. Consequently, some
devices in ECDs would underperform due to excessive
service requests, and other would be underutilized. To
enhance the performance of edge computing and provide
reliable services to passengers, an effective service offload-
ing method is needed in the DT empowered IoV [15].

For the dynamic offloading control, deep reinforcement
learning (DRL) is adopted to evaluate and choose decisions
where the collective utilization is optimized [16]. Among
the existing DRL algorithms, the deep Q-network (DQN)
has gained attention as a modification of Q-learning, which
takes the advantage of temporal-difference learning from
reinforcement learning (RL) and the function approximation
from deep learning (DL) [17]. In this paper, a dynamic
service offloading method, named SOL, is proposed based
on DQN in edge computing. Specifically, the contributions
of this paper are as follows:

• Analyze the QoS level of DT empowered IoV services
in respect of response time in a multi-user offloading
system.

• Model the ECD as the agent and formalize the state,
action, and reward in DRL to optimize the QoS level
of the offloading system.

• Apply DQN with experience replay and target net-

work [17] to solve the problem of DT empowered
IoV service offloading in edge computing.

• Conduct comparative experiments with a real-world
IoV service dataset to evaluate the effectiveness and
adaptability of SOL.

The rest of paper is organized as follows. In section 2,
the related work is summarized. In section 3, the model of
service offloading in edge computing is described. In section
4, details of DRL and SOL are presented. Then, comparison
experiments are conducted in section 5. Finally, in section
6 the achievements of this paper are concluded and future
works are discussed.

2 RELATED WORK

So far, various applications in the DT empowered IoV have
been proposed to enhance the QoS, safety and security of
transportation [18]. However, the generated data of such
applications are large in scale and has much redundancies,
therefore not suitable for local computing and existing cloud
computing paradigms [19]. In [20], Hu et al. addressed the
scale-sensitive problem of existing object detection, then
modified the deep convolutional neural network for vehicle
detection with a large variance of scales to guarantee the
accuracy and safety in IoV. From another perspective, Liu et
al. [21] exhibited the outstanding performance of edge com-
puting on enhancing the security and QoS of autonomous
vehicles, including extending computing capacity and re-
ducing energy consumption.

The placement of ECDs has great impact on overall
performance of edge computing. Zhao et al. [22] proposed
a ranking-based near-optimal placement algorithm to min-
imize average access delay through SDN techniques in
cloudlets placement. Wang et al. [23] studied the ES place-
ment while considering load balancing as well as access
delay and adopted mixed integer programming to find the
optimal placement. After ECDs are located, task offloading
can be taken into operation. In [24], He et al. gave consid-
eration to users’ privacy and system cost in mobile edge
computing, and proposed a novel task offloading scheme to
enhance user experience. Zhou et al. [25] investigated the
task offloading under information asymmetry and uncer-
tainty in vehicular fog computing, and proposed a contract
optimization to realize the effective server recruitment.

Owing to higher effectiveness of evolutionary algo-
rithms (EAs), researchers widely adopted EAs as a tool
for optimizing the offloading problems in edge computing.
Guo et al. [26] comprehensively investigated the computa-
tion offloading as a mix integer non-linear programming
problem, and designed a computation algorithm based on
the genetic algorithm and particle swarm optimization to
minimize the energy consumption of the user equipment.
However, EAs are usually iterative algorithms that find the
global optimal solutions by updating the current solutions
continuously. Thus, the dependency on global information
and the considerable time complexity during the iteration
of generations become significant drawbacks [27]. If EAs
are adopted for the offloading of each service, the time
overhead in controlling can be unaffordable for the practical
implementation of edge computing empowered IoV.
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To obtain decentralized and time-efficient control in the
IoV, DRL has been adopted in many aspects of the IoV.
To achieve high QoS V2V communication, a decentralized
resource allocation mechanism based on DRL is designed
in [28]. Benefitting from the decentralized manner, DRL can
significantly reduce the transmission overhead and the wait-
ing time for global information. Apart from the efficiency,
DRL also exhibits the advantage in adaptability. In [29],
Liang et al. adopted DRL to studied the automatic determi-
nation of traffic signal duration based on the data collected
from sensors. In their model, the actions are changes in the
duration of a traffic light, and the reward is the difference in
cumulative waiting time between two signal cycles. Mean-
while, Zhou et al. [30] proposed a DRL-based car-following
model, which can make adjustments in driving behaviors
under diverse traffic demands, to improve travel efficiency
and safety at signalized intersections in real-time. Generally,
DRL is promising in achieving distributed control in the
dynamic environment of IoV.

3 SYSTEM MODEL AND PROBLEM DEFINITION

This section describes the system model and service offload-
ing in edge computing. Table 1 presents the key notations
and definitions used in this paper.

TABLE 1
Notations and Definitions

Notations Definitions
N The number of RSUs
M The number of ECDs
K The number of vehicles
R The set of RSUs, R = {r1, r2, · · · , rN}
E The set of ECDs, E = {e1, e2, · · · , eM}
V The set of vehicles, V = {v1, v2, · · · , vK}
D(t) The data size of services at time t,

D(t) = {d1(t), d2(t), · · · , dK(t)}
Ce The coverage of ECD
Cr The coverage of RSU
dist The distance between two network nodes
RT The response time of services
S The QoS level of services

3.1 Framework of Service Offloading for DT Empow-
ered IoV in Edge Computing
In the proposed framework, vehicles are denoted by set
V = {v1, v2, · · · , vK}. For each vehicle, a digital twin of it-
self is generated with information of position, speed, vehicle
gap, and dashcam videos collected by vehicular sensors and
cameras. The raw data and service messages of vehicles can
be sent to RSUs, denoted by set R = {r1, r2, · · · , rN}. With
the constant update, we can assume that the cloning is suc-
cessful, and the functions of the digital twin keep pace with
the entity’s. Each vehicle can concurrently request one ser-
vice at time t, and the data to be processed of each vehicular
service is denoted by set D(t) = {d1(t), d2(t), · · · , dK(t)},
while di(t) = 0 indicates that no service is requested by
vehicle vi. For RSUs are usually considered as communi-
cating nodes and not capable of a large scale of computing

tasks, ECDs are arranged to some certain districts to process
the service requests based on digital twins of vehicles with
massive data collected by RSUs. The ECDs are denoted
by the set E = {e1, e2, · · · , eM}. RSUs can communicate
with each other as well as ECDs in their transmission
range. Generally, the framework of task offloading in DT
empowered IoV with edge computing is shown in Fig. 1.

ECD

RSU

RSU

V2V
V2I

V2P

Service offloading

Raw data and 

service requests

Feedback 

information

Digital twins

Digital twins

Fig. 1. A framework of service offloading in DT empowered IoV with
edge computing.

In the DT empowered IoV, the coverage of each ECD is
assumed to be the same and denoted by Ce, while for RSUs,
the range is denoted by Cr . Then, every RSU, ECD, and
vehicle can be respectively denoted by

ri
(
lati, loni, Cr

)
, 1 6 i 6 N, (1)

ej
(
latj , lonj , Ce

)
, 1 6 j 6M, (2)

vk
(
˜latk(t), ˜lonk(t), dk(t)

)
, 1 6 k 6 K, (3)

where latn and lonn represent the latitude and longitude
of a network node respectively, as the location of vehicle
is dynamic with time, ( ˜latk(t), ˜lonk(t), di(t)) is used to
represent the state of vk at time t.

Based on the latitude and longitude, the distance be-
tween two nodes (i.e., RSU, ECD or cloud access point) can
be calculated by the Euclidean distance as

dist (nodei, nodej) =
√
(lati − latj)2 + (loni − lonj)2.

(4)
It is guaranteed that the data transmission between a

vehicle and an RSU, as well as an RSU and an ECD, is a one-
hop transmission. Specifically, each RSU is in the coverage
of at least one ECD while each vehicle is in the coverage of
at least one RSU as

∀ri ∈ R, min
ej∈E

dist
(
ri, ej

)
6 Ce, (5)

∀vk ∈ V, min
ri∈R

dist
(
vk(t), ri

)
6 Cr (6)

3.2 QoS Model of DT Empowered IoV Services Offload-
ing in Edge Computing
RSUs in the offloading system can independently choose
their computing paradigm in each time period, namely,
local computing or edge computing. The response time of
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a service request can be calculated as the sum of offloading
time, execution time and feedback time.

3.2.1 Local Computing Model

When vehicle vk proposes a service request at time t, and
locally executes it, the offloading indicator is ak(t) = 0. In
this case, local computing yields a response time of RT l

k(t),
which only includes the execution time of the task by ve-
hicular computing units. The execution time is determined
by the processing capacity of resource units and the length
of data to be executed. Considering that the processing
requirements of vehicular services are usually different, a
standard measurement is to divide the vehicular processor
into multiple resource units with same local computing
capacity of λexecl , and ua of these units are activated for
the service. Then the local execution time is calculated as

RT l
k(t) = RT que

k (t) +
f(dk(t))

ua · λexecl

, (7)

where RT que
k (t) is the queuing time of the task, denoted

by the difference between the execution starting time and
requested time as RT que

k (t) = T start
k −T request

k . Meanwhile,
f(dk(t)) represents the total computation of the service with
the size dk(t) of raw data.

3.2.2 Offloading Computing Model

When the service of vehicle vk is determined to be offloaded
to ECD, the offloading indicator is 1 6 ak(t) 6 M , which
indicates that the offloading destination is the ak(t)-th ECD
in the offloading system. Accordingly, the response time
RT o

k (t) is generated during three parts of offloading com-
puting. First, the data and service request of vehicle are
transmitted from vk to the nearest RSU ri, and ri offloads
the service to the destination ECD. During this phase, net-
work latency occurs in the data transmission, calculated as

RT o,tran
k (t) = RT o,tran

v (t) +RT o,tran
r (t)

=
dk(t)

λtranv

+
dk(t)

λtranr

, (8)

where λtranv is the data transmission rate between vk and
ri while λtranr are the data transmission rate between ri and
ECD. According to the Shannon-Hartley theorem, λtranv and
λtranr is affected by the bandwidth B of the channel, signal
power pt, and the average power of the additive white
Gaussian noise pn. As the channel resources of an RSU are
often utilized by several vehicles, the bandwidth utilized by
each RSU is denoted by B

Kc
when Kc vehicles are utilizing

the channel concurrently. Thus, λtranv is calculated as

λtranv =
Br

Kc
log2

(
1 +

pt
pn

)
, (9)

analogously, the transmission rate λtranr between the ECD
and one of Nc RSUs is calculated as

λtranr =
Be

Nc
log2

(
1 +

p′t
p′n

)
(10)

After the service and digital twin data of vk being
offloaded, the destination ECD will take time for execution.

Analogous to (7), the execution time of ECD is calculated as

RT o,exec
k (t) = RT que

k (t) +
f(dk(t))

ua · λexeco

. (11)

where λexeco represents the execution capacity of the ECD,
usually considered as λexeco = n · λexecl .

After the task is executed, the computing results are
report back to the RSU to update the digital twin and
give instruction to the vehicle. Usually, the feedback data
is condensed with a relatively small size of d′k. Thus, the
feedback time during feedback is considered negligible.

Based on (8) and (11), the total response time of the
service proposed by vk at time t by offloading computing
is RT o

k (t) = RT o,tran
k (t) +RT o,exec

k (t)

3.2.3 QoS Measurement
To quantify and measure the QoS, the maximum tolerable
response time RTth is used as a standard to normalize the
indicator of QoS. The QoS level of response time in local
computing and offloading computing are calculated as

Sl
k(t) = 1− RT l

k(t)

RTth
, (12)

So
k(t) = 1− RT o

k (t)

RTth
. (13)

3.3 Problem Definition

In the multi-user offloading system, the goal is to
maximum the average QoS level of vehicular services
through an optimal offloading strategies set A(t) =
{a1(t), a2(t), · · · , aK(t)} at each time period t. Based on the
models given above, the problem of service offloading in DT
empowered IoV is formulated as

max
A(t)

K∑
k=1

[
Sl
k(t) +

M∑
m=1

So
k(t) Pr [ak(t) = m]

]
/

K∑
k=1

Sgn(di(t)),

(14)

s.t. ∀vk ∈ V, ak(t) ∈ [0,M ], (15)

∀vk ∈ V, So
k(t) > 0, Sl

k(t) > 0, (16)

where Pr [ak(t) = m] is the probability of ak(t) = m, i.e., the
value is 1 if ak(t) = m, otherwise, 0. Meanwhile, Sgn(di(t))
is the sign of di(t), i.e., Sgn(di(t)) = 1 indicates that di(t)
is positive, and when di(t) = 0, Sgn(di(t)) = 0. As an
element of A, ak(t) represents the offloading destination,
subject to constraint (15). When ak(t) = 0, the service will
be locally executed. Otherwise, it will be offloaded to the
corresponding ECD for execution. Meanwhile, (16) indicates
that the QoS is not negative, i.e., the service response time
should be within the maximum tolerable time.

4 SOL FOR DT EMPOWERED IOV SERVICES OF-
FLOADING

In this section, SOL is designed for the service offloading in
edge computing enabled IoV. First, the framework of RL is
introduced in service offloading. Then, the drawback of a
primitive RL algorithm named Q-learning is analyzed, and
a DRL algorithm named DQN is leveraged for SOL.
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4.1 Framework of Reinforcement Learning in SOL

RL is one of the significant branches of machine learning
alongside supervised learning and unsupervised learning.
It refers to the process of achieving the highest cumulative
rewards through the exploration of the environment and the
exploitation of previous knowledge. During such trial-and-
error process, the agent in RL can obtain the perception of
the environment and the decision-making strategy.

In the offloading system, the ECD is enabled the con-
trolling of offloading decisions and viewed as the agent
in RL. There are three key elements of an agent, namely
the state (s), the action (a), and the reward (R). Usually,
the state is also considered the environment that the agent
reacts to. In SOL, the state consists of two components, the
available units of ECD, and the average QoS level of each
vehicle in the offloading system calculated as equation 14.
When the ECD receives a service request, it searches for an
optimal action ak(t) available in its current state. Based on
the action indicator ak(t), the ECD decides where to offload
and execute the service request. After making offloading
decision and execution, the QoS level of service is evaluated
in terms of the vehicle’s response time as Sk(t), then fed
back to ECD as the reward. In general, the goal of RL is to
obtain the highest cumulative reward in a learning episode.

Among the RL algorithms, Q-learning has proved to
be effective in model-free learning problems [31]. In Q-
learning, the agent is given a Q-table which records the
Q-value (i.e., quality) of each pair of state and action as
Q(s, a). For each step, the agent selects an action at at the
state st which brings it the highest reward, then calculates
and updates Q(st, at) based on the action it chooses and the
reward it gets as

Q(st, at)← Q(st, at) + α · δt, (17)

where α is the learning rate parameter that satisfies 0 6 α 6
1 and determines the extent to which the newly acquired
knowledge overrides the old knowledge. Meanwhile, δt is
the difference between the actual value of Q(st, at) and the
estimated value of it through the Q-table, calculated as

δt = rt + γmax
a′

Q(st+1, a
′)−Q(st, at), (18)

where γ represents the discount factor of future reward, st+1

is the next state after the agent performing at , and rt is the
instant reward experienced by the agent, also denoted as
the QoS level of service. Notice that, if the response time
exceeds the maximum tolerable time, the reward rt is set as
rt ← min(rt, 0) automatically as a punishment. Specifically,
the discount factor satisfies 0 6 γ 6 1, and the larger γ
means that the agent has a clearer view toward the future
while lower γ means that the agent is more focused on
the instant reward. Usually, Q-learning starts with a lower
discount factor and increases it towards its final value to
accelerates learning.

As directly choosing the action with maximal Q-value
encourages exploitation but lacks exploration, agents might
fall into the local optimum. Thus, a certain degree of ran-
domness is allowed by introducing the ε-greedy in strategy
selection. Specifically, agents select the strategy with the
highest Q-value with probability Pr [si(t) = sbest] = 1−ε to
exploit knowledge, while with probability ε, they randomly

select another action to explore for more available choice.
Usually, ε decreases over time to encourage exploration dur-
ing the early phase and limit the blindness and fluctuation
of agents’ decision-making in the later phase.

4.2 SOL with Deep Q-Network
The primitive reinforcement learning method has a sig-
nificant disadvantage that it requires a Q-table to store
the Q-values of all possible state-action pairs. However,
the number of states is large or even infinite, the traverse
and update of Q-table become time-consuming. Moreover,
there exist many state-action pairs that are similar but not
identical in a complex Q-table. Therefore, the traditional Q-
learning method will become ineffective since the possibility
of the agent to access a specific state-action pair is relatively
small. To tackle the problem, a practical approach is to
approximate the Q-values of different state-action pairs with
DNN, which leads to the primary essence of DQN [17].
Intuitively, the differences between Q-learning and DQN in
offloading decision making are shown in Fig. 2.

ECD

Referencing Q-table

a1 a2

Q(s1,a1) Q(s1,a2)

Q(s2,a1) Q(s2,a2)

s1

s2

Q(sn,a1) Q(sn,a2)sn

Optimal 

offloading 

decision

System

QoS level

DQN

Q-learning

Action
State

Reward

Approximating with DNN

and

Fig. 2. Differences between offloading decision making based on Q-
learning and DQN.

Practically, the proposal of DQN successfully combined
RL with DL while tackling the challenges in the incon-
sistency between them. Usually, DL assumes that the dis-
tribution of data samples is in an independent manner.
However, the states and actions in RL are usually highly
correlated, which is not consistent with the requirement
of DL. To mitigate the correlation in data, a technique of
experience replay is introduced. Technically, a structure of
experience pool D, which stores the experience of each step
as et (st, at, rt, st+1), is adopted to enable experience replay
in DQN. During the network training, a minibatch of the
experience is randomly drawn from D for training such that
the distribution of data can be averaged, and the correlations
can be alleviated.

Another feature of DQN is to generate a target Q value
in a separate network (i.e., the target network Qtar). Unlike
the original network (i.e., the prediction network Qpre)
which updates the parameters θ in every iteration, θ− in
the target network are only periodically updated in every
C iterations and stay fixed in other steps. Specifically, after
C rounds of updates by the prediction network, the target
network is updated by a copy of the prediction network.
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This feature adds a delay between the update of the network
and the effect on the targets yj and further stabilizes the
performance of DQN.

With DNN, the Q-value of state-action pair (st, a) is
estimate as Qpre (st, a; θ) ≈ Q (st, a), where the parameter
θ is a vector of weights in the DNN. To evaluate the accuracy
of the approximation and further train the network, the loss
function is introduced as

Li (θi) = E
[
(yi −Qpre (s, a; θi))

2
]
, (19)

where yi represents the target Q-value generated by the
target network of

yi = r + γmax
a′

Qtar
(
st+1, a

′, θ−i
)
. (20)

By minimizing Li (θi) through updating weight θ re-
peatedly, the network can be trained to be more accurate.
Technically, minibatch stochastic gradient descent (MSGD)
is applied to minimize the difference between the output
of the target network and the prediction network. More
precisely, the pseudo code of DQN is shown in Algorithm 1.

Algorithm 1 SOL with Deep Q-Network
1: Initialize experience pool D with the size of N
2: Initialize Qpre and Qtar with same random weights θ
3: for episode = 1 to M do
4: for t = 1 to T do
5: Approximate Q-values of all actions at state s
6: Select the optimal offloading decision at based on

ε-greedy policy
7: Perform service offloading or local computing ac-

cording to at
8: Calculate the reward rt and the next state st+1

9: Store experience et (st, at, rt, st+1) in D
10: Perform MSGD to update the parameters θ of pre-

diction network Qpre through minimizing L (θ)
11: Update the target network Qtar every C steps
12: end for
13: end for

4.3 SOL Review

Generally, SOL is designed on the logical basis shown in Fig.
3. The basic idea of SOL is to enable the ECD to make op-
timal offloading decisions through RL. With the exploration
of the unknown environment, the agent in RL can learn
from the feedback reward. Meanwhile, the exploitation of
experienced knowledge enables the agent to select optimal
action at each state, jointly considering the instant reward
and long-term reward. However, as the environment of the
IoV service offloading system is dynamic and sophisticated,
the space of states can be vast or infinite. If primitive RL
algorithms like Q-learning are adopted, the update and
search for optimal offloading decisions generate a signifi-
cant overhead of storage and time. Moreover, the similar
but not identical states significantly increase the agent’s
exploration range and will lead to slow convergence of RL.
To reduce the overhead in storage and time while fastening
convergence, a DRL algorithm named DQN is adopted in
SOL. Instead of referencing the Q-table to find the optimal
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Fig. 3. The programming flowchart of SOL.

decision, DQN introduced the function value approxima-
tion of DL to estimate the Q-value of state-action pairs. Also,
with the features of experience replay and target network,
DQN successfully alleviates the inconsistency between RL
and DL, and can achieve satisfying performance in SOL.

5 EXPERIMENTAL EVALUATION

In this section, SOL is implemented and experiments are
conducted based on the real-world IoV service requests.
Then, comparative offloading strategies are introduced. Fi-
nally, the results of SOL and comparative offloading strate-
gies under different circumstances are presented, and the
effectiveness and adaptability of SOL are verified based on
the experimental results.
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5.1 Experiment Setup
Two real datasets of IoV service requests in Nanjing are
applied in the experiment. One dataset contains details of
436 activated RSUs in Nanjing, including their latitude and
longitude values. Based on the RSU locations, partitioning
around medoids (PAM) clustering is adopted with the pa-
rameter K = 40 to simulate the placement of ECDs and the
assignment of RSUs. As shown in Fig. 4, on part of the brief
road map of Nanjing, the RSUs and ECDs in one cell of the
offloading system are marked with blue dots and red server
icons respectively. The 3 ECDs and 26 RSUs (including 3
co-located with each ECD) are analyzed in the experiments.

The other dataset contains vehicular service requests
collected by RSUs in 30 consecutive days (from 00:00:00
Sep. 1st to 23:59:59 Sep. 29th). The total number of service
requests is more than 160 million. From the second dataset,
the service requests in one cell of the offloading system are
extracted for comparative analysis.

Fig. 4. Distribution of RSUs and ECDs in an offloading system.

5.2 Comparative Offloading Strategies
5.2.1 Entirely Local Computing
Entirely local computing is a conventional paradigm which
depends only on the vehicles’ local execution capacity.
Entirely local computing requires no additional controlling
strategy, and is used as a baseline to evaluate the optimiza-
tion capability of other offloading strategies.

5.2.2 Nearest Neighbor Offloading Computing
Contrary to entirely local computing, nearest neighbor of-
floading strategy enables all the service requests and raw
data to be offloaded to the nearest ECD for execution. As
the location of RSUs and ECDs are fixed, the nearest ECD
of each RSU can be determined. When the computational
resources of ECD are abundant, this strategy can achieve a
high level of QoS without complicated controlling. How-
ever, as the local computing units are not utilized, and
the distribution of workload is uneven, excessive offloaded
services will increase the risk of ECD being overloaded and
severely lower the QoS level of the offloading system.

5.2.3 First Fit Offloading Computing
First fit is an online algorithm where the service is offloaded
to the nearest ECD that can accommodate it. When first fit
algorithm begins, it searches for the closest ECD to the RSU
which collected a service request. If the ECD has insufficient
idle resource units for the service, it will be offloaded to

the next closest ECD with sufficient resources. If no ECD
is capable, the service will be executed by the computing
devices of the vehicle which proposes the request.

5.3 Analysis on the Adaptability of Offloading Strategy

As the real condition of IoV services in cities are various,
e.g., the number of vehicles and ECDs varies with the
development of cities. Thus, the offloading strategy needs
to be adaptive so that it can be applied widely. To verify
the adaptability of SOL, four sets of controlled experiments
with diversity in services conditions are conducted, and the
performance of SOL is evaluated.

The controlled value of variables in the comparative
analysis are listed in Table 2. In each set of experiment, there
is one variable with its value flucuates around the controlled
value and the others remain unchanged.

TABLE 2
Controlled Variable Settings

Variable description Controlled value
ECD execution capacity 5 × local execution capacity
Number of ECD 3
Number of service requests 5 per vehicle
Average size of raw data 50 MiB per request

5.3.1 Analysis on the Variety of ECD Execution Capacity

Experiments are conducted with different ECD’s execution
capacity, and the results are shown in Fig. 5. In this set of
experiments, the ratio of ECD execution capacity to local
execution capacity ranges from 3 to 7. As the results indicate,
SOL outperforms entirely local computing, nearest neighbor
offloading, and first fit offloading in response time. When
the capacity of ECD is insufficient, the risk of ECD being
overloaded is high if no effective offloading strategy is
adopted. Thus, the QoS level of vehicular services by nearest
neighbor offloading is severely reduced by long response
time. In contrast, when the execution capacity of ECD is
ample, the difference in response time between SOL and the
other offloading strategies is small. As the ECDs can effi-
ciently execute most of the services, offloading computing
is usually the optimal choice.
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Fig. 5. Comparison of QoS level with variety in ECD capacity.
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5.3.2 Analysis on the Variety of ECD Number
When the number of ECDs in the offloading system are
different, the QoS level of vehicular services are shown in
Fig. 6. With other variables unchanged, the number of ECDs
ranges from 1 to 5 in this set of experiments. The QoS level of
SOL is generally the highest despite the little disadvantage
over first fit when ECD number is 5. When ECDs are
sparsely deployed, the ECDs can be easily overloaded by
the excessive service requests. Thus, SOL tends to assign the
services to be executed locally and has a slight advantage
over other strategies. In contrast, when ECDs are ample,
the service requests and the workload of ECDs are more
balanced with SOL or first fit offloading strategy, and over-
loading is unlikely to occur during offloading computing.
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Fig. 6. Comparison of QoS level with variety in ECD number.

5.3.3 Analysis on the Variety of Service Number per Vehi-
cle
Fig. 7 illustrates the impact on the QoS level by the num-
ber of services per vehicle. In this set of experiments, we
assume each vehicle can propose multiple service requests
at different time, and the number of proposed service re-
quests per vehicle ranges from 3 to 7, while other variables
remain unchanged. The QoS level of response time by
offloading method goes down as the number of services
rises, while SOL keeps the decline smaller than first fit
and nearest neighbor offloading. The advantage of SOL is
that ECD selectively executes some of the services while
others are executed locally, which reduces the latency in
queuing. When the execution capacity of ECD goes beyond
the service requests of vehicles, the QoS level of first fit
and nearest neighbor offloading is close to the one of SOL
and both outperform local computing. In addition, as the
bandwidth of ECD is usually considered fixed, the intensive
data transmission also has an impact on the offloading time
when the communication is frequently.

5.3.4 Analysis on the Variety of Average Size of Raw Data
In Fig. 8, the QoS level with diversity in the average size
of raw data is analyzed. Experiments are conducted with
the average size of raw data ranging from 30MiB to 70MiB,
while the other variables remain unchanged. It is intuitive
that the QoS level declines with the rise in the size of raw
data. As the computing capacity of on-board devices is
usually insufficient, the response time of local computing is
intolerable. Simultaneously, the QoS level of nearest neigh-
bor offloading, first fit offloading and SOL also experience
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Fig. 7. Comparison of QoS level with variety in service number.

a drop. However, as the execution rate of ECD is much
higher than on-board devices, the increase in response time
by offloading methods is not significant. Instead, the time
overhead generated in data transmission has an impact on
the QoS level. Hopefully, 5g communication is promising in
mitigating the data transmission time and further enhance
the QoS level of service offloading by SOL.
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6 CONCLUSION

In this paper, edge computing was adopted in the DT
empowered IoV to provide vehicular services with a high
QoS level, and a service offloading method with deep
reinforcement learning named SOL was proposed. First, a
multi-user offloading system in DT empowered IoV was
modeled with consideration of response time. Then, DQN
with experience replay and target network, which exerts the
advantages of both RL and DL, is adopted in the offloading
system to obtain optimal offloading strategy. The experi-
ments were conducted with a real-world dataset of RSU
locations and IoV service requests, and the results verified
the effectiveness and adaptability of SOL.

To simplify the model, the IoV service offloading was
modeled as a binary offloading process where the services
are assumed atomic, i.e., services cannot be divided and
executed on more than one devices. In future works, partial
offloading can be taken into consideration where a service
can be divided into several procedures and offloaded to
different ECDs. In this case, computational resources can
be better utilized. However, if partial offloading is adopted,
the partibility, dependency and priority in the procedures of
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services need to be thoroughly analyzed, and the offloading
decisions are required a strict graph dependency constraint.
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