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Abstract—Fog-Cloud computing has become a promising plat-
form for executing Internet of Things (IoT) tasks with different
requirements. Although the fog environment provides low latency
due to its proximity to IoT devices, it suffers from resource con-
straints. This is vice versa for the cloud environment. Therefore,
efficiently utilizing the fog-cloud resources for executing tasks
offloaded from IoT devices is a fundamental issue. To cope with
this, in this paper, we propose a novel scheduling algorithm in
fog-cloud computing named PGA to optimize the multi-objective
function that is a weighted sum of overall computation time,
energy consumption, and percentage of deadline satisfied tasks
(PDST). We take the different requirements of the tasks and the
heterogeneous nature of the fog and cloud nodes. We propose
a hybrid approach based on prioritizing tasks and a genetic
algorithm to find a preferable computing node for each task.
The extensive simulations evaluate our proposed algorithm to
demonstrate its superiority over the state-of-the-art strategies.

Index Terms—Fog-cloud computing, Internet of things (IoT),
task scheduling, multi-objective optimization, genetic algorithm.

I. INTRODUCTION

Internet of Things (IoT) is shaping the future of connec-
tivity, processing, and access. Any things can connect to the
Internet in the IoT, including sensors, cell phones, cameras,
wearables, and actuators. As a result, the number of devices
connected to the Internet has increased dramatically in recent
years. These devices generate large amounts of data in a
short time that requires processing, storage, and networking
resources [1]. Cloud computing is a centralized computing
model that enables the utilization of powerful computing
resources through IoT devices, and users [2]. Many IoT
applications such as augmented reality, connected cars, drones,
industrial robotics, and patient health monitoring systems are
sensitive to delay. As a result, they must be implemented and
responded to as quickly as possible [3], [4].

As respects the centralization of cloud computing leads to
low and unacceptable quality of service for such applications
[5]. Therefore, to reduce cloud constraints, in 2012 Cisco
proposed a distributed computing model for cloud computing
[6]. The fog computing paradigm has a three-tier architecture
in which the fog layer contract between cloud data centers
and IoT devices [7]. The fog environment includes computing,
storage, and network devices called fog node [8].

Motivation. Due to the proximity of nodes to IoT devices,
the delay in sending information and returning responses to
applications will be much less than in cloud data centers [9].
The fog layer consists of limited resources that alone do not
meet the request and needs of IoT users [8]. As a result, a new
paradigm called fog-cloud computing can meet the needs of
various applications. The fog-cloud computing environment
has several advantages, such as reducing latency, reducing
network traffic, and increasing energy efficiency. However, this
new model faces many research and operational challenges.
Resource allocation and task scheduling are some of the most
significant challenges [2]. Scheduling issues are assigning the
appropriate node to tasks according to their requirements. The
scheduling problem is divided into two parts: (i) What tasks
should be placed on what nodes? And (ii) What is the order
of execution of tasks in each node?

Task scheduling algorithm has a significant impact on the
optimal use of system resources and user satisfaction. For
this reason, researchers proposed many heuristic and meta-
heuristic algorithms recently [10]–[17]. However, to the best
of our knowledge, none of them considered the deadline
of tasks, energy consumption, and overall computation time.
Thus, in this paper, we aim to jointly reduce the total overall
computation time and energy consumption of the fog-cloud
computing environment.
Our contributions. In this paper, we address the problem
of computational task scheduling in heterogeneous fog-cloud
computing environments. We aim to jointly minimize the total
computation time and energy consumption while the percent-
age of tasks completed before their deadline is maximized. We
summarize our main contributions as follows:

• To respect the delay-sensitivity of tasks and to efficiently
utilize the fog-cloud resources, we propose a new priority-
aware genetic algorithm to solve the problem.

• To achieve these goals, we introduce a deadline, length-
aware classification mechanism to find a preferable envi-
ronment for each task.

• Putting all this together, the proposed approach that we
named PGA provides a very good convergence time and
a significant performance.

The rest of the paper is organized as follows. The next



section studies the related literature. We describe system
modeling, including system architecture and problem formu-
lation, in Section III. The proposed approach is introduced
in Section IV. In Section V, we evaluate the performance
of the proposed method. Finally, we conclude our work in
Section VI.

II. RELATED WORK

Due to the significant impact of scheduling on a computing
system’s performance and cost, in the literature, many algo-
rithms have been proposed that deal with this problem. In
the following, we review some of the studies that have been
conducted on this still-challenging issue.

The meta-heuristic algorithms are highly attended by re-
searchers due to their searching nature in the search space. For
example, the authors of [10] combine the invasive weed opti-
mization (IWO) and the cultural evolution algorithm (CEA) to
minimize the makespan and energy consumption in the fog-
cloud environment. Similarly, in [11], the authors propose a
hybrid method of ant colony optimization (ACO) and genetic
algorithm (GA) to reduce the makespan and consumed energy
of fog infrastructure. To find an optimal trade-off between
energy consumption and the makespan of the system, the
authors in [12] introduce a novel bio-inspired optimization
strategy called ant mating optimization (AMO).

Many researchers decide to utilize the genetic algorithm
(GA) due to the high efficiency and scalability for real-time
applications. In [13], the authors suggest a hybrid GA algo-
rithm to reduce the computation and response times for cloud
servers. The authors have tried to provide a suitable solution
for the introduced model by combining a greedy method
with GA’s binary coding. In [14], the authors employed the
one-point crossover method to a modified non-dominated
sorting genetic algorithm (NSGA-II) and introduced a multi-
objective model to decrease the makespan and cost in fog-
cloud environments.

Some current research works have used heuristic, fuzzy, and
deep learning methods to solve the task scheduling problem
in a fog-cloud environment. For example, the authors of [15]
formulate the task scheduling problem as a binary nonlinear
programming model to reduce the deadline violations of tasks.
Then, they propose a heuristic algorithm to reduce the amount
of violation time of all tasks. To improve the percentage of
jobs that meet their deadline, the authors [16], [17] introduced
a fuzzy priority deadline-based algorithm for scheduling tasks.
In [17], the authors proposed a reinforcement learning ar-
chitecture to schedule tasks on cloud servers to reduce the
execution time of tasks.
Comparisons. All of the research mentioned above works
have taken valuable steps to solve the scheduling problem.
However, none of them jointly considered the deadline of
tasks, energy consumption, and overall computation time.
Moreover, most of them suffer from the high running time,
which is a critical issue for delay-sensitive IoT tasks. This
study considers all the objectives above and proposes an
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Fig. 1: An illustration of the IoT-Fog-Cloud architecture.

approach that provides a feasible and practical solution for
the task scheduling problem with a reasonable running time.

III. SYSTEM MODEL

This section introduces IoT-Fog-Cloud architecture (§III-A)
and formulates the task scheduling problem (§III-B).

A. System Architecture

Processing IoT requests at the fog nodes have restriction
relating to the low computational resource. Besides, it incurs
high delays for users and impressive energy consumption for
the servers to using cloud computing. To efficiently utilization
of existing infrastructure, we consider a fog-cloud environment
for processing requests from IoT users, as shown in Fig. 1.

According to the devices and applications available in the
first layer, users send diverse requests through gateways to
the fog broker on the IoT layer’s edge. Fog broker consists
of three separate and connected components: task receiver,
task scheduler, and resource monitoring. The duties of the first
component include several operations. In the first step, requests
are received and decomposed into tasks [18]. Then, the task
receiver estimates data about tasks contains the number of
instructions and deadline. Nodes are monitored and evaluated
by the resource monitoring component. In other words, this
component periodically provides a report on the status of
resources to the task scheduler unit.

The task scheduler is the principal component of the fog
broker. We require data and information to stack up in the task
scheduler to run the algorithm. The algorithm correspondent
to users’ requirements and the system’s status tries to find the
optimal solution.

B. Problem Formulation

Here, we first describe our objectives, including overall
computation time, energy consumption, and Percentage of the
Deadline Satisfied Tasks (PDST). After that, we present our
multi-objective optimization model.

Let T = {T1, T2, T3, . . . , Tn} be the set of all tasks at
the task scheduler. For each task Ti, we consider two key



attributes, called length (T len
i ) and deadline (T dead

i ). Also
consider a fog-cloud system with N = {N1, N2, N3, . . . , Nm}
heterogeneous computation nodes, where each node Nj has
four main attributes, called CPU processing rate (N cpu

j ),
communication delay from the Fog Broker (Ndel

j ), power
consumption for active mode (Nact

j ) and idle mode (N idl
j ).

We also denote X(n×m) as a decision matrix. xij = 1 means
that task Ti is assigned to node Nj ; otherwise, xij = 0.
Computation Time. To model the overall computation time
of the T tasks, we should first obtain the execution time of
each task Ti on node Nj , which is calculated as follows:

Eij =
T len
i

N cpu
j

Ti ∈ T, Nj ∈ N, (1)

The overall computation time of the system to process all n
tasks, can be determined as follows:

Ccomp =

m∑
j=1

n∑
i=1

Eij × xij , (2)

Energy Consumption. During the execution of all the T tasks,
the energy consumption of each node Nj is dependent on two
main factors: its state mode, i.e., active or idle, and how long
it is in that state. The active time of a node Nj is equal to
the summation of the processing time for all assigned tasks.
In mathematical words:

Aj =

n∑
i=1

Eij × xij , (3)

Now, let M be the makespan of the system, the time when
the first task starts its execution to the time when the last task
is executed:

M = max
1≤j≤m

(Aj) , (4)

Based on eq. (3) and (4), the energy consumption of node Nj

can be calculated as:

Ej = Aj × P act
j + (M −Aj)× P idle

j j ∈ {1, . . . ,m}, (5)

Therefore, the total energy consumption can be expressed as:

ETOT =

m∑
j=1

Ej . (6)

PDST. To obtain the PDST of the system, we first should
calculate the response time of each task Ti, which is consists
of its execution time, communication time from the fog broker
to the assigned node, and waiting time, i.e.,

Ri =

m∑
j=1

(
2×Ndel

j + Eij +Wij

)
× xij , (7)

Let P denote the set of deadline satisfied tasks, i.e., those
tasks for which Ri ≤ T dead

i . Hence, PDST is equal to

PDST =
|P |

n− |P |
, (8)

C. Overall Objective Function
Our overall objective function is mapping tasks to hetero-

geneous nodes so that the overall computation time, energy
consumption, and PDST are minimized.

η = w1 × Ccomp + w2 × ETOT + w3 × (1− PDST ) . (9)

where wk, k ∈ {1, 2, 3} are weight coefficients to accentuate
the role of the three considered objectives.

Therefore, the optimization problem is expressed as fol-
lows.

min η (10a)

s.t. xij ∈ {0, 1}, j ∈ {1, . . . , m}, i ∈ {1, . . . , n}, (10b)
m∑

j=1

xij = 1, i ∈ {1, . . . n}, (10c)

3∑
k=1

wk = 1, (10d)

To normalize the model, the lowest value of computation
time and energy consumption must be calculated. The lower
bound for computation time is obtained when each task is
allocated to the most powerful node. Hence,

Ccomp
min =

∑n
i=1 T

len
i

max1≤j≤m(N cpu
j )

. (11)

To obtain a lower bound for energy consumption, we first
calculate the minimum required time to execute all tasks, i.e.,
minimum makespan, in fog-cloud infrastructure, which will be
defined as follows [2]:

Mmin =

∑n
i=1 T

len
i∑m

j=1N
cpu
j

, (12)

Then, we assume the least active power consumption for
all nodes. Therefore, minimum energy consumption can be
determined as follows:

ETOT = m× min
1≤j≤m

(Pmax
j )×Mmin , (13)

Consequently, the normalized objective function can be
expressed as below:

η̃ = w̃1 ×
ETOT
min

ETOT + w̃2 ×
Ccomp
min

Ccomp
+ w̃3 × PDST . (14)

Now our optimization problem (10a) becomes

max η̃ (15a)

s.t. xij ∈ {0, 1}, j ∈ {1, . . . , m}, i ∈ {1, . . . , n}, (15b)
m∑

j=1

xij = 1, i ∈ {1, . . . n}, (15c)

3∑
k=1

w̃k = 1. (15d)

IV. PROPOSED ALGORITHM

In this section, we propose our hybrid scheduling algorithm,
PGA, for achieving the qualified situation of the system and
the satisfaction of users. Algorithm 1 contains two interrelated
parts: classification (§IV-A) and genetic algorithm (§IV-B).
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Fig. 2: Classification of heterogeneous tasks over Cloud, Fog,
and Fog-Cloud based on deadline and instruction ratios.

A. Task Classification

This section intends to classification tasks according to their
specific characteristics and prioritizes tasks with low deadlines.
Therefore, we first sort tasks in ascending order based on
their deadline to prioritize the execution of the task on the
node. Next, we investigate the tasks situation according to
their attributes universally. For this purpose, we define two
parameters as follows:

Rdead
i =

T dead
i

max1≤x≤n (T dead
x )

, (16)

Rlen
i =

T len
i

max1≤x≤n (T len
x )

, (17)

Rdead
i , Rlen

i are the ratio coefficient to exhibit the location
of Ti on the chart ranging (0,1). In this way, the tasks are
thought-out against each other then we can effortlessly classify
them. Fig. 2 shows which layer is convenient to satisfy the
task requirement. The points with a low ratio are closer to
the origin of the coordinates and belong to the class 1. The
class 2 contains tasks that have more deadlines to execute or
require extra powerful computing resources. According to our
study, we observed that the tasks in the red region significantly
affect the energy consumption and computation time of the
system. Therefore, representatives of fog and clouds node are
selected randomly for an immediate decision. According to the
calculated energy consumption, the best class is determined
to process the desired task. We obtained the determination of
classification by performing many experiments.

Algorithm 1 presents the proposed algorithm (PGA) for
the task scheduling problem in fog-cloud infrastructure. As
mentioned before, the algorithm sorts the task in ascending
order based on the deadline (line 1). Then, constructs two sets
to classify tasks (lines 2,3). In the next step, we compute the
deadline and instruction ratio for each task to obtain the fog
and cloud list (lines 4 to 22). Finally, the genetic algorithm
runs in parallel for fog and cloud list (lines 23,24). The
proposed PGA has some modifications from the original GA.
First, instead of generation a random initial population, we first
sort tasks according to their deadline. Second, for crossover

Algorithm 1 PGA algorithm
Input: T , N
Output: Allocated T on N

1: AscSort(T, T dead
i ) ∀i ∈ N

2: fogList← {}
3: cloudList← {}
4: for all Ti in T do
5: Compute Rdead

i using (16)
6: Compute Rlen

i using (17)
7: y = 1−Rlen

i
8: if (Rdead

i ≤ 0.5) && (Rdead
i ≤ 0.5) then

9: fogList← fogList ∪ {Ti}
10: else if (Rdead

i > y) then
11: cloudList← cloudList ∪ {Ti}
12: else
13: rF ← SelectRandom(Fog)
14: rC ← SelectRandom(Cloud)
15: Compute the energy consumption of rF and rC using (5)
16: if (ErF ≤ ErC ) then
17: fogList← fogList ∪ {Ti}
18: else
19: cloudList← cloudList ∪ {Ti}
20: end if
21: end if
22: end for
23: call geneticAlgorithm(fogList)
24: call geneticAlgorithm(cloudList)
25: return Allocated T on N

𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎
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Fig. 3: Mask application procedure on PGA.

operation, we use a binary mask procedure, which is described
in the following subsection.

B. PGA: Proposed Priority-based Genetic Algorithm

Crossover and mutation are the essential sections of the
genetic algorithm (GA). Selecting the appropriate procedure
for the crossover operator affects GA performance. In this
paper, we use a binary mask vector to produce offsprings [19].
In each iteration, the crossover operator selects the first parent
by the roulette wheel selection procedure and then generates
the second parent and a new mask vector randomly. The
binary mask operator assigns the parent gens to offspring as
Algorithm 2. In the mask vector, bit 1 means swapping the
genes between parents and bit 0 means copy the gens without
swapping. Fig. 3 presents mask application phase with 10 tasks
and 5 nodes.

V. PERFORMANCE EVALUATION

In this section, we conduct three experiments to evaluate
our policy in various aspects and compare it against Power of
2 Choices (Po2C) [20] and Ant-Mating Optimization (AMO)
algorithms [13]. The reason behind selecting these methods
is that they are recent holistic fast converge algorithm that



Algorithm 2 Mask operator algorithm
Input: Parent1, Parent2, Mask
Output: offspring1, offspring2
1: copy Parent1 to offspring1
2: copy Parent2 to offspring2
3: for all i in {1, . . . , n} do
4: if (mask(i) == 1) then
5: swap offspring1(i) to offspring2(i)
6: end if
7: end for
8: return offspring1, offspring2

TABLE I: Simulation settings; CN:= cloud node; FN:= fog node:
Het.:= heterogeneous.

Experiment Purpose Parameters
Tasks FN CN

1 Convergence 250 45 15
2 Het. Tasks [100:100:500] 45 15
3 Het. Nodes 250 [15:15:75] [5:5:25]

chooses a node with the shortest response time for the desired
task.

A. Simulation Setup

We program the PGA algorithm in Matlab 2018b. The
experiments are performed on a PC with Windows 10, Intel(R)
Xeon(R) CPU E7-4850 v4 with two 2.10 GHz processors
and 12 GB RAM. The experiment parameters are summa-
rized in Table I. We assess our paper into three scenarios.
In the first scenario, we investigate the convergence of the
proposed algorithm in fog and cloud environments separately.
We conduct the first set of experiments (in simple, experiment
1) with 1000 iterations and the various number of initial
populations: {50,100,200,400}. Our obtained results average
based on ten runs. The second and third scenarios’ purpose is
to investigate the impact of the varying number of tasks and
nodes, respectively. In the third experiment for each dataset,
25% of all nodes belong to the cloud environment, and 75%
of the remaining nodes belong to the fog layer. We performed
experiments 2 and 3 with five different datasets, and the
plots are presented as averages. Tables II and III show the
characteristics of tasks and nodes in detail. In Table II, the
tasks are divided into three categories. Also, the size of each
task is commensurate with its deadline for each category.

TABLE II: Task characteristics.

Parameter Unit Values
Type1 Type2 Type3

Length MI [100,372] [1028, 4280] [5123, 9784]
Deadline s [0.1,0.5] [0.5, 2.5] [2.5,10]

TABLE III: Node characteristics.

Parameter Unit Values
Fog Cloud

CPU Rate MIPS [500, 2000] [3000, 10000]
Max Power W [80, 130] [150, 500]
Min Power W [60, 70]% Max Power
Delay s [0.001, 0.01] [0.1, 0.5]

Simulation metrics. In this paper, we propose a multi-
objective model. In addition to the objectives, we evaluate
each of the second and third experiments with makespan. Our
studies show that makespan is closely related to energy. Thus,
to efficiently assess the proposed algorithm, four plots are
reported in each experiment: goal function (objective of η),
energy consumption, computation time, and PDST.
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Fig. 4: Convergence experiment results.

B. Results

Experiment one (Heuristic convergence). Fig. 4 presents the
result of the convergence time in the fog and cloud environ-
ment. The classification phase and the sorting of tasks confirm
that the search space reduces and results in a good convergence
time in both cloud and fog environments. Focusing on Fig. 4a,
the best value for objective function is achieved when the
population size and the number of iterations are set to 400
and 200, respectively. However, the best result is obtained for
the cloud environment using the population size of 100 and
200 iterations (Fig. 4b). Therefore, we used these settings for
the proposed algorithm in the following experiments.
Experiment two (Task trade-off). In the second set of
experiments, we discuss the impact of various tasks on the
algorithm performance. We present the result in Fig. 5. The
results confirm that the system efficiency reduces with incre-
ment tasks. Specifically, Figs. 5a and 5d illustrate that energy
consumption and makespan did not diverge significantly for
all three methods, and our proposed method performed better.
Same-wise, Figs. 5b and 5c indicate that the PGA results
improved the computation and PDST by 52.91% and 111.6%
compared to AMO.
Experiment three (Node trade-off). Fig. 6 shows the results
for the impact of various nodes. As can be seen from the
results, as the number of nodes increases, the algorithm perfor-
mance improves. Enhancing the number of nodes increases en-
ergy consumption. Our proposed algorithm reduces the process
of increasing energy consumption by balancing the load in the
system. As it is explicit from the performed experiments, the
proposed policy can establish an optimal solution over other
algorithms and can conduct effective compared to algorithms.
Fig. 6d illustrates the PGA’s goal function values compared to
Po2C and AMO.

VI. CONCLUSIONS AND FUTURE DIRECTION

This paper studied the task scheduling in fog-cloud comput-
ing systems that consist of heterogeneous computing nodes
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Fig. 5: Experiment two results.
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Fig. 6: Experiment three results.

with different computational capabilities. We considered the
attributes of tasks, including deadline and the number of
instructions, to classify them and find a desirable environment
for each task. Then we proposed a priority-aware genetic algo-
rithm, PGA, to jointly optimize total computation time, energy
consumption, and the percentage of tasks completed before
their deadline. We verified the efficiency of the proposed algo-
rithm against state-of-the-art methods. The results showed that
the proposed approach provides a good convergence time and
significantly performs better than the compared algorithms.
Our next research plan is to consider the dependency among
tasks and the network topology between the fog nodes and
extend our method to the various serverless IoT applications.
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