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Abstract

We represent the well-known surprise exam paradox in constructive and computable
mathematics and offer solutions. One solution is based on Brouwer’s continuity principle
in constructive mathematics, and the other involves type 2 Turing computability in
classical mathematics. We also discuss the backward induction paradox for extensive
form games in constructive logic.

1 Introduction

The teacher announces to the students:

you will have one and only one exam at 10am on one day next week (Monday–
Friday), but you will not know in advance the day of exam.

The students, using a backward argument, reason that there can be no exam indeed:

- Friday is not the day of the exam. Since if it were, then we will not have received the
exam through Thursday, and as there is an exam during the week, then on Thursday
night we will be able to know in advance the day of exam,

- Thursday is not the day of the exam. Since if it were, then we will not have received
the exam through Wednesday, and as there is an exam during the week, and it is not
on Friday, then on Wednesday night we will know in advance the day of exam is on
on Thursday,...

- and so on,

- then none of the days of the next week is the day of exam.

The above statements constitute “The Surprise Exam Paradox” (SEP). There are
different formulations of the paradox in logico-philosophical literature, e.g., [4, 20]. SEP
was brought to public attention about six decades ago [11, 13, 14]. Since that time, more
than 150 papers have been written on the subject to explain and (or) solve the paradox.
The solutions proposed are based on different approaches, e.g., [14, 7, 3, 9]. Some authors
try to solve the paradox in terms of epistemic notions [2, 13, 16, 20] and others in the
context of logical notions [19], in particular, in dynamic epistemic logic [6, 10, 4]. For
example, Gerbrandy sees the puzzle in the assumption that announcements are in general



successful [6]. Baltag allows the students to revise their trust in the teacher once they
reach the paradox in order to solve the paradox [10]. Some works relate the paradox to
Gödel’s self-referential statements [14, 8, 3], and claim that the teacher’s announcement
is self-referring in nature, and others relate the paradox to backward induction in finite
dynamic game theory [12, 15].

In this paper, we reformulate the surprise exam paradox in the context of mathematical
constructivism, and propose a solution for it. In teacher’s announcement, we simply replace
the word ”know” with the word ”construct/compute”.

The teacher announces to the students:

you will have one and only one exam at 10am on one day next week, but you
will not be able to construct/compute in advance the day of exam.

The core of our proposed solution is the free will of the teacher to choose a day for the
exam in future. In constructive mathematics, Brouwer’s continuity principle and the notion
of choice sequences formally declare the notion of free will of the subject [1]. In section 2,
we reformulate SEP in Brouwerian mathematical constructivism [17] and offer a solution
for it based on Brouwer’s continuity principle and constructive logic [1, 5, 17]. In section 3,
we discuss the paradox in computable analysis, and put forward a solution considering the
classical logic. Finally, we discuss the backward induction in constructive logic in the last
section of this paper.

2 A Mathematical Constructivist Solution

As is well-known, the slogan of mathematical constructivism is that a mathematical object
is admitted in our domain of discourse if it can be constructed. Commitment to this slo-
gan, imposes its own epistemology and logic. In epistemology, this implies that we know
a proposition to be true if we have a proof for it, and a proof itself is a construction or
computation. This epistemology, in turn, imposes its own logic, intuitionistic logic. Intu-
itionistic reading of the logical connectives (the so called BHK interpretation) results in
denying some tautologies of classical logic such as ϕ∨¬ϕ and ¬¬ϕ→ ϕ. For more details,
see, e.g., [1, 5, 17].

In SEP, we expect the day of the exam to depend on the free will of the teacher.
Brouwer’s continuity principle states the role of free will in constructive mathematics. Imag-
ine you have a collection of objects at your disposal, let’s say the natural numbers. Pick out
one of them, and record the result. Put it back into the collection, and choose again. Since
you have the ability to choose freely, you may choose a different one, or the same again.
Record the result, and put it back. You may make keep on making further choices. In
this way, you are developing a choice sequence if you think of the sequence you are making
as potentially infinite [1]. Initial segments are always finite. We cannot make an actually
infinite number of choices, but we can always extend an initial segment by making a further
choice. If we want to apply a function to a choice sequence, a sequence will have to act as
an argument, to which then a method is applied to calculate the function’s output. But
we cannot construct the argument in its entirety, as a choice sequence is always an unfin-
ished object, and therefore, one always has access only to a finite segment of the sequence.
The Brouwer weak continuity principle for numbers, WCN says that a total function from



choice sequences to natural numbers never needs more input than a finite initial segment
to produce its output; hence all choice sequences sharing this segment will yield the same
value [1, 5, 17].

WCN: Assume Φ ∈ NN → N is total, then ∀α∃x∀β(βx = αx→ Φβ = Φα),

where αx = 〈α(0), α(1), ..., α(x − 1)〉. To state the principle more formally, we need some
definitions.

Definition 2.1 1. A tree T is an inhabited decidable set of finite sequences of natural
numbers closed under predecessor, i.e.,

• 〈〉 ∈ T,

• ∀n(n ∈ T ∨ ¬n ∈ T),

• ∀nm(n ∈ T ∧m ≺ n→ m ∈ T). (m ≺ n means m is a prefix of n)

2. A spread is a tree in which each node has at least one successor,

∀n ∈ T∃x(n ∗ 〈x〉 ∈ T)

3. A sequence α is a branch of the tree iff all initial segments of α belong to T. We
denote this by α ∈ T.

The weak continuity principle for natural numbers can be stated as follows. Let T be
an arbitrary spread, then

WCN : ∀α ∈ T∃y(Φα = y)→ ∀α ∈ T∃x∀β ∈ T(βx = αx→ Φβ = Φα).

2.1 Reformulation of the paradox

We reformulate the surprise exam paradox in constructive analysis as follows.
The mathematician announces to the students:

I develop a sequence α of natural numbers such that for all n, (1 ≤ α(n) ≤ 5)
and (α(n + 1) = α(n) ∨ α(n + 1) = α(n) + 1). But you will not be able to
construct/compute the maximum value of the sequence.

Let T be the set of all sequences α satisfying the following conditions:

1. ∀n(1 ≤ α(n) ≤ 5),

2. ∀n(α(n+ 1) = α(n) ∨ α(n+ 1) = α(n) + 1).

It is easy to verify that T is a spread. For each α ∈ T and k ∈ N, we define

max(α, k) :≡ ∀n(α(n) ≤ k) ∧ ∃n(α(n) = k).

The formula max(α, k) states that k is the maximum value of the sequence α.
By Increasing Bounded Sequences statement, IBS , we mean the conjunction of the following
two formulas:



1. (∀α ∈ T)¬¬∃m∀n ≥ m(α(n) = α(m)),

2. ¬∃f : T→ N ∀α ∈ T[max(α, f(α))].

We justify that IBS is a reformulation of SEP as follows.

The teacher announces to the students:

you will have one and only one exam at 10am on one day next week (Monday–
Friday), but you will not know in advance the day of exam.

The mathematician also announces to the same students:

I develop a sequence α of natural numbers such that for all n, (1 ≤ α(n) ≤ 5)
and (α(n + 1) = α(n) ∨ α(n + 1) = α(n) + 1). But you will not be able to
construct/compute the maximum value of the sequence.

We claim that if the students cannot compute the maximum value of the sequence developed
by the mathematician, then they would not know in advance the day of the exam taken by
the teacher.

The mathematician develops a sequence α based on the behavior of the teacher as
follows.

He first chooses an arbitrary natural number n1 ≥ 1 and lets α(1) = α(2) = · · · =
α(n1) = 1. Then, he observes teacher’s behavior on Monday, 10am. If the exam is given,
then the mathematician defines α(n) = 1, for all n > n1. Otherwise, he chooses another
arbitrary natural number n2 ≥ 1, and lets α(n1 + 1) = α(n1 + 2) = · · · = α(n1 + n2) = 2.
Again, the mathematician observes teacher’s behavior on Tuesday, 10am. If the exam is
given, he defines α(n) = 2, for all n > n1 + n2. Otherwise, he chooses an arbitrary natural
number n3 ≥ 1, and lets α(n1 + n2 + 1) = α(n1 + n2 + 2) = · · · = α(n1 + n2 + n3) = 3.
In a similar way, the mathematician observes the teacher’s behavior on Wednesday, 10 am.
If the exam is given, he defines α(n) = 3, for all n > n1 + n2 + n3. Otherwise, he chooses
an arbitrary natural number n4 ≥ 1, and lets α(n1 + n2 + n3 + 1) = α(n1 + n2 + n3 + 2) =
· · · = α(n1 + n2 + n3 + n4) = 4.
As for Thursday, the mathematician observes the teacher’s behavior on Thursday, 10 am.
If the exam is given, he defines α(n) = 4, for all n > n1 + n2 + n3 + n4, and otherwise, he
defines α(n) = 5, for all n > n1 + n2 + n3 + n4.

It is obvious that if the students have a procedure to predict the day of the exam
in advance, then they would be able to compute the maximum value of the sequence α
developed by the mathematician as well. In Theorem 2.4 and Proposition 3.4, we show
that there is no constructive/computable function that computes the maximum value of
sequences in the spread T.

It is interesting to note that the first step of student’s argument, i.e., Friday is not the
day of the exam day, is plausible. In our reformulation IBS , the first step of the student’s
argument is as follows. If α ∈ T is a sequence developed by the mathematician, and in
a finite initial segment of α developed until now, say 〈α(1), α(2), ..., α(k)〉, there exists
1 ≤ i ≤ k such that α(i) = 5, then we can compute the maximum value of the sequence α,
based on this finite initial segment, and the maximum value would be five.



2.2 The Solution

The student, using a backward argument, proves the following Proposition and its Corol-
lary 2.3.

Proposition 2.2 (∀α ∈ T)¬¬∃m∀n ≥ m(α(n) = α(m)).

Proof. To show ∀α ∈ T¬¬∃m∀n ≥ m[α(n) = α(m)], it is enough to show ¬∃α ∈
T¬∃m∀n ≥ m[α(n) = α(m)], by the constructive valid statement ¬∃xA(x)↔ ∀x¬A(x). So
assume, for some α0 ∈ T, ¬∃m∀n ≥ m[α0(n) = α0(m)]. Then ∀m¬∀n ≥ m[α0(m) = α0(n)].
Since α0 ∈ T, we have α0(n) ≤ α0(n+ 1) ≤ 5, for all n ∈ N. We prove that for every k ∈ N,

(∀n(α0(n) ≤ k))→ (∀n(α0(n) < k)) (1).

Assume there exists t ∈ N such that α0(t) = k. Since α0 is non-decreasing and ∀n(α0(n) ≤
k), we have ∀n > t[α0(n) = k]. This contradicts with the assumption ∀m¬∀n ≥ m[α0(m) =
α0(n)]. Hence ∀n(α0(n) < k).
Now let k = 5. By (1), we derive ∀n(α0(n) ≤ 4). Repeating this argument by using (1), we
will have ∀n(α0(n) = 0). This contradicts with ∀m¬∀n ≥ m[α(m) = α(n)]. a

From Proposition 2.2, we can simply derive the following Corollary.

Corollary 2.3 For each α ∈ T, ¬¬∃k(max(α, k)).

Using Brouwer’s continuity principle, we show that it is not possible to construct for
each α ∈ T, a natural number k such that max(α, k) holds.

Theorem 2.4 (WCN). There is no function f : T→ N, such that ∀α ∈ T[max(α, f(α))].

Proof. Suppose there exists a function f : T → N such that ∀α ∈ T[max(α, f(α))]. Let
β = 〈1〉 be the sequence of ones. Then f(β) = 1. By WCN , there exists j ∈ N such that
for all α ∈ T, if ᾱ(j) = β̄(j) then f(α) = f(β) = 1. Let α0 ∈ T be a sequence that its first
j-th elements are one and all other elements are two, i.e.,

α0(n) =

{
1 n ≤ j,
2 n > j.

For the sequence α0, max(α0, 2) contradicts with f(α0) = 1. a

Theorem 2.4 and Corollary 2.3 show that IBS holds, and thus there is no paradox in
teacher’s announcement.

3 A Computable Analysis Solution

In the previous section, we discussed the paradox in constructive logic and by Brouwer’s
continuity principle, we proved IBS . In this section, we consider the classical logic and
type-2 Turing Computability [18].

Type 2 machines are proposed in computable analysis to generalize computability from
finite to infinite sequences of symbols [18]. A Type 2 Turing machine is a Turing machine
for which not only finite but also infinite sequences of symbols may be considered as inputs
or outputs. Let Σ be a finite set of alphabets, and let Σω denotes the set of all sequences
α : N→ Σ.



Definition 3.1 A Type 2 machine M is a Turing machine with a one-way input tape to
input sequences from Σω, an output tape to output strings in {1}∗, and finitely many work
tapes. A function f : Σω → N = {1}∗ is type-2 computable, if and only if there is a type-2
machine M that for input instance α provide the output f(α).

Theorem 3.2 Let f : Σω → {1}∗ be a total type-2 computable function. Then for all
α ∈ Σω, there exists m such that for all β, if β(m) = α(m), then f(β) = f(α).

Proof. See [18], Theorem 2.2.6. a

We define the Classic Increasing Bounded Sequences statement, CIBS , as conjunction
of the following two statements:

1. for all α ∈ T, ∃m∀n ≥ m(α(n) = α(m)),

2. there is no type-2 computable function f : T→ N such that ∀α ∈ T[max(α, f(α))].

The next two propositions show that the CIBS holds.

Proposition 3.3 For each α ∈ T, ∃k(max(α, k)).

Proof. Since ¬¬p→ p holds in classical logic, by Corollary 2.3, we are done. a

Proposition 3.4 There is no type-2 computable function f : T → N, such that ∀α ∈
T[max(α, f(α))].

Proof. The proof is similar to the proof of Theorem 2.4. Note that the weak continuity
principle is valid for type-2 computable functions, by Theorem 3.2. a

4 The Backward Induction

The backward induction paradox and its relation to the surprise exam paradox has been
discussed in literature [12, 3, 15]. In this section, we consider backward induction on the
centipede game in constructive logic. The centipede game is an extensive form game. There
are 100 gold coins on a table. Two agents play a game on these coins as follows. Each agent,
in its turn, either takes two coins and the game is over, or takes one coin and the other
agent gets its turn.

The solution given by the backward induction is that the first player takes two coins and
the game finishes. But it may seem paradoxical, since the experimental subjects regularly
cooperate in the centipede game.

We claim that the way of use of backward induction in the centipede game is not
acceptable in constructive logic. The backward induction principle, BWI , says:

{∃nψ(n), ∀n(ψ(n+ 1)→ ψ(n))} ` ψ(1).



Let ψ(n) mean that “the game is over in round n” for some n, 1 ≤ n ≤ 100. In fact, in
argument for the centipede game, it is not proved that ∃nψ(n), but the weaker version, i.e.,
¬¬∃nψ(n) is proved.

The backward argument on the centipede game usually goes as follows:

A1. Since the game may last at most 100 rounds, then there exists a round n
which is the last round, i.e., ∃nψ(n).

A2. On the other hand, if one agent ends the game at round n + 1, due to
rationality of the other agent, the other one would have ended the game at the
previous round n, i.e., ∀n(ψ(n+ 1)→ ψ(n)).

The argument A1 is not constructively valid. Since in constructive logic, to show “there
exists n” means to “construct or present n”. Argument A1, in constructive logic, just says
that it is not false that there exists a round n that is the last round. Hence ¬¬∃nψ(n),
and one of the premises of the BWI principle is not fulfilled. It is an easy exercise in
constructive logic to show that the following deduction

{¬¬∃nψ(n), ∀n(ψ(n+ 1)→ ψ(n))} ` ψ(1).

in not valid. So we cannot deduce its conclusion, i.e., ψ(1). However, it is routine to verify
the following deduction in constructive logic.

{¬¬∃nψ(n),∀n(ψ(n+ 1)→ ψ(n))} ` ¬¬ψ(1).

We claim that we cannot deduce ψ(1) from ¬¬ψ(1) in constructive logic, i.e.,

6` ¬¬ψ(1)→ ψ(1).

In constructive logic, A∨B is true whenever either we have an evidence (proof) for A or an
evidence (proof) for B. Note that before the game starts, for each n, the round n is in future
and has not occurred yet. Thus it is unknown whether round n is the last round or not,
while backward induction argument is done before the game starts. Hence, constructively,
for each n, 6` ψ(n) ∨ ¬ψ(n).

It is easy to show that for any formula A, if we have 6` A ∨ ¬A and ` ¬¬A, then
6` ¬¬A → A. Since if we have ` ¬¬A → A, then by ` ¬¬A, we can deduce ` A, and
consequently ` A ∨ ¬A.

5 Concluding Remarks

We introduced IBS as a reformulation of SEP. Almost all of the solutions of the surprise
exam paradox in the literature are based on the critique of teacher’s announcement, not
student’s argument. Some works present formal versions of the paradox such that teacher’s
announcement is a self-referential statement [14, 8, 3]. In some other works, teacher’s
announcement is an unsuccessful update [6]. In our reformulation of SEP, there is nothing
wrong with teacher’s announcement, but student’s argument is not constructively valid.

The surprise exam paradox can be expressed for less than five days as well. For example,
if the teacher says that I will take an exam on Monday or Tuesday, it is still a legal version



of the paradox. However if we express the paradox for just one day, then the teacher’s
announcement is false. Our reformulation, i.e., IBS , works for any spread Tk, k > 1,
consisting of all sequences α satisfying the conditions:

- ∀n(1 ≤ α(n) ≤ k),

- ∀n(α(n+ 1) = α(n) ∨ α(n+ 1) = α(n) + 1).

If k = 1, then the increasing bounded sequence statement, IBS, is false.
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