Mohammad Hossein Rohban

Mohammad Hossein Rohban
Sharif University of Technology | SHARIF · Department of Computer Engineering

Ph.D. in Computer Engineering (Artificial Intelligence)

About

77
Publications
11,640
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,139
Citations

Publications

Publications (77)
Article
This study focuses on the spectrochemical estimation of pH and titratable acidity (TA) of apples of Fuji variety at different stages of ripening. A novel approach is proposed for near-infrared (NIR) spectral analysis using hybrid machine learning methods that combine artificial neural networks (ANN) and metaheuristic algorithms. One hundred twenty...
Article
Full-text available
Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our u...
Preprint
Full-text available
In this paper, we propose the physics informed adversarial training (PIAT) of neural networks for solving nonlinear differential equations (NDE). It is well-known that the standard training of neural networks results in non-smooth functions. Adversarial training (AT) is an established defense mechanism against adversarial attacks, which could also...
Article
Deep learning (DL) has been employed for a wide range of tasks in dentistry. We aimed to systematically review studies employing DL for periodontal and implantological purposes. A systematic electronic search was conducted on four databases (Medline via PubMed, Google Scholar, Scopus, and Embase) and a repository (ArXiv) for publications after 2010...
Preprint
Full-text available
According to the considerable growth in the avail of chest X-ray images in diagnosing various diseases, as well as gathering extensive datasets, having an automated diagnosis procedure using deep neural networks has occupied the minds of experts. Most of the available methods in computer vision use a CNN backbone to acquire high accuracy on the cla...
Preprint
Full-text available
Despite advances in image classification methods, detecting the samples not belonging to the training classes is still a challenging problem. There has been a burst of interest in this subject recently, which is called Open-Set Recognition (OSR). In OSR, the goal is to achieve both the classification and detecting out-of-distribution (OOD) samples....
Article
Chemical fertilizers are widely applied in agriculture to achieve high yield, enhance produce quality and build resistance to diseases; in our case the plant being tomato ( Solanum lycopersicum L. var. Royal). However, the acidity, size and taste of tomato fruits could change with excess nitrogen (N) application. The present study aims at the early...
Preprint
Full-text available
We aim for image-based novelty detection. Despite considerable progress, existing models either fail or face a dramatic drop under the so-called ``near-distribution" setting, where the differences between normal and anomalous samples are subtle. We first demonstrate existing methods experience up to 20\% decrease in performance in the near-distribu...
Article
Full-text available
With the advent of high-throughput assays, a large number of biological experiments can be carried out. Image-based assays are among the most accessible and inexpensive technologies for this purpose. Indeed, these assays have proved to be effective in characterizing unknown functions of genes and small molecules. Image analysis pipelines have a piv...
Article
Objective: This study aimed to present and evaluate a new deep learning model for determining cervical vertebral maturation (CVM) degree and growth spurts by analyzing lateral cephalometric radiographs. Methods: The study sample included 890 cephalograms. The images were classified into six cervical stages independently by two orthodontists. The...
Article
Full-text available
Objectives Detecting caries lesions is challenging for dentists, and deep learning models may help practitioners to increase accuracy and reliability. We aimed to systematically review deep learning studies on caries detection. Data We selected diagnostic accuracy studies that used deep learning models on dental imagery (including radiographs, pho...
Article
Patient stem cell-derived models enable imaging of complex disease phenotypes and the development of scalable drug discovery platforms. Current preclinical methods for assessing cellular activity do not, however, capture the full intricacies of disease-induced disturbances, and instead typically focus on a single parameter, which impairs both the u...
Article
Full-text available
Accurately determining the nutritional status of plants can prevent many diseases caused by fertilizer disorders. Leaf analysis is one of the most used methods for this purpose. However, in order to get a more accurate result, disorders must be identified before symptoms appear. Therefore, this study aims to identify leaves with excessive nitrogen...
Preprint
Full-text available
Machine learning models often encounter samples that are diverged from the training distribution. Failure to recognize an out-of-distribution (OOD) sample, and consequently assign that sample to an in-class label significantly compromises the reliability of a model. The problem has gained significant attention due to its importance for safety deplo...
Preprint
Deep profiling of cell states can provide a broad picture of biological changes that occur in disease, mutation, or in response to drug or chemical treatments. Morphological and gene expression profiling, for example, can cost-effectively capture thousands of features in thousands of samples across perturbations, but it is unclear to what extent th...
Article
The present study aims to estimate nitrogen (N) content in tomato (Solanum lycopersicum L.) plant leaves using optimal hyperspectral imaging data by means of computational intelligence [artificial neural networks and the differential evolution algorithm (ANN-DE), partial least squares regression (PLSR), and convolutional neural network (CNN) regres...
Preprint
With the advent of high-throughput assays, a large number of biological experiments can be carried out. Image-based assays are among the most accessible and inexpensive technologies for this purpose. Indeed, these assays have proved to be effective in characterizing unknown functions of genes and small molecules. Image analysis pipelines have a piv...
Article
Autoencoders have recently been widely employed to approach the novelty detection problem. Trained only on the normal data, the AE is expected to reconstruct the normal data effectively while failing to regenerate the anomalous data. Based on this assumption, one could utilize the AE for novelty detection. However, it is known that this assumption...
Article
Full-text available
In recent years, farmers have often mistakenly resorted to overuse of chemical fertilizers to increase crop yield. However, excessive consumption of fertilizers might lead to severe food poisoning. If nutritional deficiencies are detected early, it can help farmers to design better fertigation practices before the problem becomes unsolvable. The ai...
Preprint
Full-text available
Identifying chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our broad...
Preprint
Full-text available
Adversarial training tends to result in models that are less accurate on natural (unperturbed) examples compared to standard models. This can be attributed to either an algorithmic shortcoming or a fundamental property of the training data distribution, which admits different solutions for optimal standard and adversarial classifiers. In this work,...
Preprint
Full-text available
Patient stem cell-derived models enable imaging of complex disease phenotypes and the development of scalable drug discovery platforms. Current preclinical methods for assessing cellular activity do not, however, capture the full intricacies of disease-induced disturbances, and instead typically focus on a single parameter, which impairs both the u...
Article
Introduction In recent years, artificial intelligence (AI) has been applied in various ways in medicine and dentistry. Advancements in AI technology show promising results in the practice of orthodontics. This scoping review aimed to investigate the effectiveness of AI-based models employed in orthodontic landmark detection, diagnosis, and treatmen...
Article
Full-text available
Improper usage of nitrogen in cucumber cultivation causes nitrate accumulation in the fruit and results in food poisoning in humans; therefore, mandatory evaluation of food products becomes inevitable. Hyperspectral imaging has a very good ability to evaluate the quality of fruits and vegetables in a non-destructive manner. The goal of the present...
Preprint
Full-text available
Recent improvements in deep learning models and their practical applications have raised concerns about the robustness of these models against adversarial examples. Adversarial training (AT) has been shown effective to reach a robust model against the attack that is used during training. However, it usually fails against other attacks, i.e. the mod...
Preprint
Full-text available
Making deep neural networks robust to small adversarial noises has recently been sought in many applications. Adversarial training through iterative projected gradient descent (PGD) has been established as one of the mainstream ideas to achieve this goal. However, PGD is computationally demanding and often prohibitive in case of large datasets and...
Preprint
Full-text available
Early detection of dementia through specific biomarkers in MR images plays a critical role in developing support strategies proactively. Fazekas scale facilitates an accurate quantitative assessment of the severity of white matter lesions and hence the disease. Imaging Biomarkers of dementia are multiple and comprehensive documentation of them is t...
Article
Full-text available
To achieve healthy and optimal yields of agricultural products, the principles of nutrition must be observed and appropriate fertilizers must be applied. Nutritional deficiencies or overabundance reduce the quality and yield of the products. Thus, their early detection prevents physiological disorders and associated diseases. Most research efforts...
Preprint
Full-text available
Unsupervised representation learning has proved to be a critical component of anomaly detection/localization in images. The challenges to learn such a representation are two-fold. Firstly, the sample size is not often large enough to learn a rich generalizable representation through conventional techniques. Secondly, while only normal samples are a...
Preprint
Full-text available
Autoencoder (AE) has proved to be an effective framework for novelty detection. However, they do not typically show promising results on other kinds of real-world datasets, which are exhibiting high intra-class variations, such as CIFAR-10. AEs are not generally able to learn a latent space that solely captures common features of the normal class,...
Preprint
Full-text available
Adversarial robustness has proven to be a required property of machine learning algorithms. A key and often overlooked aspect of this problem is to try to make the adversarial noise magnitude as large as possible to enhance the benefits of the model robustness. We show that the well-established algorithm called "adversarial training" fails to train...
Preprint
Full-text available
Autoencoders (AE) have recently been widely employed to approach the novelty detection problem. Trained only on the normal data, the AE is expected to reconstruct the normal data effectively while fail to regenerate the anomalous data, which could be utilized for novelty detection. However, in this paper, it is demonstrated that this does not alway...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Segmenting the nuclei of cells in microscopy images is often the first step in the quantitative analysis of imaging data for biological and biomedical applications. Many bioimage analysis tools can segment nuclei in images but need to be selected and configured for every experiment. The 2018 Data Science Bowl attracted 3,891 teams worldwide to make...
Article
Full-text available
Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ dispersion and covariances to population averages, in the context of image-based profiling. We find that data fusion is critical for these metr...
Preprint
Full-text available
Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features' dispersion and covariances to population averages, in the context of image-based profiling. We find that data fusion is critical for these metr...
Article
Full-text available
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microsco...
Data
Supporting and supplemental data for the figures and experiments. (A) List of all the 323 constructs used in the experiment along with the target transcript and their public clone ID. (B) Replicate correlation is higher in the constitutively active mutant allele compared to the wild-type allele, except for AKT3_E17K. Constitutively active mutant an...
Article
We hypothesized that human genes and disease-associated alleles might be systematically functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological profiles, which grouped into biologically meaningful gene clusters consisten...
Preprint
Full-text available
We hypothesized that human genes and disease-associated alleles might be systematically functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological profiles, which grouped into biologically meaningful gene clusters consisten...
Article
During recent years, active learning has evolved into a popular paradigm for utilizing user's feedback to improve accuracy of learning algorithms. Active learning works by selecting the most informative sample among unlabeled data and querying the label of that point from user. Many different methods such as uncertainty sampling and minimum risk sa...
Article
Full-text available
We are motivated by problems that arise in a number of applications such as Online Marketing and Explosives detection, where the observations are usually modeled using Poisson statistics. We model each observation as a Poisson random variable whose mean is a sparse linear superposition of known patterns. Unlike many conventional problems observatio...
Conference Paper
We are motivated by many applications such as problems that arise in online marketing applications, where the observations are governed by non-homogeneous Poisson models. We analyze the performance of a Maximum Likelihood (ML) decoder. We prove consistency and show an exponential rate of converge for sparse recovery in the high-dimensional Poisson...
Article
Full-text available
The simplicial condition and other stronger conditions that imply it have recently played a central role in developing polynomial time algorithms with provable asymptotic consistency and sample complexity guarantees for topic estimation in separable topic models. Of these algorithms, those that rely solely on the simplicial condition are impractica...
Conference Paper
Full-text available
This paper presents a new Compressive Sensing (CS) scheme for detecting network congested links. We focus on decreasing the required number of measurements to detect all congested links in the required number of measurements to detect all congested links in the context of network tomography. We have expanded the LASSO objective function by adding a...
Article
Full-text available
We are motivated by problems that arise in a number of applications such as explosives detection and online Marketing, where the observations are governed by Poisson statistics. Here each observation is a Poisson random variable whose mean is a sparse linear superposition of known patterns. Unlike many conventional problems observations here are no...
Article
Full-text available
We present algorithms for topic modeling based on the geometry of cross-document word-frequency patterns. This perspective gains significance under the so called separability condition. This is a condition on existence of novel-words that are unique to each topic. We present a suite of highly efficient algorithms based on data-dependent and random...
Article
Full-text available
We study high-dimensional asymptotic performance limits of binary supervised classification problems where the class conditional densities are Gaussian with unknown means and covariances and the number of signal dimensions scales faster than the number of labeled training samples. We show that the Bayes error, namely the minimum attainable error pr...
Article
Full-text available
A new geometrically-motivated algorithm for nonnegative matrix factorization is developed and applied to the discovery of latent "topics" for text and image "document" corpora. The algorithm is based on robustly finding and clustering extreme points of empirical cross-document word-frequencies that correspond to novel "words" unique to each topic....