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Abstract

Purpose Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase
cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75SNTR death
receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/
STAT, PLCy, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview
of the role of BDNF and its signaling in cancer.

Methods We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis.

Results Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung,
breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF,
either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profil-
ing studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107,
miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744,
and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased
BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling
pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib,
Lestaurtinib, and Selitrectinib, are in progress.

Conclusion The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to
clarify the BDNF role in cancer progression and target it as a therapeutic method.
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Background

Neurotrophic factors (NTFs) are a specific family of pro-
teins that play a role in the growth and differentiation of
mature and immature neurons (Binder and Scharfman 2004).
In 1982, researchers discovered a substance that affected
the survival of a group of nerve roots (Barde et al. 1982).
Then they extracted and purified it from the pig brain,
the so-called brain-derived neurotrophic factor (BDNF).
Although most neurons in the brain remain unchanged after
birth, some of our neurons can grow and differentiate in
a neurogenesis process, which importantly involves BDNF
(Kowianski et al. 2018).

The human BDNF gene is located on chromosome 11
and encodes BDNF protein synthesis in the endoplasmic
reticulum of nerve cells that requires transport vesicles for
traveling throughout the cell. Several studies have examined
the relationship between BDNF and different diseases in
humans. Decreased BDNF expression most notably occurs
in psychiatric, neurodevelopmental, and neurodegenera-
tive diseases (Piepmeier and Etnier 2015; Mojtabavi et al.
2020; Rahmani et al. 2019; Saghazadeh and Rezaei 2017),
although the expression of BDNF and its receptors are also
altered in non-neural diseases. Particularly, there is evidence
of increased levels of BDNF in cancer patients and the exist-
ence of the modified form of tropomyosin receptor kinase B
(TrkB) that, in interaction with BDNF, is involved in differ-
ent stages of tumorigenesis, from the growth and maturation
of tumor cells to their migration and invasion (Simon et al.
2017). It has led to a great interest in using BDNF as a diag-
nostic/prognostic biomarker for cancer (Smeele et al. 2018)
and developing agents that selectively target TrkB and its
downstream processes, such as first-generation TrkB inhibi-
tors (Cocco et al. 2018). Here, we review the possible role
of BDNF in cancer pathogenesis.

BDNF and TrkB in cancer pathogenesis
Expression

In physiological conditions, BDNF and TrkB are widely dis-
tributed in central and peripheral tissues (Box 1). In cancer
conditions, despite their normal distribution, BDNF and/
or TrkB are upregulated. Particularly, this upregulation has
been reported in lung (small cell and non-small cell) cancer
(Ricci et al. 2001), myeloma (Pearse et al. 2005), hepatocel-
lular carcinoma (Lam et al. 2011), ovarian cancer (Au et al.
2009), pancreatic ductal adenocarcinoma (Miknyoczki et al.
1999), glioblastoma (Nakamura et al. 2006), head and neck
squamous cell carcinoma (Kupferman et al. 2010), breast
cancer (Kim et al. 2015a), gastric cancer (Okugawa et al.
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2013), prostate cancer, colorectal cancer, gallbladder cancer,
and cervical cancer (Li 2020).

Signaling pathways

BDNF contributes to cancer progression by increasing
cancer cell survival, proliferation, migration, and invasion;
decreased chemotherapy response; and increased angio-
genesis. Figure 1 schematically represents BDNF signaling
pathways. Primarily BDNF for signal transduction binds
with lower affinity to p75 neurotrophin receptor (NTR)
and also integrin a9p1, but preferably binds to TrkB with
significantly higher affinity (Zhang et al. 2013; Stanisze-
wska et al. 2008). TrkB belongs to the neurotrophic tyrosine
kinase (NTRK?2) receptor family, which is encoded by the
NTRK?2 gene (Chao and Bothwell 2002) and can interact
with other ligands such as neurotrophin 3 (NT3) and neu-
rotrophin 4 (NT4) (Reichardt 2006). Studies point toward
dose-dependent and time-dependent functions of the TrkB/
BDNF axis (Pinheiro et al. 2017; Street et al. 2002). BDNF
binding to TrkB causes dimerization of the receptor. Dimer-
ized TrkB leads to auto-phosphorylation of the receptor
tyrosine kinase domains. This will activate the following
intracellular signaling pathways (Huang and Reichardt 2003)
to mediate BDNF functions.

RAS-MAPK-ERK

After phosphorylation, TrkB activates Src homology col-
lagen protein (SHC), a transforming protein, which, in turn,
engages the growth factor receptor-bound protein 2/Son of
Sevenless complex (GRB2/SOS) to induce the rat sarcoma
(Ras). Activation of Ras leads to signaling through down-
stream pathways mediated by Raf, class I phosphoinositide
3-kinases (PI3K), and p38 mitogen-activated protein kinase
(MAPK). Raf can cause phosphorylation of MEK1 and
MEK?2, and then these two can cause phosphorylation of
extracellular-regulated kinase 1 (ERK 1) and ERK2. Also,
the RAS-MAPK pathway activates transcription factors
such as STAT1/3, Elk1, and Myc and translocates ERK to
the nucleus. Totally, TrkB-mediated activation of RAS-
MAPK-ERK results in cell proliferation, differentiation, and
development. Additionally, PI3K and ERK regulate VEGF
expression, a known factor of angiogenesis (Trisciuoglio
et al. 2005; Karar and Maity 2011).

PI3K/Akt pathway

SHC can also recruit GRB2-associated-binding protein 1
(Gabl), which leads to the activation of the phosphatidylin-
ositol-3-kinase (PI3K). PI3K activates many pathways and
proteins (Huang and Reichardt 2003), playing a key role in
cell survival and mitogenic signaling (Song et al. 2005).
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Fig. 1 BDNF signaling path-
ways
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Protein kinase B (Akt) is one of these proteins attached to
the inner side of the cell membrane through its interaction
with the PI3K phospholipid products. The PI3K-Akt path-
way leads to pro-survival, anti-apoptotic, and pro-migratory
effects (Mohammadi et al. 2018; Xia et al. 2016a; DeWitt
et al. 2014). Of note, Akt can exert these effects through
inhibition of Bcl-2-associated death promoter (BAD), glyco-
gen synthesis kinase (GSK-3beta), and Forkhead box protein
O1 (FOXOL1) transcription factor. Also, the PI3K-Akt path-
way activates the mammalian target of rapamycin complex
1 (mTORC1), which phosphorylates its effectors directly,
such as elF4E-binding proteins (4E-BPs), to end binding to
elF4E and S6 kinasel (S6K1), again resulting in increased
cell survival and protein synthesis (Navé et al. 1999; Aoki
et al. 2001). Finally, this pathway can transduce to reinforce
hypoxia-inducible factor 1-alpha (H1Fla), which acti-
vates TrkB expression. This positive feedback loop further
increases BDNF/TrkB’s effect on tumors (Meng et al. 2019).

PLCy pathway

The phospholipase C-gamma (PLCy) pathway causes
activation of the inositol trisphosphate (IP3) receptor to

facilitate the release of the Ca2 + from intracellular stores.
High intracellular calcium levels cause an increase in neu-
ron synaptic plasticity by increasing the CaMK activity
(Berridge and Irvine 1989). Also, PLCy allows the genera-
tion of diacylglycerol (DAG). Calcium release and DAG
formation regulate plenty of cell activities with the indi-
rect activation of PI3K and MAPK pathways and direct
activation of protein kinase C (PKC) (Reichardt 2006).
Moreover, phosphorylation of PLC by the TrkB receptor
drives another path that eventually regulates transcription
factors, such as cAMP response element-binding protein
(CREB). This axis also increases VEGF expression and
angiogenesis (Lin et al. 2014; Usui et al. 2014).

Miscellaneous

In addition to the pathways mentioned above, TrkB has
been shown to promote metastasis through suppression of
Runt-related transcription factor 3 (RUNX3) and Kelch-
like ECH-associated protein 1 (KEAPI) (Kim et al. 2016).
TrkB receptor also affects the Janus kinase 2/signal trans-
ducer and transcription 3 (JAK2/STAT3) pathways and
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Table 1 Main BDNF signaling pathways involved in cancers

BDNEF signaling pathways Cancer

PI3K/Akt Breast Cancer
PI3K/Akt Neuroblastoma
Ras-Raf Lung cancer
PAR2 Bone cancer
STAT3 Colorectal cancer
BDNF/TrkB Oral cancer
BDNF/TrkB Ovarian cancer

activates Twist-1 and -2, which are considered key regu-
lators of epithelial-mesenchymal transition (EMT) (Kim
et al. 2015a). Autocrine and paracrine regulation of TrkB
by BDNF has also been implicated in breast cancer cell
migration (Tsai et al. 2017).

Pathways, which are involved in mediating tumorigenic
effects of the BDNF-TrkB axis, are briefly listed in Table 1
and illustrated in Fig. 2.

Box 1. BDNF and TrkB distribution
in normal tissues and cells

BDNF is expressed highly in the CNS (Hing et al. 2018).
Studies in mice, rats, and pigs showed the detection of
BDNF transcripts and proteins in the hypothalamus,
hippocampus, amygdala, cerebral cortex, and adrener-
gic nuclei of the brain stem in both newborns and adults
(Cacialli et al. 2016). Also, BDNF mRNAs were detected
in different human brain regions such as the hippocam-
pus, the septum, and the amygdala (Murer et al. 1999;
Quartu et al. 2010). There are more studies on different

Fig.2 The role of BDNF in
cancer
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animals, such as amphibians, songbirds, and zebrafishes.
In songbirds, BDNF expression occurs in the brain nuclei
involved in song learning and sensorimotor integration
(Tang and Wade 2013). BDNF mRNAs and immunore-
activity were detected in the hypothalamus and optic tec-
tum in amphibians (Duprey-Diaz et al. 2002; Wang et al.
2005). The zebrafish study showed that BDNF expression
has the same distribution in adult zebrafish and larvae,
with most expression in the dorsal telencephalon, dorsal
thalamus, synencephalon preoptic area, hypothalamus,
posterior tuberculum, and optic tectum. It reported that
cells expressing BDNF mRNA were in the parenchyma
and identified as neurons. Also, it suggested that BDNF
is not expressed in glial cells under physiological condi-
tions (Cacialli et al. 2016). However, its expression in
glial cells has been reported in mammals under patho-
logical conditions specifically around amyloid plaques
or brain lesions (Murer et al. 1999; Tokumine et al.
2003; Burbach et al. 2004). BDNF expression was also
reported in peripheral tissues and cells, including the
lachrymal gland, macrophages, lymphocytes, salivary
glands (Lomen-Hoerth and Shooter 1995; Aloe et al.
1986), testis, ovary, thyroid gland, and adrenal gland
(Li and Zhou 2013; Cacialli et al. 2018; Szekeres, M.r,,
et al. 2010; Ceccanti et al. 2013). BDNF and its receptor
TrkB were detected in human testes, and the localiza-
tion of BDNF protein was in the adult Sertoli and Ley-
dig cells. Strong immunoreactivity of TrkB was detected
only in Leydig cells, while there were just some levels of
its immunoreactivity in the spermatids of some tubules
and Sertoli cells (Mutter et al. 1999). Both BDNF and
TrkB mRNAs and proteins were found in ejaculated bull
sperm. The BDNF protein was detected in the tail, neck,

-
\u

\
\
\ Inflamation factors
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and head of the sperm cells, and TrkB was concentrated
in the acrosome (Li et al. 2012). The decrease in BDNF
protein and its mRNA can be related to the pathogenesis
of some types of infertility in men (Zheng et al. 2011).
BDNF expression was reported in the ovary of several
species of mammalians, including humans (Cacialli et al.
2018). In the normal ovary, TrkB activation in oocysts by
BDNF assists extrusion of the first polar body and pre-
pares zygotes' development into preimplantation embryos
(Kawamura et al. 2005). Also, it has a role in follicles'
early development by providing proliferation signals for
granulosa cells (Paredes et al. 2004). In the rat’s adrenal
gland, it has been reported that expression of the TrkB
protein and mRNA occurred in the chromaffin cells in the
medulla of the adrenal (Kondo et al. 2010), and expres-
sion of the BDNF was localized to the subcapsular region
in the cortex of the adrenal (Szekeres et al. 2010).

MicroRNAs as mediators of the role of BDNF
in cancer

microRNA (miRNAs) serve as non-coding and short-length
RNA, which interact in the gene expression process by bind-
ing to the 3'-untranslated region of target genes. It has been
indicated that miRNAs have a controversial role in cancer
progression. They can act as tumor suppressors or tumor ini-
tiators in different contexts (Kopp et al. 2012). The evidence
(Table 2) suggests that different miRNAs target BDNF as
their downstream factor. So, the miRNA/BDNF axis's exact
effects on cancer inhibition or cancer progression remain to
be unraveled (Hu 2016).

The association between BDNF and mental
health in cancer patients

Cancer is a seriously stressful life event related to emotional
and physical distress, including depression and suicidal
behavior (Derogatis et al. 1983; Fang et al. 2012). Also,
some conditions, such as fatigue and cognitive impairment,
can be associated with cancer and its treatment (Horneber
et al. 2012; Cheung et al. 2012). Cancer patients are more
likely to have mental disorders than healthy populations
(Wang et al. 2020). Because of the crucial role of BDNF in
plasticity and the development of the brain, it is an important
factor in psychiatric diseases (Autry and Monteggia 2012).
Animal studies showed a probable relationship between
stress and low expression of BDNF mRNA in the neocortex
and hippocampus of rats (Vaidya et al. 1997; Smith et al.
1995). The serum levels of BDNF are lower in patients with
major depression, and it changes to normal after depression

treatment (Shimizu et al. 2003; Huang et al. 2008). Stressful
events are an important risk factor for depression (Kendler
et al. 1999), common among patients with advanced cancers
(Massie 2004). There is a relationship between increased
cytosine-guanine (CpG) methylation at promoter regions
of the BDNF gene and decreased BDNF synthesis in neu-
rons (Martinowich et al. 2003). The longitudinal study on
patients with breast cancer showed that the methylation
status of BDNF promoter was associated with depression
significantly at one week and one year after breast surgery.
Also, the severity of depressive symptoms was related to the
level of methylation status (Kang et al. 2015). Despite these
findings, the results of another two studies were different.
In a study on patients with lung cancer, there was no sig-
nificant difference in BDNF serum levels between patients
with depression and patients without depression (Kobay-
akawa et al. 2011). In another study on patients currently
treated with chemotherapy for advanced metastatic cancer,
BDNF did not influence clinical depression or its severity of
symptoms (Jehn et al. 2015). Suicidal behavior is common
among cancer patients, and cancer-related distress can lead
to an increased risk of suicidality in cancer patients com-
pared to the normal population (Fang et al. 2012; Walker
et al. 2008). It has been reported that expression of BDNF
was decreased in the prefrontal cortex and hippocampus of
suicidal patients (Kim et al. 2015b). Moreover, serum lev-
els of BDNF in suicidal depressed patients were lower than
in non-suicidal depressed patients (Kim et al. 2007). The
longitudinal study on patients with breast cancer showed
that higher methylation status of BDNF promoter was sig-
nificantly related to suicidal ideation one year after breast
surgery (Kim et al. 2015b). Fatigue due to cancer and its
treatments is a burdensome syndrome experienced by about
80% of patients undergoing cancer therapies (Horneber et al.
2012). The study on patients with prostate cancer showed
decreasing concentrations of BDNF with worsening fatigue
during external beam radiation therapy (EBRT); therefore,
BDNF can have a role in cancer-associated fatigue (Saligan
et al. 2016). Chemotherapy-associated cognitive impairment
(CACI) has been widely reported among breast cancer sur-
vivors (Cheung et al. 2012). Memory, executive functions,
and attention are specifically susceptible to changes induced
by chemotherapy. These changes can adversely affect the
patients’ quality of life and their daily functioning. Accord-
ing to the longitudinal study on patients with early-stage
breast cancer, there was statistically significant change in
serum levels of BDNF over time post-chemotherapy and it
was related to both self-perceived cognitive non-impaired
and impaired subgroups. Thus, BDNF levels were correlated
with self-perceived concentration deficit (Ng et al. 2017).
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BDNF as a diagnostic and prognostic
biomarker for cancer

Patients with cancer are often diagnosed at advanced stages,
and late diagnosis is partly responsible for the worse out-
come. Therefore, identifying new biomarkers with diag-
nostic/prognostic aspects would help develop the patient's
treatment process and terminate a better cancer therapy
consequence (Shang et al. 2018). Several studies investi-
gated the potential of BDNF and its receptors and signal-
ing as a biomarker for various cancers. Patani et al., in a
cohort of women with breast cancer, concluded that higher
BDNF expression in patients is significantly associated with
a worse death rate and poor prognosis. Also, they declared
that BDNF could be utilized as a prognostic marker to help
diagnose cancer in its early stages to reach better treatment
outcomes (Patani et al. 2011). Another study showed that
BDNF antisense (BDNF-AS) in human retinoblastoma could
be a prognostic biomarker because low BDNF-AS expres-
sion correlates with patients' metastatic clinical stage and
shorter overall survival; also, they utter that overexpres-
sion of BDNF-AS in Y79 and WERI-Rb-1 retinoblastoma
cells inhibit cancer migration and proliferation (Shang et al.
2018). Moraes et al. investigated the BDNF/TrkB/Akt path-
way effect in oral squamous cell carcinoma (OSCC) and
concluded that this pathway raised in malignant cells; more-
over, BDNF and Akt can be biomarkers that empower us to
the prognosis of OSCC patients in earlier stages (Moraes,
J.K.d,, et al. 2019). Many other studies have examined
BDNEF, its receptors, and signaling pathways as diagnostic
markers in cancers such as gastric cancer (Ding et al. 2018),
small cell lung cancer (Kimura et al. 2018), and prostate
cancer (Li et al. 2018). Almost all of them confirm BDNF-
related measures’ potential for cancer diagnostic/prognostic
purposes.

BDNF receptors and associated signaling
pathways as a therapeutic target in cancer

Due to the vital role that BDNF plays in various cancers, its
receptors, signaling pathways, and related molecular process
have recently been studied as a therapeutic target in several
investigations (Meldolesi 2017). Activation of these TrkB
and p75 or LNGFR evokes downstream signaling pathways
such as PI3K/Akt, Jak/STAT, PLCy, Ras-Raf-MEK-ERK,
NF-kB, AMPK/ACC, UPAR/UPA, and transactivation of
EGFR (Meng et al. 2019). As a result, these signaling path-
ways create oncogenic impacts by promoting cancer cells'
growth, survival, proliferation, anoikis, migration, epithelial
to mesenchymal transition, and chemotherapeutic sensitivity

(Odate et al. 2013; Yuan et al. 2018; Long et al. 2016a; Li
et al. 2020; Song et al. 2017).

PI3K/Akt signaling pathway associated
with the BDNF/TrkB pathway

Several studies investigated the BDNF-mediated PI3K/
Akt signaling pathway as a therapeutic method (Long et al.
2016a; Li et al. 2020; Song et al. 2017; Bao, et al. 2014;
Desmet and Peeper 2006). Xia et al. presented the first evi-
dence about the miR-107 role in suppressing non-small-cell
lung cancer (NSCLC) and metastasis by targeting BDNF and
regulating the PI3K/AKT pathway. They also state that this
approach has a potential therapeutic strategy targeting miR-
107 and BDNF for human NSCLC (Xia et al. 2016a). Ma
et al. showed that miR-496 might suppress tumorigenesis via
this pathway in non-small cell lung cancer (Ma et al. 2019).
Another study indicated that miR-382 helps as a tumor sup-
pressor in retinoblastoma patients (Song et al. 2017).

JAK-STAT signaling pathway associated with BDNF/
TrkB pathway

Activation of BDNF/TrkB pathways modulates the JAK\
STAT signaling pathways (Tajbakhsh et al. 2017); this path-
way has several critical functions in the body, e.g., affecting
gene expression, stimulating the epithelial and mesenchy-
mal transition, producing a pro-tumorigenic environment,
increasing cancer stem cell self-revival and differentiation,
and so on (Groner and Manstein 2017). Because of these
effects, JAK-STAT influences tumor generation. This route
can be considered in the treatment of cancers such as breast
cancer (Banerjee and Resat 2016), lung cancer (Harada et al.
2014), prostate cancer (Bishop et al. 2014), glioblastoma
(Kim et al. 2014), thyroid cancer (Sosonkina et al. 2014),
and head and neck squamous cell neoplasm (Kupferman,
et al. 2009). Chen et al. conducted an animal study on 37
informative specimens, including 33 NSCLC specimens and
four noncancerous lung tissues as controls. They found that
the BDNF autocrine activity stimulated by the JAK/STAT
signaling pathway causes prolonged TrkB activation and
intensifies NSCLC (Chen et al. 2016).

PLCy, Ras-Raf-MEK-ERK, and other signaling
pathways associated with the BDNF/TrkB pathway

Recent studies showed that PLC-y and Ras-Raf-MEK-ERK
mediated BDNF/TrkB pathway may trigger an oncogenic
role (Degirmenci et al. 2020; Hajicek et al. 2019); abnor-
mal changes in the Ras/Raf/MEK/ERK signaling pathway
could lead to the human colon (Zhang et al. 2018a), ovar-
ian (Jin 2020), and prostate cancer formation (Butler et al.
2017). For another example, NF-kB expression is activated
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by BDNF/TrkB and then, through the incitement of PLCy,
improves ovarian cancer cell survival by suppressing anoikis
(Siu et al. 2009). Several other signaling pathways modu-
lated by BDNF/TrkB, including AMPK/ACC, UPAR/UPA,
and transactivation of EGFR, have notable effects on carci-
nogenic processes. Like the other mentioned pathways, these
signal pathways can be used to treat various cancers (Meng
et al. 2019; Tajbakhsh et al. 2017).

pro-BDNF/p75 receptors

Besides the TrkB, p75 is a receptor for an immature form of
BDNF (pro-BDNF). The role of the p75 receptor, unlike the
TrkB, is not well clarified in neoplasms (Meng et al. 2019).
It is characterized by p75 being overexpressed in breast can-
cer (Vanhecke et al. 2011), gastric cancer (Jin et al. 2007),
bladder cancer (Khwaja and Djakiew 2003), glioblastoma
(Johnston et al. 2007), and melanoma (Marchetti et al. 2004)
which may point to an oncogenic role. This evidence sug-
gests that p75 has therapeutic potential as a tumor suppressor
(Khwaja and Djakiew 2003).

Identified microRNAs associated with BDNF
receptors and signaling pathways

Many microRNAs have been identified that are involved in
modulating BDNF receptors and related signaling pathways.
These include miR-101, miR-107, MiR- 134, miR-147, miR-
191, miR-200a/c, miR-204, miR-206, miR-210, miR-214,
miR-382, miR-496, miR-497, miR-744, miR-10a-5p, miR-
15a-5p, and so on; and these may be of value as therapeu-
tic use for cancer (Xia et al. 2016a; Long et al. 2016a; Li
et al. 2020; Song et al. 2017; Ma et al. 2019; Zhai et al.
2017; Wang et al. 2017; Ren et al. 2014a; Zhao et al. 2018;
Xu et al. 2017a; Xu et al. 2017b). For example, Gao et al.
declared that miR-107 has a tumor-suppressive effect in
breast cancer, likely via regulating its reverse downstream
target of BDNF (Gao et al. 2017). Ren et al. showed that in
gastric cancer, miR-206 is a tumor suppressor regulating
metastasis steps (Ren et al. 2014a). Li et al. stated that miR-
147 targets BDNF and negatively adjusts BDNF expression
in NSCLC. The upregulation of BDNF weakens the inhibi-
tory effect of miR-147. MiR-147 inhibits migration, cell pro-
liferation, and invasion in NSCLC by suppressing BDNF
expression (Li et al. 2020). In another study, researchers
found that miR-10a-5p is a cervical cancer suppressor regu-
lating BDNF expression (Zhai et al. 2017).

Clinical trials of targeting TrkB receptors
for the treatment of cancer

Although several potent TrkB inhibitors have been iden-
tified by scientists, they are not used in clinical trials to

@ Springer

treat cancers because it seems inhibitors that target all Trk
receptors and downstream signaling pathways are more
effective in fighting tumors. Like TrkB, TrkA and TrkC are
upregulated in several types of cancers and demonstrated
to be oncogenic as well (Lange and Lo 2018). Entrectinib,
Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and
Selitrectinib are some of the pan-Trk inhibitors utilized and
investigated in several studies for cancer treatment (Bailey
et al. 2020) (Table 3).

Doebele et al. recently showed that Entrectinib in met-
astatic NTRK fusion-positive solid tumors is a safe and
effective therapeutic choice because it induces prolonged
and clinically significant responses (Doebele et al. 2020).
Pacenta et al., in a review study, concluded that Entrectinib
acts against both ALK and TRK proteins, and it probably
has a potential therapeutic role in neuroblastoma. They
stated that it is currently under study in adults and pediatric
patients with cancer (Pacenta and Macy 2018).

Larotrectinib received its first approval in November
2018 by the USA Food and Drug Administration (FDA) to
treat adult and pediatric patients with solid tumors with an
NTRK gene fusion (Scott 2019). Before that, several studies
enrolled patients of different age groups in phase I/I1 trials;
for example, Drilon et al. enrolled and treated 55 patients,
ranging from four months to 76 years old, identified as TRK
fusion-positive cancers. They concluded that Larotrectinib
had a long-lasting antitumor effect in patients with TRK
fusion-positive cancer, regardless of their tumor type and
age (Drilon et al. 2018).

Cabozantinib is another TrkB receptor inhibitor that
inhibits ALK, c-Met, RET, ROS1, and vascular endothe-
lial growth factor 2 (VEGFR?2). Cabozantinib was approved
as an effective therapeutic intervention for prostate cancer,
thyroid cancer, and renal cell carcinoma. Also, more clinical
trials are currently being conducted to assess its role in CNS
tumors (Meng et al. 2019).

Repotrectinib, Lestaurtinib, and Selitrectinib are other
groups of pan-Trk inhibitors that have been investigated
in many studies for their therapeutic potential in cancer
patients. Some of these studies have presented promising
results (Shulman and DuBois 2020).

Conclusions

While BDNF plays a vital role in CNS development and
survival, the aberrant signaling of BDNF is implicated in
various cancers (Fig. 3). Identifying related signaling path-
ways disturbance and gene mutations as oncogenic contribu-
tors have made possibilities for therapeutic intervention. The
early clinical success of Entrectinib, Larotrectinib, Cabo-
zantinib, and others showed that BDNF and its receptors
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Table 3 microRNAs linked to the modulation of BDNF/TrkB pathways in cancer

Drug name

Number of ongo-
ing studies

NCT number

Phase of clinical trials

Cancer type

Entrectinib

Larotrectinib

Cabozantinib

Repotrectinib

8

7

146

2

NCT04302025, NCT02650401, NCT03066661,

NCT02097810, NCT03330990, NCT02568267,
NCT03961100, NCT02587650

NCT02576431, NCT03025360, NCT02637687,

NCT02122913, NCT03834961, NCT04142437,
NCT03213704

NCT02008383, NCT03542877, NCT03316586,

NCT01630590, NCT03729297, NCT02260531,
NCT01428219, NCT01663272, NCT03667482,
NCTO01834651, NCT01441947, NCT01896479,
NCT01995058, NCT04289779, NCT01588821,
NCT04477512, NCT03690388, NCT03911193,
NCT03867045, NCT01639508, NCT03964337,
NCT04230954, NCT00704730, NCT01683110,
NCT01703065, NCT01683994, NCT01522443,
NCT04412629, NCT01605227, NCT01599793,
NCT02132598, NCT03611595, NCT01812668,
NCTO01738438, NCT04446117, NCT01866410,
NCT04197310, NCT01466036, NCT03425201,
NCT03539822, NCT00215605, NCT04173338,
NCT04131543, NCT01574937, NCT04205799,
NCT03367741, NCT00940225, NCT01553656,
NCT04427787, NCT01688999, NCT01347788,
NCT02041260, NCT04400474, NCT03793166,
NCT03170960, NCT03866382, NCT00596648,
NCT01935934, NCT02036476, NCT01068782,
NCTO01100619, NCT04514484, NCT01835158,
NCT01822522, NCT01811212, NCT04204850,
NCT01708954, NCT03914300, NCT02496208,
NCTO01716715, NCT01954745, NCT03375320,
NCT01709435, NCT02867592, NCT04022343,
NCT01018745, NCT03468985, NCT04310007,
NCT04322955, NCT04211337, NCT04471428,
NCT03534804, NCT04164979, NCT04524208,
NCT04079712, NCT02761057, NCT03824691,
NCT04071223, NCT02315430, NCT02216578,
NCT03468218, NCT04442581, NCT02592356,
NCT03541902, NCT03634540, NCT02885324,
NCTO01835184, NCT04149275, NCT01866293,
NCT04338269, NCT03201250, NCT01835145,
NCT03967522, NCT01755195, NCT04134390,
NCT02302833, NCT03937219, NCT01961765,
NCT01582295, NCT00960492, NCT03612232,
NCT03755791, NCT04066595, NCT04551430,
NCT04220229, NCT03729245, NCT03943602,
NCT03299946, NCT03428217, NCT04200443,
NCT03213626, NCT01865747, NCT04300140,
NCT01908426, NCT01700699, NCT04116541,
NCT03798626, NCT02795156, NCT02243605,
NCT01979393, NCT04416646, NCT03963206,
NCT04316182, NCT03635892, NCT04454762,
NCT03354884, NCT02101736, NCT04472767,
NCT03957551, NCT04413123, NCT03744585,
NCT04510688, NCT04497038, NCT04147143,
NCT03370718, NCT03149822

NCT03093116, NCT04094610

Phase I: 3
Phase II: 3
Phase I and II:1
Unknown: 1

Phase I: 1
Phase II: 3
Phase I and 1I:1
Unknown: 2

Phase I: 24
Phase II: 86
Phase III: 15
Phase IV: 2
Phase I and II: 10
Unknown: 9

Phase I and II: 2

Metastatic solid tumors
Non-small cell lung cancer
CNS tumors

Cancers with NTRK, ROS1, or ALK gene fusions

Breast cancer
Cholangiocarcinoma
Colorectal cancer
Invasive skin melanoma
Etc

Solid tumors harboring NTRK fusion

Central nervous system neoplasm

Infantile fibrosarcoma

Recurrent acute leukemia

Locally advanced or metastatic solid
Advanced malignant solid neoplasm
Recurrent ependymoma

Recurrent Ewing sarcoma/peripheral primitive
Etc

Colorectal cancer

Breast cancer

Prostate cancer

Salivary gland cancer

Metastatic brain tumor

Pancreatic cancer

Head and neck squamous cell cancer
Recurrent head and neck squamous cell cancer
Metastatic head and neck squamous cell cancer
Medullary thyroid cancer

Bladder cancer

Lung cancer

Solid tumor (not breast or prostate cancers)
Etc

Locally advanced solid tumors
Metastatic solid tumors
Lymphoma

Primary CNS tumors
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Table 3 (continued)

Drug name Number of ongo- NCT number Phase of clinical trials Cancer type
ing studies
Lestaurtinib 10 NCT00081601, NCT01150669, NCT00242827, Phase I: 1 Prostate cancer
NCT00469859, NCT00079482, NCT00030186, Phase II: 5 Childhood acute lymphoblastic leukemia
NCT00668421, NCT00557193, NCT00586651, Phase I1I: 1 Childhood acute myeloid leukemia/other myeloid
NCT00084422 Phase I and II: 2 malignancies
Unknown: 1 Acute myeloid leukemia
Neuroblastoma
Polycythemia vera
Essential thrombocytosis
Selitrectinib 3 NCT03206931, NCT03215511, NCT04275960 Phase I: 1 Solid tumors harboring NTRK fusion
Phase I and II: 1
Unknown: 1

Breast cancer
small cell and
Non-small cell lung
cancer
Head and neck
cancer
Gallbladder

Prostate cancer

Cervical cancer

[ Glioblastoma

Fig.3 BDNF and its receptors in tumorigenesis

and signaling pathways could serve as therapeutic targets.
Also, some microRNAs have been recognized as linked to
the modulation of BDNF/TrkB pathways, such as miR-101,
miR-107, miR- 134, miR-147, and miR-191; these may be
involved in tumor formation. Despite all the evidence and
findings, there are still contradictions in some issues. More
studies, particularly well-designed clinical trials, are needed
to clarify the BDNF role in cancer progression and target it
as a therapeutic method.
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