An iterative method for solving the continuous Sylvester equation by emphasizing on the skew-Hermitian parts of the coefficient matrices

Mohammad Khorsand Zak & Faezeh Toutounian

To cite this article: Mohammad Khorsand Zak & Faezeh Toutounian (2015): An iterative method for solving the continuous Sylvester equation by emphasizing on the skew-Hermitian parts of the coefficient matrices, International Journal of Computer Mathematics, DOI: 10.1080/00207160.2015.1120863

To link to this article: http://dx.doi.org/10.1080/00207160.2015.1120863

Accepted author version posted online: 18 Nov 2015.

Submit your article to this journal

Article views: 1

View related articles

View Crossmark data
An iterative method for solving the continuous Sylvester equation by emphasizing on the skew-Hermitian parts of the coefficient matrices

Mohammad Khorsand Zak1 and Faezeh Toutounian2,3

1Department of Applied Mathematics, Aligoudarz Branch, Islamic Azad University, Aligoudarz, Iran
2Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
3The Center of Excellence on Modelling and Control Systems, Ferdowsi University of Mashhad, Mashhad, Iran

Received 07 Sep 2015, revised 29 Oct 2015, accepted 06 Nov 2015

Abstract

We present an iterative method based on the Hermitian and skew-Hermitian splitting for solving the continuous Sylvester equation. By using the Hermitian and skew-Hermitian splitting of the coefficient matrices A and B, we establish a method which is practically inner/outer iterations, by employing a CGNR-like method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent splitting of the coefficient matrices. Via this method, a Sylvester equation with coefficient matrices S_A and S_B (which are the skew-Hermitian part of A and B, respectively) is solved iteratively by a CGNR-like method. Convergence conditions of this method are studied and numerical examples show the efficiency of this method. In addition, we show that the quasi-Hermitian splitting can induce accurate, robust and effective preconditioned Krylov subspace methods.

Keywords. CGNR; Sylvester equation; Hermitian and skew-Hermitian splitting; preconditioning; nested iterations;
AMS Subject Classifications. 15A24; 15A30; 15A69; 65F10; 65F30.

1 Introduction

The Sylvester equation is ubiquitous in many areas of applied mathematics and plays vital roles in a number of applications such as control and system theory, model reduction and image processing, see [9, 10, 11] and references therein. The continuous Sylvester equation is possibly the most broadly employed linear matrix equation (see [2, 8, 9, 11, 12, 13, 18, 20, 22, 23, 26]), and is given as

$$AX + XB = C,$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times m}$ and $C \in \mathbb{R}^{n \times m}$ are defined matrices and $X \in \mathbb{R}^{n \times m}$ is an unknown matrix. In general, the dimensions of A and B may be orders of magnitude different, and this fact is key in selecting the most appropriate numerical solution strategy. The continuous Sylvester equation (1) has a unique solution if and only if A and $-B$ have no common eigenvalues, which will be assumed throughout this paper.

Standard methods for numerical solution of the Sylvester equation (1) are the Bartels-Stewart [7] and the Hessenberg-Schur [15] methods, which consist of transforming coefficient matrices A and B into triangular or Hessenberg form by an orthogonal similarity transformation and then solving the resulting system directly by a back-substitution process. These methods are classified as direct methods and are applicable and effective for general Sylvester equations of reasonably small size. When the coefficient matrices A and B are large and sparse, iterative methods such as
as the alternating direction implicit (ADI) method [8], the Krylov subspace based algorithms [13, 18, 19, 26], the Hermitian and skew-Hermitian splitting (HSS) method [2, 3], and the inexact variant of HSS (IHSS) iteration method [2, 5] are often the methods of choice for efficiently and accurately solving the Sylvester equation (1). In [22, 23], authors presented matrix variants of nested splitting conjugate gradient (NSCG) method which was first proposed in [1] for solving large sparse linear systems of equations. Recently, a preconditioned version of the NSCG method for generalized Sylvester equation is presented in [20].

In [23], the authors presented a class of NSCG method for the continuous Sylvester equation, in which both coefficient matrices are (non-Hermitian) positive semi-definite, and at least one of them is positive definite. This method is practically inner/outer iterations, which employs the Sylvester conjugate gradient method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent and Hermitian positive definite splitting of the coefficient matrices. The NSCG method is suitable for problems with strong Hermitian part and it is not effective for problems with strong skew-Hermitian part [22, 23].

In this paper, we present a new iterative method based on the Hermitian and skew-Hermitian splitting for solving the continuous Sylvester equation by emphasizing the role of skew-Hermitian part of the coefficient matrices. Similar to the NSCG method [23] by using the Hermitian and skew-Hermitian splitting of the coefficient matrices \(A \) and \(B \), we establish a method which is inner/outer iterations, by employing a CGNR-like method [32] as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent splitting of the coefficient matrices. Via this method, which can abbreviate as NS-CGNR, a Sylvester equation with coefficient matrices \(S_A \) and \(S_B \) (which are the skew-Hermitian part of \(A \) and \(B \), respectively) is solved iteratively by a CGNR-like method [32]. Convergence conditions of this method are studied and numerical experiments show the efficiency of this method. In addition, we show that the quasi-Hermitian splitting can induce accurate, robust and effective preconditioned Krylov subspace methods such as the BICGSTAB method and the GMRES method.

The organization of this paper is as follows. Section 2 contains a brief preliminaries. Section 3 presents our own contribution, i.e., the NS-CGNR method for the continuous Sylvester equation and its convergence properties. Section 4 is devoted to numerical experiments. Finally, we present our conclusions in section 5.

2 Preliminaries

In this section, we recall some necessary notations and useful results, which will be used in the following section. In this paper, we use \(\lambda(M), |M|, ||M||_2, ||M||_F \) and \(I_n \) to denote the eigenvalue, the spectral norm, the Frobenius norm of a matrix \(M \in \mathbb{R}^{n \times n} \), and the identity matrix with dimension \(n \), respectively. Note that \(|| \cdot ||_2 \) is also used to represent the 2-norm of a vector. For nonsingular matrix \(B \), we denote by \(\rho(B) = ||B||_2||B^{-1}||_2 \) its spectral condition number, and for a symmetric a positive definite matrix \(B \) we define the special \(\| \cdot \|_B \) norm of a vector \(x \in \mathbb{R}^n \) as \(||x||_B = \sqrt{x^T B x} \). Then the induced \(\| \cdot \|_B \) norm of a matrix \(M \in \mathbb{R}^{n \times n} \) is define as \(||M||_B = ||B^{-\frac{1}{2}} MB^{-\frac{1}{2}}||_2 \). In addition it holds that \(||MB||_B \leq ||M||_B ||B||_2 \), \(||MB||_F \leq \sqrt{\kappa(B)} ||M||_2 \), \(||I||_B = 1 \), where \(I \) is the identity matrix. For any matrices \(A = [a_{ij}] \) and \(B = [b_{ij}] \), \(A \odot B \) denotes the Kronecker product defined as \(\otimes B = [a_{ij} B] \). For the matrix \(X = (x_1, x_2, \cdots, x_m) \in \mathbb{R}^{n \times m} \), \(vec(X) \) denotes the vector operator defined as \(vec(X) = (x_1^T, x_2^T, \cdots, x_m^T)^T \). Moreover, for a matrix \(M \in \mathbb{R}^{n \times n} \) and the vector \(vec(M) \in \mathbb{R}^{nm} \), we have \(||M||_F = ||vec(M)||_2 \).

For matrix \(A \in \mathbb{R}^{n \times n} \), \(A = B - C \) is called a splitting of the matrix \(A \) if \(B \) is nonsingular. This splitting is a convergent splitting if \(\rho(B^{-1}C) < 1 \); and a contractive splitting if \(||B^{-1}C|| < 1 \) for some matrix norm.

Now, consider the continuous Sylvester equation (1). It is mathematically equivalent to the linear system of equations

\[
Ax = c,
\]

(2)
where \(x = \text{vec}(X) \), \(c = \text{vec}(C) \) and the matrix \(A \) is of dimension \(nm \times nm \) and is given by

\[
A = I_n \otimes A + B^T \otimes I_n.
\]

(3)

Consider the Hermitian and skew-Hermitian splitting \(A = \mathcal{H} + \mathcal{S} \), where

\[
\mathcal{H} = \frac{A + A^H}{2}, \quad S = \frac{A - A^H}{2},
\]

(4)

are the Hermitian and skew-Hermitian parts of matrix \(A \), respectively, see [3] and [4]. Since the matrix \(S \) may be singular, we introduce a shift \((\alpha > 0) \) and define quasi-Hermitian splitting

\[
A = (\mathcal{H} - \alpha I) + (S + \alpha I) = \mathcal{H}_\alpha + \mathcal{S}_\alpha.
\]

(5)

Then the system of linear equations (2) is equivalent to the fixed-point equation

\[
\mathcal{S}_\alpha x = c - \mathcal{H}_\alpha x.
\]

(6)

Now, with given an initial guess \(x^{(0)} \in \mathbb{R}^n \), assume that we have computed approximations \(x^{(1)}, x^{(2)}, \ldots, x^{(l)} \) to the solution \(x^* \in \mathbb{R}^n \) of the system (2). Therefore, the next approximation \(x^{(l+1)} \) may be defined as either an exact or an inexact solution of the system of linear equations

\[
\mathcal{S}_\alpha x = c - \mathcal{H}_\alpha x^{(l)}.
\]

(6)

Now, we can solve the linear system of equations (6) by the CGNR method [27]. Similar to [1], we can establish and prove the following theorem about the convergence properties of this method which can named as NS-CGNR method.

Theorem 2.1 Let \(A \in \mathbb{R}^{nm\times nm} \) be a nonsingular and non-symmetric matrix, and \(A = \mathcal{H}_\alpha + \mathcal{S}_\alpha \) a contractive (with respect to the \(\| \cdot \|_{S_\alpha^{-1}} \)-norm). Suppose that the NS-CGNR method is started from an initial guess \(x^{(0)} \in \mathbb{R}^{nm} \), and produces an iterative sequence \(\{x^{(l)}\}_{l=0}^\infty \), where \(x^{(l)} \in \mathbb{R}^{nm} \) is the \(l \)-th approximation to the solution \(x^* \in \mathbb{R}^{nm} \) of the system of linear equations (2), obtained by solving the linear system (6) with \(k_l \) steps of CGNR iterations. Then

(a) \(\|x^{(l)} - x^*\|_{S_\alpha^{-1}} \leq \gamma^{(l)}\|x^{(l-1)} - x^*\|_{S_\alpha^{-1}} \), \(l = 1, 2, \ldots \);

(b) \(\|c - Ax^{(l)}\|_{S_\alpha^{-1}} \leq \tilde{\gamma}^{(l)}\|c - Ax^{(l-1)}\|_{S_\alpha^{-1}} \), \(l = 1, 2, 3, \ldots \),

where

\[
\gamma^{(l)} = 2\left(\frac{\kappa(S_\alpha) - 1}{\kappa(S_\alpha) + 1}\right)^k_l (1 + \varrho), \quad \tilde{\gamma}^{(l)} = \gamma^{(l)}\kappa(S_\alpha)\left(\frac{1 + \varrho}{1 - \varrho}\right), \quad l = 1, 2, 3, \ldots
\]

and \(\varrho = \|S_\alpha^{-1}\mathcal{H}_\alpha\|_{S_\alpha^{-1}} = \|\mathcal{H}_\alpha S_\alpha^{-1}\|_2 \).

Moreover, for some \(\gamma \in (\varrho, \varrho_1) \) with \(\varrho_1 = \min\{1, 2 + 3\varrho\} \), and

\[
k_l \geq \ln\left(\frac{\gamma(1 + \varrho)/(2(1 + \varrho))}{\ln((\kappa(S_\alpha) - 1)/\ln((\kappa(S_\alpha) + 1))}\right), \quad l = 1, 2, 3, \ldots,
\]

we have \(\gamma^{(l)} \leq \gamma \) \(l = 1, 2, 3, \ldots \), and the sequence \(\{x^{(l)}\}_{l=0}^\infty \) converges to the solution \(x^* \) of the system of linear equations (2). For \(\eta \in (0, r) \), in which \(r \) is the positive root of quadratic equation \(\kappa(S_\alpha)\eta^2 + (\kappa(S_\alpha) + 1)\eta - 1 = 0 \), and some \(\hat{\gamma} \in ((1 + \varrho)\eta r(S_\alpha)/(1 - \varrho), 1) \), and

\[
k_l \geq \ln\left(\frac{(1 + \varrho)(\hat{\gamma} - \varrho(1 + \varrho)\kappa(S_\alpha))/((1 + \varrho)^2\kappa(S_\alpha))}{\ln((\kappa(S_\alpha) - 1)/\ln((\kappa(S_\alpha) + 1))}\right), \quad l = 1, 2, 3, \ldots,
\]

we have \(\hat{\gamma}^{(l)} \leq \hat{\gamma} \) \(l = 1, 2, 3, \ldots \), and the residual sequence \(\{c - Ax^{(l)}\}_{l=0}^\infty \) converges to zero.

Proof. See Appendix.

From the work of Golub and Vanderestraeten [16], if \(\lambda_{\min}(\mathcal{H})\lambda_{\max}(\mathcal{H}) > \min_{\lambda \in \lambda(S)} |\lambda(S)| \),

(7)

then there exists an \(\alpha \) for which \(\rho(S_\alpha^{-1}\mathcal{H}_\alpha) < 1 \). Moreover, using

\[
\alpha = \frac{\lambda_{\min}(\mathcal{H}) + \lambda_{\max}(\mathcal{H})}{2},
\]

(8)

can cause to decrease the upper bound of \(\rho(S_\alpha^{-1}\mathcal{H}_\alpha) \), see [16].
3 The NS-CGNR method for the Sylvester equation

In this section, we establish the NS-CGNR method for solving the Sylvester equation (1). We suppose that both coefficient matrices in the (1) are (non-Hermitian) positive semi-definite, and at least one of them is positive definite. Consider the quasi Hermitian and skew-Hermitian splitting \(A = H_n + S_n\). From (3) and (4), by using the Kronecker product’s properties \([17, 25]\), we have

\[H_n = I_m \otimes H_A(\alpha) + H_B^T(\alpha) \otimes I_n,\]

\[S_n = I_m \otimes S_A(\alpha) + S_B^T(\alpha) \otimes I_n,\]

where \(H_A(\alpha) = H_A - \alpha I_n, S_A(\alpha) = S_A + \alpha I_n, H_B^T(\alpha) = H_B^T - \alpha I_m \) and \(S_B^T(\alpha) = S_B^T + \alpha I_m\) and \(H_A, S_A, H_B^T, S_B^T\) are the Hermitian and skew-Hermitian parts of \(A\) and \(B^T\), respectively. By using the relations (9) and (10), we obtain the following linear system of equations

\[(I_m \otimes S_A(\alpha) + S_B^T(\alpha) \otimes I_n)x = c - (I_m \otimes H_A(\alpha) + H_B^T(\alpha) \otimes I_n)x^{(i)},\]

which can be arranged equivalently as

\[S_A(\alpha)X + XS_B(\alpha) = C - H_A(\alpha)X^{(i)} - X^{(i)}H_B(\alpha).\]

The eigenvalues of a skew-Hermitian matrix are pure imaginary. So, we have \(\text{Re}(\lambda(S_A(\alpha))) = \alpha\) and \(\text{Re}(\lambda(-S_B(\alpha))) = -\alpha\). Due to this, we can easily see that there is no common eigenvalue between the matrices \(S_A(\alpha)\) and \(-S_B(\alpha)\), so the Sylvester equation (12) has unique solution for all given right hand side matrices. For obtaining \(X^{(i+1)}\), we can solve the matrix equation (12) iteratively by the Sylvester version of CGNR method. Now, based on the above observations, we can establish the following algorithm for the NS-CGNR method for solving the continuous Sylvester equation (1).

3.1 Implementation of the NS-CGNR method

An implementation of the NS-CGNR method is given by the following algorithm. In the following algorithm, \(k_{\text{max}}\) and \(j_{\text{max}}\) are the largest admissible number of the outer and the inner iteration steps, respectively. \(X^{(0)}\) is an initial guess for the solution, and the outer and the inner stopping tolerances are denoted by \(\epsilon\) and \(\eta\), respectively.

Algorithm 3.1 The NS-CGNR algorithm for the continuous Sylvester equation

1. \(X^{(0,0)} = X^{(0)}\)
2. \(R^{(0)} = C - AX^{(0)} - B X^{(0)}\)
3. For \(k = 0, 1, 2, \ldots, k_{\text{max}}\) Do:
 4. \(C = C - H_A(\alpha)X^{(k,0)} - X^{(k,0)}H_B(\alpha)\)
 5. \(R^{(0)} = C - S_A(\alpha)X^{(k,0)} - X^{(k,0)}S_B(\alpha)\)
 6. \(Z^{(0)} = S_A(\alpha)R^{(0)} + R^{(0)}S_B^T(\alpha)\) and \(P^{(0)} = Z^{(0)}\)
 7. For \(j = 0, 1, 2, \ldots, j_{\text{max}}\) Do:
 8. \(W^{(j)} = S_A(\alpha)P^{(j)} + P^{(j)}S_B(\alpha)\)
 9. \(\alpha_j = \frac{||W^{(j)}||}{||W^{(j)}||}^2\)
 10. \(X^{(k,j+1)} = X^{(k,j)} + \alpha_j P^{(j)}\)
 11. \(R^{(j+1)} = R^{(j)} - \alpha_j W^{(j)}\)
 12. If \(||R^{(j+1)}||_F \leq \eta||R^{(0)}||_F\) Go To 17
 13. \(Z^{(j+1)} = S_A^T(\alpha)R^{(j+1)} + R^{(j+1)}S_B^T(\alpha)\)
 14. \(\beta_j = \frac{||Z^{(j+1)}||}{||Z^{(j+1)}||}^2\)
 15. \(P^{(j+1)} = Z^{(j+1)} + \beta_j P^{(j)}\)
 16. End Do
17. \(X^{(k+1)} = X^{(k,j)}\)
3.2 Convergence analysis

In the sequel, we need the following lemmas.

Lemma 3.2 ([21]) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Then for all $x \in \mathbb{R}^n$, we have $\|A^\frac{1}{2}x\|_2 = \|x\|_A$ and

$$\sqrt{\lambda_{\min}(A)}\|x\|_A \leq \|Ax\|_2 \leq \sqrt{\lambda_{\max}(A)}\|x\|_A.$$

Proof. For skew-Hermitian matrix S_A, we have

$$\|S_A(\alpha)\|_2 = \lambda_{\max}(S_A(\alpha)^HT S_A(\alpha)) = \lambda_{\max}((S_A + \alpha I)^HT(S_A + \alpha I)) = \lambda_{\max}(S_A^2 + \alpha I).$$

Therefore, $\|S_A(\alpha)\|_2 = |\lambda_{\max}(S_A + \alpha I)|$ and $\|S_B(\alpha)\|_2 = |\lambda_{\max}(S_B + \alpha I)|$. Moreover, we have

$$\|S(\alpha)\|_2 = \|I_n \otimes S_A(\alpha) + S_B^T(\alpha) \otimes I_n\|_2 \leq \|I_n \otimes S_A(\alpha)\|_2 + \|S_B^T(\alpha) \otimes I_n\|_2 = \|S_A(\alpha)\|_2 + \|S_B^T(\alpha)\|_2.$$

Therefore, $\|S_A\|_2 \leq \max(\lambda_{\max}(S_A(\alpha))) \leq \max(\lambda_{\max}(S_B(\alpha))).$ □

Lemma 3.3 ([25]) Suppose that $A, B \in \mathbb{R}^{n \times n}$ be two Hermitian matrices, and denote the minimum and the maximum eigenvalues of a matrix M with $\lambda_{\min}(M)$ and $\lambda_{\max}(M)$, respectively. Then

$$\lambda_{\max}(A + B) \leq \lambda_{\max}(A) + \lambda_{\max}(B),$$

$$\lambda_{\min}(A + B) \geq \lambda_{\min}(A) + \lambda_{\min}(B).$$

Lemma 3.4 For matrix $S_\alpha = I_n \otimes S_A(\alpha) + S_B^T(\alpha) \otimes I_n$, we have

$$\|S_\alpha\|_2 \leq \max(\lambda(S_A(\alpha))) + \max(\lambda(S_B(\alpha))).$$

Proof. For skew-Hermitian matrix S_A, we have

$$\|S_A(\alpha)\|_2 = \lambda_{\max}(S_A(\alpha)^HT S_A(\alpha)) = \lambda_{\max}((S_A + \alpha I)^HT(S_A + \alpha I)) = \lambda_{\max}(S_A^2 + \alpha I).$$

Therefore, $\|S(\alpha)\|_2 = |\lambda_{\max}(S_A + \alpha I)|$ and $\|S_B(\alpha)\|_2 = |\lambda_{\max}(S_B + \alpha I)|$. Moreover, we have

$$\|S(\alpha)\|_2 = \|I_n \otimes S_A(\alpha) + S_B^T(\alpha) \otimes I_n\|_2 \leq \|I_n \otimes S_A(\alpha)\|_2 + \|S_B^T(\alpha) \otimes I_n\|_2 = \|S_A(\alpha)\|_2 + \|S_B^T(\alpha)\|_2.$$
Proof. From (9) and (10), by Lemmas 3.3, 3.4 and 3.5, we have
\[
||\mathcal{H}_\alpha||_2 = \lambda_{\text{max}}(\mathcal{H}_\alpha) \leq \lambda_{\text{max}}(\mathcal{H}_A(\alpha)) + \lambda_{\text{max}}(\mathcal{H}_B(\alpha)),
\]
and
\[
||\mathcal{S}_\alpha||_2 \leq \max |\lambda(S_A(\alpha))| + \max |\lambda(S_B(\alpha))|,
\]
where \(\Lambda(S_\alpha)\) is the set of all eigenvalues of \(S_\alpha\). Therefore, it follows that
\[
||\mathcal{S}_\alpha^{-1}\mathcal{H}_\alpha||_{S^T_\alpha S_\alpha} \leq \sqrt{\kappa(S^T_\alpha S_\alpha)} \cdot ||\mathcal{S}_\alpha^{-1}\mathcal{H}_\alpha||_2 = \sqrt{\kappa(S^T_\alpha S_\alpha)} ||(S^T_\alpha S_\alpha)^{-1}S^T_\alpha \mathcal{H}_\alpha||_2 \leq \sqrt{\kappa(S^T_\alpha S_\alpha)} ||(S^T_\alpha S_\alpha)^{-1}||_2 ||S^T_\alpha||_2 ||\mathcal{H}_\alpha||_2.
\]
Therefore, we have
\[
||\mathcal{S}_\alpha^{-1}\mathcal{H}_\alpha||_{S^T_\alpha S_\alpha} \leq \left(\kappa(S^T_\alpha S_\alpha)\right)^{\frac{1}{2}} ||S^T_\alpha||_2 ||\mathcal{H}_\alpha||_2
\]
(13)
Again, the use of Lemmas 3.3 and 3.5 implies that
\[
\kappa(S^T_\alpha S_\alpha) = \frac{\lambda_{\text{max}}(S^T_\alpha S_\alpha)}{\lambda_{\text{min}}(S^T_\alpha S_\alpha)} = \frac{\max_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_\alpha)|^2}{\min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_\alpha)|^2} \leq \left(\frac{\max_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_A(\alpha))| + \max_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_B(\alpha))|}{\min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_A(\alpha))| + \min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_B(\alpha))|}\right)^2
\]
So, we can write
\[
\sqrt{\kappa(S^T_\alpha S_\alpha)} \leq \max_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_A(\alpha))| + \max_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_B(\alpha))| = \theta.
\]
(14)
Moreover, we have
\[
||S^T_\alpha S_\alpha||_2 = \max_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_\alpha)|^2 \geq \min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_\alpha)|^2 \geq (\min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_A(\alpha))| + \min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_B(\alpha))|)^2.
\]
(15)
Therefore,
\[
||\mathcal{S}_\alpha^{-1}\mathcal{H}_\alpha||_{S^T_\alpha S_\alpha} \leq \left(\frac{\max_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_A(\alpha))| + \max_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_B(\alpha))|}{\min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_A(\alpha))| + \min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_B(\alpha))|}\right)^4 \frac{\lambda_{\text{max}}(\mathcal{H}_A(\alpha)) + \lambda_{\text{max}}(\mathcal{H}_B(\alpha))}{\min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_A(\alpha))| + \min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_B(\alpha))|}
\]
(16)
This clearly proves the lemma.

Let
\[
\eta = \theta^4 \frac{\lambda_{\text{max}}(\mathcal{H}_A(\alpha)) + \lambda_{\text{max}}(\mathcal{H}_B(\alpha))}{\min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_A(\alpha))| + \min_{\lambda \in \Lambda(S_\alpha)} |\lambda(S_B(\alpha))|},
\]
and \(\varrho = ||\mathcal{S}_\alpha^{-1}\mathcal{H}_\alpha||_{S^T_\alpha S_\alpha}\). When \(\eta < 1\), from the proof of Lemma 3.6 (relation (16)), we have \(\varrho \leq \eta < 1\). Therefore, \(A = \mathcal{H}_\alpha + \mathcal{S}_\alpha\) is a contractive (in the \(||\cdot||_{S^T_\alpha S_\alpha}\) norm). In this case, Lemma 3.2 and part (a) of Theorem 2.1 imply that
\[
\frac{1}{\sqrt{\lambda_{\text{max}}(S^T_\alpha S_\alpha)}} ||S^T_\alpha S_\alpha(x^{(l)} - x^*)||_2 \leq ||x^{(l)} - x^*||_{S^T_\alpha S_\alpha} \leq (1 + \varrho) \gamma^{(l)} ||x^{(l)} - x^{(l-1)}||_{S^T_\alpha S_\alpha} \leq \sqrt{\lambda_{\text{min}}(S^T_\alpha S_\alpha)} ||S^T_\alpha S_\alpha(x^{(l)} - x^*)||_2,
\]
where
\[
\gamma^{(l)} = 2 \left(\frac{\kappa(S_\alpha) - 1}{\kappa(S_\alpha) + 1}\right)^k (1 + \varrho) + \varrho.
\]
Therefore, the sequence \(\{ \tilde{\gamma}(i) \} \) in Theorem 2.1 can be written as

\[
\| S^T_\alpha S_\alpha (x^{(i)} - x^*) \|_2 \leq \gamma^{(i)} \frac{\sqrt{\lambda_{\max}(S^T_\alpha S_\alpha)}}{\sqrt{\lambda_{\min}(S^T_\alpha S_\alpha)}} \| S^T_\alpha S_\alpha (x^{(i-1)} - x^*) \|_2.
\] (17)

Furthermore, from (14)

\[
\gamma^{(i)} \leq 2 \left(\frac{\theta - 1}{\theta + 1} \right)^k_i (1 + \eta) + \eta.
\]

Now, by using

\[
S^T_\alpha S_\alpha = I_n \otimes S^T_A(\alpha)S_A(\alpha) + S_B(\alpha) \otimes S^T_A(\alpha) + S_B^T(\alpha) \otimes S_A(\alpha) + S_B(\alpha)S_B^T(\alpha) \otimes I_n,
\]

and notation

\[
\tilde{E}^{(i)} = S^T_A(\alpha)S_A(\alpha)R^{(i)} + S^T_A(\alpha)E^{(i)}S^T_B(\alpha) + S_A(\alpha)E^{(i)}S_B^T(\alpha) + E^{(i)}S_B^T(\alpha)S_B(\alpha),
\]

where \(E^{(i)} = X^{(i)} - X^* \), the relation (17) can be arranged equivalently as

\[
\| \tilde{E}^{(i)} \|_F \leq \omega^{(i)} \| \tilde{E}^{(i-1)} \|_F,
\]

where

\[
\omega^{(i)} = \left(2 \left(\frac{\theta - 1}{\theta + 1} \right)^k_i (1 + \eta) + \eta \right) \theta.
\]

It is obvious that, for \(\eta \in (0, \frac{1}{\theta}) \) and \(\omega \in (\eta \theta, 1) \), we will have \(\omega^{(i)} \leq \omega \) if

\[
k_i \geq \frac{\ln(\frac{\omega - \eta \theta}{\omega (1 - \eta)})}{\ln(\frac{\theta - 1}{\theta + 1})}, \quad l = 1, 2, 3,
\]

Under this restriction, from (19), we have

\[
\| \tilde{E}^{(i)} \|_F \leq \omega^{(i)} \| \tilde{E}^{(i-1)} \|_F \leq \Pi_{k=0}^{l-1} \omega^{(k)} \| \tilde{E}^{(0)} \|_F \leq \omega^{(l+1)} \| \tilde{E}^{(0)} \|_F.
\]

Therefore, the sequence \(\{ X^{(i)} \}_{i=0}^{\infty} \) converges to the solution \(X^* \) of the system of linear equations (1).

Similarly, by using part (b) of Theorem 2.1, for residual \(r^{(i)} = c - Ax^{(i)} \), we obtain

\[
\| S^T_\alpha S_\alpha r^{(i)} \|_2 \leq \tilde{\gamma}^{(i)} \frac{\sqrt{\lambda_{\max}(S^T_\alpha S_\alpha)}}{\sqrt{\lambda_{\min}(S^T_\alpha S_\alpha)}} \| S^T_\alpha S_\alpha r^{(i-1)} \|_2,
\]

where \(\tilde{\gamma}^{(i)} = \gamma^{(i)} \kappa(S_\alpha) (1 + \frac{\varepsilon}{\varepsilon}) \), and

\[
\tilde{\gamma}^{(i)} \leq \theta \left(2 \left(\frac{\theta - 1}{\theta + 1} \right)^k_i (1 + \eta) + \eta \right) \frac{1 + \eta}{1 - \eta}.
\]

Now, by using notation

\[
\tilde{R}^{(i)} = S^T_A(\alpha)S_A(\alpha)R^{(i)} + S^T_A(\alpha)R^{(i)}S^T_B(\alpha) + S_A(\alpha)R^{(i)}S_B^T(\alpha) + R^{(i)}S_B^T(\alpha)S_B(\alpha),
\]

where \(R^{(i)} = C - AX^{(i)} - X^{(i)}B \), the relation (20) can also be arranged equivalently as

\[
\| \tilde{R}^{(i)} \|_F \leq \tilde{\gamma}^{(i)} \| \tilde{R}^{(i-1)} \|_F,
\]

Accepted Manuscript
\[\tilde{\omega}^{(l)} = \theta \omega^{(l)} \frac{1 + \eta}{1 - \eta}. \]

As we observe, for \(\eta \in (0, \sqrt{(\theta^2 + 1)^2 + 4\theta^2 - (\theta^2 + 1)}) \) we have \(0 < (1 + \eta)\theta^2/(1 - \eta) < 1 \). So, for \(\tilde{\omega} \in ((1 + \eta)\theta^2/(1 - \eta), 1) \), we have \(\tilde{\omega}^{(l)} \leq \tilde{\omega} \) if
\[k_l \geq \frac{\ln((1 - \eta) - \theta^2(1 + \eta))}{2\theta^2(1 + \eta)^2} \ln(\frac{\theta - 1}{\theta + 1}), \quad l = 1, 2, 3, \ldots, \]

Under this restriction, from (22), we have
\[||\tilde{R}^{(l)}||_F \leq \tilde{\omega}^{(l)}||\tilde{R}^{(l-1)}||_F \]
\[\leq \Pi_{k=0}^l \tilde{\omega}^{(k)}||\tilde{R}^{(0)}||_F \]
\[\leq \tilde{\omega}^{(l+1)}||\tilde{R}^{(0)}||_F. \]

Therefore, the residual sequence \(\{R^{(l)}\}_{l=0}^\infty \) converges to zero matrix.

The above analysis is summarized in the following theorem.

Theorem 3.7 Consider the Sylvester equation (1). Let \(H_A(\alpha) = H_A - \alpha I_n, S_A(\alpha) = S_A + \alpha I_n \), \(H_B(\alpha) = H_B - \alpha I_m, S_B(\alpha) = S_B + \alpha I_m \) and \(H_A, H_B, S_A, S_B \) are the Hermitian and skew-Hermitian parts of coefficient matrices \(A \) and \(B \), respectively. Suppose that \(\eta < 1 \), and the NS-CGNR method is started from an initial guess \(X^{(0)} \in \mathbb{R}^{n \times m} \), and produces an iterative sequence \(\{X^{(i)}\}_{i=0}^\infty \), where \(X^{(i)} \in \mathbb{R}^{n \times m} \) is the \(i \)th approximation to the solution \(X^* \in \mathbb{R}^{n \times m} \) of the Sylvester equations (1), by solving the Sylvester equation (12) with \(k_l \) steps of the Sylvester CGNR iterations.

If \(\tilde{E}^{(l)} \) and \(\tilde{R}^{(l)} \) are as in (18) and (21), respectively, then,

(a) \(||\tilde{E}^{(l)}||_F \leq \omega^{(l)}||\tilde{E}^{(l-1)}||_F, \quad l = 1, 2, 3, \ldots, \)

(b) \(||\tilde{R}^{(l)}||_F \leq \tilde{\omega}^{(l)}||\tilde{R}^{(l-1)}||_F, \quad l = 1, 2, 3, \ldots, \)

where
\[\omega^{(l)} = \left(\frac{1}{\frac{\theta - 1}{\theta + 1}} \right)^{k_l} \left(1 + \eta + \frac{\theta (1 + \eta)}{1 - \eta} \right), \quad l = 1, 2, 3, \ldots, \]

and
\[\theta = \max \frac{|A(S_A(\alpha))| + \max |A(S_B(\alpha))|}{\min |A(S_A(\alpha))| + \min |A(S_B(\alpha))|} \]
\[\eta = \frac{\theta^4 \lambda_{\text{max}}(H_A(\alpha)) + \lambda_{\text{max}}(H_B(\alpha))}{\min |A(S_A(\alpha))| + \min |A(S_B(\alpha))|}. \]

Moreover, if \(\eta \in (0, \frac{1}{2}) \) then for some \(\tilde{\omega} \in (\eta \theta, 1) \), and
\[k_l \geq \frac{\ln((\omega - \eta)\theta/(2\theta(1 + \eta)))}{\ln((\theta - 1)/(\theta + 1))}, \quad l = 1, 2, 3, \ldots, \]

we have \(\omega^{(l)} \leq \omega \) \((l = 1, 2, 3, \ldots)\), and the sequence \(\{X^{(l)}\}_{l=0}^\infty \) converges to the solution \(X^* \) of the Sylvester equation (1). For \(\eta \in (0, \sqrt{(\theta^2 + 1)^2 + 4\theta^2 - (\theta^2 + 1)}) \) and some \(\tilde{\omega} \in ((1 + \eta)\theta^2/(1 - \eta), 1) \), and
\[k_l \geq \frac{\ln((\omega - \eta - \theta^2(1 + \eta))/(2\theta^2(1 + \eta)^2))}{\ln((\theta - 1)/(\theta + 1))}, \quad l = 1, 2, 3, \ldots, \]

we have \(\omega^{(l)} \leq \omega \) \((l = 1, 2, 3, \ldots)\), and the residual sequence \(\{R^{(l)}\}_{l=0}^\infty \) converges to zero matrix.

3.3 Using the quasi-Hermitian splitting as a preconditioner

From the fact that any matrix splitting can naturally induce a splitting preconditioner for the Krylov subspace methods (see [6]), in section 4, by numerical computation, we show that the quasi-Hermitian splitting (5) can be used as a splitting preconditioner and induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the continuous Sylvester equation.
4 Numerical experiments

All numerical experiments presented in this section were computed in double precision with a number of MATLAB codes. All iterations are started from the zero matrix for initial $X^{(0)}$ and terminated when the current iterate satisfies $\|R^{(k)}\|_F \leq 10^{-8}\|R^{(0)}\|_F$, where $R^{(k)} = C - AX^{(k)} - X^{(k)}B$ is the residual of the kth iterate. In all problems, the right hand side matrix C is chosen such that the solution of the Sylvester equation be a matrix with all entries equal to one. Also, we use the tolerance $\eta = 0.01$ for inner iterations in NS-CGNR method. Inspired by the work of Golub and Vanderegraeten [16], we choose the parameter α similar to (8). For each experiment we report the number of outer iterations denoted by "out-itr", the number of total iterations denoted by "tot-itr" and the average number of inner iterations denoted by "av-initr". The CPU time of each method is reported, too. Notation "†" in tables shows that the corresponding method is divergent.

We compare the NS-CGNR method with some iterative methods. The iterative methods which used in this section are presented in Table 1.

Table 1: Description of the used iterative methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-CGNR</td>
<td>New method described in Section 3</td>
</tr>
<tr>
<td>NSCG</td>
<td>Nested splitting conjugate gradient method described in [23]</td>
</tr>
<tr>
<td>HSS</td>
<td>Hermitian and skew-Hermitian splitting method described in [2]</td>
</tr>
<tr>
<td>IHSS</td>
<td>Inexact HSS method described in [2]</td>
</tr>
<tr>
<td>BiCGSTAB</td>
<td>BiCGSTAB method for the Sylvester equation, see [14, 32]</td>
</tr>
<tr>
<td>PreBiCGSTAB</td>
<td>BiCGSTAB preconditioned by NS-CGNR</td>
</tr>
<tr>
<td>GMRES</td>
<td>GMRES(m) method for the Sylvester equation with $m = 10$, see [19, 26]</td>
</tr>
<tr>
<td>FGMRES</td>
<td>FGMRES(m) preconditioned by NS-CGNR with $m = 10$</td>
</tr>
</tbody>
</table>

Example 4.1 Consider the matrices

$$A = B = M + 2N + \frac{100}{(n + 1)^2}I,$$

where $M = \text{tridiag}(-1, 2, -1)$, $N = \text{tridiag}(0.5, 0, -0.5)$ and $n = 128$ [2]. When the preconditioned Krylov subspace iteration methods are used to solve the systems of linear equations resulting from the finite difference or the Sinc-Galerkin discretization of various differential equations and boundary value problems, this class of problems may arise [2].

We apply the methods to this problem for two values $r = 0.01$ and $r = 1$, and the results are given in Tables 2 and 3, respectively.

The case $r = 0.01$ is a problem of strong Hermitian part [24, 31], but in the NS-CGNR method the skew-Hermitian part is emphasized. Therefore, we anticipate the NS-CGNR method has no efficiency or is divergent for this problem. The results in Table 2 have confirmed this idea. In this case the NSCG method is more effective versus the other methods.

Table 2: Results for Example 4.1 with $r = 0.01$

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU time</th>
<th>out-itr</th>
<th>tot-itr</th>
<th>av-initr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-CGNR</td>
<td>63.898</td>
<td>9430</td>
<td>9430</td>
<td>1</td>
</tr>
<tr>
<td>NSCG</td>
<td>1.045</td>
<td>7</td>
<td>452</td>
<td>64.57</td>
</tr>
<tr>
<td>HSS</td>
<td>54.910</td>
<td>192</td>
<td>5415</td>
<td>28.20</td>
</tr>
<tr>
<td>IHSS</td>
<td>14.570</td>
<td>209</td>
<td>1244</td>
<td>5.95</td>
</tr>
<tr>
<td>BiCGSTAB</td>
<td>3.447</td>
<td>146</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GMRES</td>
<td>4.196</td>
<td>52</td>
<td>520</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 1: Effect of using the quasi-Hermitian splitting as a preconditioner in problem 4.1 with $r = 1$

The case $r = 1$, is a problem of strong skew-Hermitian part [24, 31]. For this problem the NSCG method is divergent. Because, in the NSCG method the Hermitian part of coefficient matrices is emphasized [22, 23]. Respect to the results presented in Table 3, we can observe that the NS-CGNR method is more effective than the other methods except the GMRES method. Moreover, the use of the quasi Hermitian splitting as a preconditioner can improve the efficiency of the BiCGSTAB method, and reduce the number of iterations in the GMRES method. Figure 1 represents the effect of using the quasi Hermitian splitting as a preconditioner in this problem.

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU time</th>
<th>out-itr</th>
<th>tot-itr</th>
<th>av-initr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-CGNR</td>
<td>4.492</td>
<td>724</td>
<td>909</td>
<td>1.25</td>
</tr>
<tr>
<td>NSCG†</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>HSS</td>
<td>721.832</td>
<td>172</td>
<td>43186</td>
<td>251.08</td>
</tr>
<tr>
<td>IHSS</td>
<td>173.043</td>
<td>179</td>
<td>10127</td>
<td>56.57</td>
</tr>
<tr>
<td>BiCGSTAB</td>
<td>11.494</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PreBiCGSTAB</td>
<td>5.803</td>
<td>225</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GMRES</td>
<td>3.104</td>
<td>39</td>
<td>390</td>
<td>10</td>
</tr>
<tr>
<td>FGMRES</td>
<td>4.041</td>
<td>29</td>
<td>290</td>
<td>10</td>
</tr>
</tbody>
</table>

Example 4.2 Consider symmetric matrix $H_n = n^2\text{pentadiag}(-1, -1, 4, -1, -1) \in \mathbb{R}^{n \times n}$. Suppose that the skew-symmetric matrix $S_n \in \mathbb{R}^{n \times n}$ is a block diagonal matrix where every block is given by

$S_{ii} = 2n \times \text{tridiag}(-1, 0, 1)$ for $i = 1, 2, \cdots, n$.

Now, let $A = H_n + 10^3 S_n$ and $B = H_m - 10^3 S_m$ with $n = 512$ and $m = 8$.

10
Figure 2: Effect of using the quasi-Hermitian splitting as a preconditioner in problem 4.2

The results of this problem are given in Table 4.

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU time</th>
<th>out-itr</th>
<th>tot-itr</th>
<th>av-initr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-CGNR</td>
<td>1.965</td>
<td>59</td>
<td>4067</td>
<td>68.93</td>
</tr>
<tr>
<td>NSCG</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>HSS</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>IHSS</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>BiCGSTAB</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>PreBiCGSTAB</td>
<td>52.743</td>
<td>1196</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GMRES</td>
<td>2.558</td>
<td>346</td>
<td>3458</td>
<td>9.99</td>
</tr>
<tr>
<td>FGMRES</td>
<td>4.231</td>
<td>10</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

For this test problem, Table 4 shows that the NSCG, the HSS, the IHSS and the BiCGSTAB methods were diverging. According to the results presented in the Table 4, we can assert that the NS-CGNR is the most effective method among the considered methods. Especially, predominance is obvious in term of CPU time. Moreover, the use of the quasi Hermitian splitting as a preconditioner can improve the efficiency of the BiCGSTAB method, and reduce the number of iterations in the GMRES method. We can observe desirability and efficiency of using the quasi Hermitian and skew-Hermitian splitting as a preconditioner splitting for the BiCGSTAB and the GMRES methods for this problem in Figure 3.

Example 4.3 Consider the matrices

\[A = B = H_n + 10^6 S_n, \]

11
where H_n and S_n are as in Example 4.2 and $n = 256$.

For this problem we have $||H||_2 = 29.7446$ and $||S||_2 = 1.4745e + 07$, i.e., $||S||_2 \gg ||H||_2$. Therefore, this is a problem with strong skew-Hermitian part [22, 23] and is a more challenging problem. The results of this problem are given in Table 5.

Table 5: Results for Example 4.3

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU time</th>
<th>out-itr</th>
<th>tot-itr</th>
<th>av-itr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-CGNR</td>
<td>1468.343</td>
<td>1219</td>
<td>121664</td>
<td>99.80</td>
</tr>
<tr>
<td>NSCG</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>HSS</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>IHSS</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>BiCGSTAB</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>PreBiCGSTAB</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>GMRES</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>FGMRES</td>
<td>756.745</td>
<td>42</td>
<td>392</td>
<td>9.33</td>
</tr>
</tbody>
</table>

For this test problem, Table 5 shows that all methods, except the NS-CGNR method, were diverging. According to the results presented in the Table 5, we can assert that the use of the quasi Hermitian splitting as a preconditioner cannot improve the efficiency of the BiCGSTAB method, but improve the efficiency of the GMRES method. We can observe desirableness and efficiency of using the quasi Hermitian and skew-Hermitian splitting as a preconditioner splitting for the GMRES method for this problem in Figure 3.
5 Conclusion

In this paper, we have proposed an efficient iterative method for solving the continuous Sylvester equation $AX + XB = C$, by emphasizing the role of skew-Hermitian part of the coefficient matrices. This method which named NS-CGNR method, is suitable for problems with strong skew-Hermitian part. The NS-CGNR employs a CGNR-like method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent splitting of the coefficient matrices. Via this method, a Sylvester equation with coefficient matrices S_A and S_B (which are the skew-Hermitian part of A and B, respectively) is solved iteratively by a CGNR-like method.

We have compared the NS-CGNR method with some iterative methods such as the NSCG method, the HSS and the IHSS method, the BiCGSTAB method, and the GMRES method for some problems. We have observed that, for the problems with strong skew-Hermitian part, the NS-CGNR is superior the other iterative methods. However, we observe that the NS-CGNR method is not suitable for problems with the strong Hermitian part. In addition, numerical computations showed that the quasi Hermitian splitting can induce the accurate, robust and effective preconditioned Krylov subspace method.

Acknowledgments The authors are very much indebted to the referees for their constructive comments and suggestions which greatly improved the original manuscript of this paper.

Appendix

To prove Theorem 2.1, we need the following lemmas.

Lemma 5.1 [28] If F is an $n \times n$ matrix with $||F|| < 1$, then $(I + F)^{-1}$ exists and satisfies $||\frac{1}{(I + F)^{-1}}|| \leq \frac{1}{1 - ||F||}$.

Lemma 5.2 [27] Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix, and assume that the system of linear equations (2) is solved by the conjugate gradient method. If $x^{(0)} \in \mathbb{R}^n$ is the starting vector, $x^{(k)} \in \mathbb{R}^n$ the kth iterate, and $x^* \in \mathbb{R}^n$ the exact solution of the linear system of equations (2), then $||x^{(k)} - x^*||_A \leq 2 \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1} \right)^k ||x^{(0)} - x^*||_A$.

Evidently, by making use of Lemma 5.2, we can obtain the following corollary:

Corollary 5.3 Let $A \in \mathbb{R}^{n \times n}$ and assume that the system of linear equations (2) is solved by the CGNR method. If $x^{(0)} \in \mathbb{R}^n$ is the starting vector, $x^{(k)} \in \mathbb{R}^n$ the kth iterate, and $x^* \in \mathbb{R}^n$ the exact solution of the system of linear equations (2), then $||x^{(k)} - x^*||_{A^{\tau}A} \leq 2 \left(\frac{\kappa(A) - 1}{\kappa(A) + 1} \right)^k ||x^{(0)} - x^*||_{A^{\tau}A}$.

Now, we can prove the Theorem 2.1 as follows:

Proof of Theorem 2.1. Let $x^{(\ast, l)}$ be the exact solution of the system of linear equations (6). Then it satisfies

$$x^{(\ast, l)} = S^{-1}_\alpha c - S^{-1}_\alpha \mathcal{H}_\alpha x^{(l-1)}.$$

On the other hand, since x^* is the exact solution of the system of linear equations (2), it obeys

$$x^* = S^{-1}_\alpha c - S^{-1}_\alpha \mathcal{H}_\alpha x^*.$$

13
Let \(\mu(S_n) = (\kappa(S_n) - 1)/(\kappa(S_n) + 1) \). Then according to Corollary 5.3, we have
\[
\|x^{(l)} - x^{(s,l)}\|_{S_n^T S_n} \leq 2\mu(S_n)k_1\|x^{(l-1)} - x^{(s,l)}\|_{S_n^T S_n}.
\]
Furthermore, we can obtain
\[
\|x^{(l)} - x^*\|_{S_n^T S_n} = \|(x^{(l)} - x^{(s,l)}) - (x^{(s,l)} - x^*)\|_{S_n^T S_n} \\
\leq \|x^{(l)} - x^{(s,l)}\|_{S_n^T S_n} + \|x^{(s,l)} - x^*\|_{S_n^T S_n} \\
\leq 2\mu(S_n)k_1(1 + \theta)\|x^{(l-1)} - x^*\|_{S_n^T S_n} + \|S_n^{-1}H_n(x^{(l-1)} - x^*)\|_{S_n^T S_n} \\
= (2\mu(S_n)k_1(1 + \theta) + \theta)\|x^{(l-1)} - x^*\|_{S_n^T S_n} \\
= \gamma^{(l)}\|x^{(l-1)} - x^*\|_{S_n^T S_n}.
\]
This proves the validity of (a). We now turn to the proof of (b). Since
\[
\|c - Ax^{(l)}\|_{S_n^T S_n} = \|A(x^{(l)} - x^*)\|_{S_n^T S_n} \leq \|A\|_{S_n^T S_n}\|x^{(l)} - x^*\|_{S_n^T S_n},
\]
making use of (a) we have
\[
\|c - Ax^{(l)}\|_{S_n^T S_n} \leq \gamma^{(l)}\|A\|_{S_n^T S_n}\|x^{(l-1)} - x^*\|_{S_n^T S_n} \\
\leq \gamma^{(l)}\|A\|_{S_n^T S_n}\|A^{-1}(c - Ax^{(l-1)})\|_{S_n^T S_n} \\
\leq \gamma^{(l)}\|A\|_{S_n^T S_n}\|A^{-1}\|_{S_n^T S_n}\|c - Ax^{(l-1)}\|_{S_n^T S_n}.
\]
We easily obtain
\[
\|A\|_{S_n^T S_n} = \|H_n + S_n\|_{S_n^T S_n} \\
= \|S_n(S_n^{-1}H_n + I)\|_{S_n^T S_n} \\
\leq \|S_n\|_{S_n^T S_n}(1 + \|S_n^{-1}H_n\|_{S_n^T S_n}),
\]
and since \(\|S_n^{-1}H_n\|_{S_n^T S_n} < 1 \), by Lemma 5.4, we can obtain
\[
\|A^{-1}\|_{S_n^T S_n} = \|(S_n^{-1}H_n + I)^{-1}\|_{S_n^T S_n} \\
= \|S_n^{-1}(S_n^{-1}H_n + I)^{-1}\|_{S_n^T S_n} \\
\leq \|S_n^{-1}\|_{S_n^T S_n}\|S_n^{-1}H_n + I\|^{-1}_{S_n^T S_n} \\
\leq \frac{1}{1-\|S_n^{-1}H_n\|_{S_n^T S_n}}.
\]
On the other hand, we have \(\|S_n\|_{S_n^T S_n} = \|S_n\|_2 \) and \(\|S_n^{-1}\|_{S_n^T S_n} = \|S_n^{-1}\|_2 \). Therefore, we have:
\[
\|A\|_{S_n^T S_n} \leq \|S_n\|_2(1 + \|S_n^{-1}H_n\|_{S_n^T S_n}) \quad \text{and} \quad \|A^{-1}\|_{S_n^T S_n} \leq \frac{\|S_n^{-1}\|_2}{1-\|S_n^{-1}H_n\|_{S_n^T S_n}}.
\]
Therefore it follows that
\[
\|c - Ax^{(l)}\|_{S_n^T S_n} \leq \gamma^{(l)}\frac{\|S_n\|_2(1 + \|S_n^{-1}H_n\|_{S_n^T S_n})\|S_n^{-1}\|_2}{1-\|S_n^{-1}H_n\|_{S_n^T S_n}}\|c - Ax^{(l-1)}\|_{S_n^T S_n} \\
= \gamma^{(l)}\frac{\|S_n\|_2(1 + \|S_n^{-1}H_n\|_{S_n^T S_n})\|S_n^{-1}\|_2}{1-\|S_n^{-1}H_n\|_{S_n^T S_n}}\|c - Ax^{(l-1)}\|_{S_n^T S_n} \\
= \tilde{\gamma}^{(l)}\|c - Ax^{(l-1)}\|_{S_n^T S_n}.
\]
This shows the validity of (b).
It is obvious that, for $\gamma \in (\varrho, \varrho_1)$ with $\varrho_1 = \min\{1, 2 + 3\varrho\}$, $\gamma^{(l)} \leq \gamma \ (l = 1, 2, \cdots)$ holds under condition

$$k_l \geq \frac{\ln(\frac{\gamma^{(l)}}{\varrho \gamma^{(l-1)}})}{\ln(\kappa(S_\alpha) - 1)} \frac{\gamma}{\kappa(S_\alpha) + 1}, \ l = 1, 2, \cdots,$$

and the estimates

$$||x^{(l)} - x^*||_{S_\alpha^T S_\alpha} \leq \gamma^{(l)} ||x^{(l-1)} - x^*||_{S_\alpha^T S_\alpha} \leq \Pi_{k=0}^\infty \gamma^{(k)} ||x^{(0)} - x^*||_{S_\alpha^T S_\alpha} \leq \gamma^{(l+1)} ||x^{(0)} - x^*||_{S_\alpha^T S_\alpha} \rightarrow 0, \ l \rightarrow \infty,$$

hold in accordance with (a). Therefore, the sequence \(\{x^{(l)}\}_{l=0}^\infty\) converges to the solution x^* of the system of linear equations (2).

In addition, for $\varrho \in (0, r)$, where r is the positive root of quadratic equation $\kappa(S_\alpha)\varrho^2 + (\kappa(S_\alpha) + 1)\varrho - 1 = 0$ and $0 < r < 1$, we have $0 < (1 + \varrho)\kappa(S_\alpha)/(1 - \varrho) < 1$. So, for

$$\tilde{\gamma} \in \left(\frac{1 + \varrho}{1 - \varrho} \kappa(S_\alpha), 1\right),$$

$$\gamma^{(l)} \leq \tilde{\gamma} \ (l = 1, 2, 3, \cdots)$$

holds under condition

$$k_l \geq \frac{\ln(\frac{1 - 3\varrho - 2(1 + \varrho)\kappa(S_\alpha)}{2(1 + \varrho)^2 \kappa(S_\alpha)}}{\ln(\kappa(S_\alpha) - 1)} \frac{\gamma}{\kappa(S_\alpha) + 1}, \ l = 1, 2, 3, \cdots,$$

and the estimates

$$||c - A x^{(l)}||_{S_\alpha^T S_\alpha} \leq \gamma^{(l)} ||c - A x^{(l-1)}||_{S_\alpha^T S_\alpha} \leq \Pi_{k=0}^\infty \gamma^{(k)} ||c - A x^{(0)}||_{S_\alpha^T S_\alpha} \leq \tilde{\gamma}^{(l+1)} ||c - A x^{(0)}||_{S_\alpha^T S_\alpha} \rightarrow 0, \ l \rightarrow \infty,$$

hold in accordance with (b).

\[\square\]

References

