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Aims: Traumatic brain injury (TBI) remains one of the main clinical problems globally and is a common cause of
death among youth. Cognitive defects such as thinking, memory and behavior or mental health disorders are
considered as the most frequent effects of severe and moderate TBI. It has been reported that ellagic acid (EA),
a natural polyphenol, exhibits protective effects against oxidative damage. This study was performed to examine
the EA preventive effects on cognitive impairments, long-term potentiation (LTP) deficits in hippocampus and
brain inflammation induced by diffuse TBI in rat.
Main methods: Subchronic oral administration of 100 mg/kg EA, 7 consecutive days before induction of trauma
(once daily) was used to elucidate the EA effects on passive avoidance memory and hippocampal LTP following
TBI. To illustrate the possible mechanisms related to the preventive effects of EA on brain function following TBI,
brain content of IL-1β, IL-6 and blood–brain barrier (BBB) permeability were determined.
Key findings: EA pretreatment significantly (P b 0.001) prevented TBI-inducedmemory and hippocampal LTP im-
pairments in rat. Furthermore TBI induced elevation in brain content of IL-1β, IL-6 and BBB permeability were
decreased significantly (P b 0.001) due to EA pre-treatment.
Significance:Our findings suggest that EA can prevent cognitive and LTP deficits and also prevent brain inflamma-
tion following TBI.
© 2015 Elsevier Inc. All rights reserved.
Introduction

Traumatic brain injury (TBI) remains one of the main clinical prob-
lems globally and is a common cause of death among youth [17,25]. In
the USA, about 1.7 million people survive a TBI annually, among
whom275,000 are hospitalized [17]. TBI occurs in two stages: 1) prima-
ry injury, indicated by destruction of the brain tissue and blood vessels,
which initiates complex physiological processes involving cellular and
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molecular events; 2) secondary injury, the processes that occurs hours
to days after TBI which lead to further injury on neurons and axons [2,
4]. Therapeutic policies have focused on preventing secondary injury
[25]. Inflammation has amain role in secondary brain injury [50]. Previ-
ous studies have shown many examples of cytokine production after
TBI [25].

Cognitive defects such as thinking,memory, and reasoningproblems
as well as behavior or mental health disorders are among the most fre-
quent sequelae after severe and moderate TBI [3,24,72]. The hippocam-
pal areas especially dentate gyrus (DG) neurons are vulnerable to TBI
[27]. It has been shown that neuronal death in the DG following TBI
leads to learning and memory impairments in adult rodents [26].
Long-term potentiation (LTP) in hippocampal synapses has been pro-
posed as a model for the cellular changes that underlie learning and
memory [64].
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Naturally occurring polyphenols are known as capable alterna-
tives for use as pharmaceuticals ([38]). Previous studies suggested
a relation between phenolic food intake and the protection against
several diseases [41]. Polyphenols are plant metabolism products
and they have antioxidant functions [32,43]. Ellagic acid (EA)
(2,3,7,8-tetrahydroxybenzopyrano[5,4,3-cde]benzopyran-5-10-dione)
is a polyphenol present in many plant species such as pomegranate
plants, grapes, raspberries, blackberries, strawberries and walnuts [14,
75]. Several line of studies have shown that EA has different pharmaco-
logical effects such as anti-bacterial, anti-inflammatory, immune regu-
latory and inhibition of tumorigenesis and also it is considered as a
potent antioxidant [6,12,18].

The pretreatment approach has long been successfully employed for
the neuroprotection against TBI [36,46,79,80]. This recognition has led
us to choose the pretreatment strategy in this study. To the best of our
knowledge, there is no published scientific report on the effects of EA
on brain inflammation, learning and memory deficits induced by TBI.
Therefore, the present study intended to examine the preventive effects
of EA on avoidance memory and hippocampal LTP deficits induced by
closed head injury and determined whether these neuroprotective
effects were modulated through anti-inflammatory mechanisms in the
brain.

Materials and methods

Animals and experimental groups

The Ahvaz Jundishapur University of Medical Sciences Institutional
Animal Care andUse Committee approved all experiments, and the pro-
cedures followed the NIH Guide for the care and use of experimental
animals [20]. Adult male Wistar rats (250 ± 20 g) purchased from
Ahvaz Jundishapur University of Medical Sciences Animal House
(Ahvaz, Iran) were housed in clear cages in temperature (22 ± 2 °C)
and humidity (50%) controlled conditions and 12/12 h light/dark
cycle. Animals had free access to food andwater ad libitum and allowed
to adapt to the laboratory conditions for at least 7 days before the study.
The rats were randomly assigned to Control, Sham-injury, Veh+TBI
and EA+TBI groups (n = 24 for each group). Both Sham-injury and
Veh+TBI rats received EA vehicle (10% DMSO in normal saline in a
total volume of 10 ml/kg, once daily) orally for 7 consecutive days be-
fore induction of trauma (Gavage needle about 11 cm long with a 15°
curved blunt ended needle). Animals in the Sham-injury group
underwent TBI procedures but were not exposed to TBI while the
Veh+TBI animals were exposed. Control and EA+TBI rats orally re-
ceived a dose of 100 mg/kg EA and 10% DMSO in normal saline as sol-
vent (in a total volume of 10 ml/kg, once daily) for 7 consecutive days
before induction of trauma using the Gavage needle (as described
above). Animals in the EA+TBI group were exposed to trauma while
the rats in the Control group did not undergo any procedure (naive
rats). To habituate the animals to oral administration, all rats received
normal saline (10ml/kg, by gavage) daily for three days prior to the ex-
periments. We used 8 rats in each experimental group to perform pas-
sive avoidance memory and electrophysiological tests, 8 rats for
determination of blood–brain barrier permeability and 8 rats for deter-
mination of brain IL-1β and IL-6 content. Every possible effortwasmade
to minimize animal suffering.

Chemicals

We purchased ellagic acid (purity≥ 95%), Evans blue, dimethyl sulf-
oxide (DMSO) and Triton X-100 from Sigma-Aldrich Co. (St. Louis, MO,
USA), protease inhibitor cocktail from Roche (Basel, Switzerland),
T-PER™ Tissue Protein Extraction Reagent from Pierce Biotechnology
Inc. (Rockford, IL, USA), and aBio-Radprotein assay kit fromBio-Rad Lab-
oratories (Hercules, CA, USA). Tris base, sodiumphosphate, sodium chlo-
ride, potassium phosphate and potassium chloride were of analytical
grade and obtained from Merck Co. (Darmstadt, Germany). EA was
dissolved in 10% DMSO in normal saline. Drug was freshly prepared so
that the necessary dose could be given in a total volume of 10 ml/kg
orally route. EA dose and administration schedules were selected based
on our pilot studies and previous reports [22,54,66].

Induction of brain trauma

Tracheal intubationwas performedwhile the ratswere under an ap-
propriate level of ketamine/xylazine (50/5 mg/kg, IP) anesthesia before
TBI [60]. Then animals in the Veh+TBI and EA+TBI groups were ex-
posed to diffuse traumatic brain trauma using an instrument made in
the Physiology Research Center of Ahvaz Jundishapur University of
Medical Sciences with theMarmaroumethod [29,39]. As it is instructed
in this method, a 200 g weight was dropped from a 2-m height through
a free-falling tube onto the head of an anesthetized animal while a steel
disk was attached to the animal's skull. After brain trauma induction,
the animal was immediately connected to an animal respiratory pump
(Ugo Basile, Italy) and as soon as it was spontaneously breathing, it
was disconnected from the ventilator and returned to the cage to be
cared for [30].

Passive-avoidance test

A step-through latency test in a shuttle-box was performed to eval-
uate the effects of subchronic EA pretreatment on avoidancememory in
rats. The shuttle-box apparatus (Borj sanat, Tehran, Iran) consisted of
two equally sized (200 × 250 × 200 mm) compartments, a lighted
one and a dark one with two independent grid floors. The compart-
ments were separated by a guillotine door. As an accommodation
session, the animal was placed in the lighted chamber while the guillo-
tine door was opened and allowed to explore both compartments for
10 min and then removed. After 10 min the animal was again placed
in the lighted compartment facing away from the closed guillotine
door and 10 s later the door was elevated and the entering delay of rat
into the dark compartmentwas recorded as initial latency (IL). Immedi-
ately after entering the dark chamber, the guillotine door was closed
and an unavoidable foot-shock (75 V, 0.2 mA, 50 Hz for 3 s) was deliv-
eredusing a shock generator. Twenty-four hours after the initial session,
the retention test was carried out. In this session the animal was again
placed in the lighted compartment and the step-through latency (STL)
was measured. The max latency was recorded as 300 s [34,38].

Electrophysiological studies

Surgical procedure
Forty-eight hours after TBI induction, the animals were prepared for

electrophysiological recordings. They underwent an appropriate level of
ketamine/xylazine (50/5 mg/kg, IP) anesthesia and their heads were
mounted on a stereotaxic device for surgery (electrode implantation
and EPSP recording) [60]. The animal's body temperature was main-
tained at 36.5 ± 0.5 °C using a heating pad. The animal's skull was
drilled and small holes were made to implant the electrodes. A pair of
stimulating metal wire microelectrode (stainless steel, 100 μm in diam-
eter, tip separation 500 μm, CFW, USA) and a pair of recording metal
wire microelectrodes (tungsten, 50 μm in diameter, tip separation
1 mm, CFW, USA) were implanted into the perforant pathway (PP) at
AP = −7.5 mm from bregma; ML = −4 mm; DV = −3.9 mm from
dura and granular cells of DG with stereotaxic coordination of
AP = −3.8 mm from bregma; ML = −2.3 mm; DV = −3.5 mm
from dura, respectively [49]. In order to decrease brain tissue damage,
both electrodes were lowered very slowly (0.1 mm/30 s) [34].

Electrophysiological recordings and LTP induction
Following the stimulation of PP, the field potential recordings were

obtained in DG granular cells. The PP was stimulated every 30 s. The



Table 1
Veterinary coma scale.
Adapted from [31].

Variable Score

Motor
function

Normal movement 8
Mildly drowsy with spontaneous, purposeful movements 7
Lethargic, unable to stand, but maintains sternal recumbency 6
Lethargic, withdraws to pinch, and lifts head with attention to
visual stimuli; no sternal recumbency

5

Withdraws or pedals to pinch 4
Spontaneous pedaling 3
Extensor posturing (spontaneous or to stimuli) 2
Flaccid to stimuli 1

Eye
function

Open 4
Open on stimulation 3
Normal eyelid reflexes 2
No eyelid response to stimuli 1

Respiration Normal 3
Ataxic 2
Apneic 1
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electrodes were placed in a way such that themax field excitatory post-
synaptic potential (fEPSP) can be evoked. The voltage difference
between the peaks of the first positive wave and the first negative de-
flection was determined as the post-tetanic stimulation population
spike (PS) amplitude. The max slope between the starting point of
fEPSP and the first positive peak was considered as the fEPSP slope.
The Biochart software (Biochart software version 1.53, Science Beam
Co., Iran) was used to amplify (1000×), filter (0.1 Hz to 3 kHz), digitize,
record, and analyze the extracellular field potentials. A high-frequency
stimulation (HFS) protocol consists of 10 bursts of 20 stimuli (0.2 ms)
at 400 Hz, and a 10 s interburst interval [37,69] was used to induce
LTP. The stimulus intensity that was able to elicit a PS amplitude and
fEPSP slope of about 80% of max response was used as the HFS stimulus
intensity. Different intensities were used to obtain the input/output
(I/O) curve and a stimulus intensity which produced 40% of max
response was defined as the baseline intensity (before and after HFS)
for LTP recording [19,69]. LTP was recorded for periods of −1, 0, 0.25,
0.5, 1, and 3 h after the HFS [34,59,69].

Brain sample collection and ELISA assays
Animals were anesthetized with ketamine/xylazine (as described

above) 48 h after trauma, and were perfused intracardially with phos-
phate buffered saline (pH = 7.4) for 1 min. Animal brains were imme-
diately removed and frozen in a freezer (−80 °C) until assay. Each brain
wasweighed and homogenized in the T-PER™ Tissue Protein Extraction
Reagent (Pierce)with 0.5% Triton X-100, 150mMNaCl, 50mMTris, and
Roche protease inhibitor cocktail (500 mg tissue per 2 ml of the
reagent). Samples were then shaken for 90 min using a shaker and the
suspensions were centrifuged (4000 ×g for 15 min at 4 °C) and the
supernatants were collected. To confirm that an equal amount of
protein fromeach samplewasused for ELISA assays, theBio-Rad protein
assay kit (based on the Bradford dye-binding method) was used to
estimate the protein content of the supernatants [8,61,68].

ELISA kits for IL-1β and IL-6 were purchased from eBioscience
(San Diego, USA) and the assay was performed according to the
manufacturer's guidelines. The concentrations of IL-1β and IL-6 were
quantified as picograms of antigen per milliliter of the supernatant.

Determination of blood–brain barrier permeability
Blood–brain barrier (BBB) permeability was determined through

measuring extravascular Evans blue dye and using a spectrophotometer
device. 48 h after trauma, brain vascular permeability wasmeasured by
the injection of Evans blue dye via the femoral vein [28,44]; at 47 h after
trauma, animals were anesthetized with ketamine/xylazine (as de-
scribed above), next, 20 mg/kg Evans blue dye 2% (1 ml/kg) was
injected through the femoral vein. One hour after injection (at 48 h
after trauma), thorax was opened and descending aorta was clipped.
Then, 200–300ml isotonic saline solution was infused into the left ven-
tricle for 20 min to remove intravascular Evans blue dye. For this pur-
pose, jugular vein was cut bilaterally and infusion was continued until
complete removal of Evans blue [28,44]. The rats were decapitated
and each brain was immediately removed and homogenized using
phosphate buffered saline. In order to precipitate the protein, trichloro-
acetic acid was added. Then each sample was cooled and centrifuged.
The supernatant was taken and the spectrophotometer was used to
measure the absorbance of Evans blue at 620 nm. The amount of color
based on μg/mg brain tissue was calculated by the following formula:

Evans blue dye (μg) in brain tissue (g)=(13.24×20× absorbance) /
tissue weight. A higher amount of dye in brain tissue represents more
vascular permeability and more severe blood–brain barrier disruption
[28,44].

Evaluation of neurological outcomes
Neurological outcome was assessed based on veterinary coma scale

(VCS) [28,31]. In this scale a total score (3–15) is obtained by adding the
scores of motor response (1–8), visual response (1–4) and respiratory
response (1–4) (Table 1) [31]. A higher score represents better neuro-
logical outcome. In the present study, neurological outcomes were
also assessed at −1, 1, 4, 24, and 48 h post trauma injury. Based on
the VCS score, the severity of head injury can be categorized; mild
(13–15), moderate (9 –12), and severe (8 or less) [31,52,53,61,65]
(Table 1).

Statistical analysis
The results are presented asmean±SEMand the datawere analyzed

by one-way ANOVA followed by Tukey's post-hoc test. Neurological
scores were analyzed using repeatedmeasures one-way ANOVA follow-
ed by Tukey's post hoc test. LTP data were analyzed using repeatedmea-
sures two-way ANOVA followed by Tukey's post hoc test. P-values less
than 0.05 were considered to be statistically significant. Statistical
analysis was performed using GraphPad Prism 6 software (GraphPad
Software Inc., San Diego, USA).

Results

According to data analysis, there were no differences among the
Control and Sham-injury groups in all experimental parameters (data
not shown). Therefore, to verify the results, comparisons between the
Control group and the other groups were conducted.

Passive avoidance memory

Fig. 1 shows the preventive effects of subchronic pretreatment of EA
on initial latency (IL) and step-through latency (STL) in TBI rats. One-
way ANOVA analysis followed by Tukey's post-hoc test revealed that
after oral administration of EA (100 mg/kg) for 7 consecutive days
before induction of trauma (once daily), there were no differences in
IL between groups [F(2,21) = 1.142, P b 0.38]. STL significantly
increased in TBI rats pretreated with EA [F(2,21) = 117.1, P b 0.001,
for Control (257.48 ± 16.10) vs. Veh+TBI (32.65 ± 3.28) and
F(2,21)= 86.61, P b 0.001, for EA+TBI (209.90± 12.09) vs. Veh+TBI)].

Electrophysiology

PS amplitude
Fig. 2A shows the PS amplitude in all tested groups. Repeated mea-

sures two-way ANOVA followed by Tukey's post-hoc test indicated
that PS amplitude during 0.25, 0.5, 1, and 3 h after HFS in Veh+TBI
has decreased significantly [(F(10,105) = 17.37, P b 0.001)] vs. Control
group. Oral administration of EA (100 mg/kg) for 7 consecutive days
before TBI induction (once daily) reversed PS amplitude significantly
at all recording times [F(2,21) = 20.85, P b 0.001] compared to
Veh+TBI.



Fig. 1. Initial latency and step-through latency (memory retention) 48 h after TBI. Memory retention was impaired in the Veh+TBI group (***p b 0.001 vs. Control). As seen in Fig. 1, oral
administration of EA (100mg/kg) for 7 consecutive days before TBI induction (once daily) reversedmemory 48 h after TBI (###p b 0.001 vs. Veh+TBI). Values are represented asmean±
SEM, one-way ANOVA followed by post-hoc Tukey's test, n = 8.

A

C

B

Control
Before HFS

Veh+TBI
Before HFS

EA+TBI
Before HFS

Control
15 min a�er HFS

Veh+TBI
15 min a�er HFS

EA+TBI
15 min a�er HFS

Fig. 2. Population spike amplitude (A), fEPSP slope (B) and sample traces recorded (C) from the hippocampal dentate gyrus area before and after high frequency stimulation. PS amplitude
and fEPSP slopewere impaired in the Veh+TBI group (***p b 0.001 vs. Control). Fig. 2 shows that oral administration of EA (100mg/kg) for 7 consecutive days before TBI induction (once
daily) reversed amplitude and slope 48 h after TBI (###p b 0.001 vs. Veh+TBI). Values are represented as mean ± SEM, RM-ANOVA followed by post-hoc Tukey's test, n = 8.
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PS slope
Fig. 2B indicates the effects of oral administration of EA (100mg/kg)

for 7 consecutive days before TBI induction (once daily) on PS slope in
TBI rats. Repeated measures two-way ANOVA analysis followed by
Tukey's post-hoc test revealed that in all LTP recording times PS slope
significantly decreased in the Veh+TBI group [(F(10,105) = 19.43,
P b 0.001)] vs. Control, while in the EA+TBI group it was increased
significantly [(F(2,21) = 24.79, P b 0.001)] vs. Veh+TBI.

Sample recorded traces
Sample recorded traces from hippocampal DG area before and after

the 400 Hz tetanic stimulation are represented in Fig. 2C.

Brain IL-1β content
Fig. 3 shows the effects of oral administration of EA (100mg/kg) for

7 consecutive days before TBI induction (once daily) onwhole brain tis-
sue IL-1β content. One-way ANOVA analysis followed by Tukey's post
hoc test revealed a significant increase of IL-1β in the Veh+TBI group
[(F(2,21) = 86.79, P b 0.001)] vs. Control, while in the EA+TBI group
it was decreased significantly [(F(2,21) = 86.79, P b 0.001)] vs.
Veh+TBI.

Brain IL-6 content
Fig. 4 shows the effects of oral administration of EA (100mg/kg) for

7 consecutive days before TBI induction (once daily) on whole brain
tissue IL-6 content. One-way ANOVA analysis followed by Tukey's post
hoc test revealed a significant increase of IL-6 in the Veh+TBI group
[(F(2,21) = 65.87, P b 0.001)] vs. Control, while in the EA+TBI group
it was decreased significantly [(F(2,21) = 65.87, P b 0.001)] vs.
Veh+TBI.

Brain Evans blue dye content
Fig. 5 shows the amount of brain Evans blue dye content in the stud-

ied groups. A higher amount of Evans blue dye in brain tissue represents
more vascular permeability and more severe blood–brain barrier dis-
ruption. One-way ANOVA analysis of data and Tukey's post-hoc test
indicated that the amount of Evans blue dye in the Veh+TBI group in-
creased significantly [(F(2,21) = 63.49, P b 0.001)] compared to the
Control group, while there was a significant decrease in the EA+TBI
[(F(2,21) = 63.49, P b 0.001)] vs. the Veh+TBI group.

Evaluation of neurological outcomes

As seen in Fig. 6, according to repeated measures one-way ANOVA
analysis followed by Tukey's post-hoc test, the score of neurological out-
comes in the Veh+TBI groupwas significantly decreased [(F(10,105)=
49.73, P b 0.001)] vs. Control in all recording times after TBI. The score of
neurological outcomes in the EA+TBI group at 1, 4, 24 and 48 h after TBI
Fig. 3. This figure indicates the brain tissue content of IL-1β 48 h after TBI. IL-1βwas elevated si
consecutive days before induction of TBI (once daily) reversed IL-1β 48 h after TBI (###p b 0.00
post-hoc Tukey's test, n = 8.
showed a significant increase [(F(2,21)=275.5, P b 0.001)] compared to
Veh+TBI.

Discussion

The present study intended to evaluate the preventive effects of sub-
chronic pretreatment of EA, a natural polyphenolic compound, on brain
function such as cognitive andneurological outcome, induction andper-
sistence of LTP at the DG area of hippocampus and brain tissue inflam-
mation after TBI in rats. TBI produced a marked impairment in passive
avoidance memory, which was associated with a significant decrease
in hippocampal LTP, as well as impaired BBB permeability and elevated
levels of IL-1β and IL-6 in brain tissue. The main findings of this study
indicate that pretreatment with EA: 1) significantly improved passive
avoidance memory; 2) significantly reversed the PS amplitude and
slope toward Control; 3) significantly restored BBB permeability; 4) sig-
nificantly recovered brain content of IL-1β and IL-6 to normal levels:
and 5) significantly restored neurological outcome to normal level.

The hippocampus, a critical region for memory formation, is one of
the most susceptible parts of the brain during TBI. LTP as a cellular
mechanism of memory is a long lasting enhancement in synaptic plas-
ticity, and much focus on LTP has been in the hippocampus neural cir-
cuits [13,47,63]. Following TBI in rat, a stable incapability to induce
LTP has been shown in several models of TBI [51,58]. Weight-drop inju-
ry (closed head injury), fluid percussion injury (FPI), cortical contusion
injury (CCI), and in vitro TBI models such as biaxial stretch are themost
common models to induce TBI in rodents [10,40]. Closed head injury
was used in the present study because this model leads to a diffuse ax-
onal injury in rodents, the same happens in humans following TBI [1].

Our data indicated that EA prevented the increase of brain contents
of IL-1β and IL-6 which may lead to maintenance of hippocampal LTP,
restoration of neurological behaviors and also repair of the BBB. These
findings are in consistent with Chao et al.'s findings about the effect of
EA, which efficiently decreases the expression of inflammatory cyto-
kines including IL-1β and IL-6 in rats and shows its anti-inflammatory
activity [11].

Cytokines are found at low concentrations in the nervous system but
rapidly increase in pathological conditions such as brain trauma [5]. As
shown in our results, the brain contents of IL-1β and IL-6were increased
after TBI (Fig. 3, Fig. 4). Recent studies indicate that IL-1β and IL-6 are in-
volved in themolecular and cellular mechanisms of learning andmem-
ory [5,77]. Both neurogenesis andmemory in thehippocampus depends
on cytokines [5]. IL-6 leads to a significant reduction in LTP expression
which affects hippocampal synaptic plasticity [67]. IL-6 inhibitory ef-
fects are related to the activation of the interleukin 6 signal transducer
(IL6ST). The phosphorylation of IL6ST leads to its association with
Janus kinase (JAK) tyrosine-protein kinases and signal transducer and
activator of transcription 3 (STAT-3) which are together with an
gnificantly after TBI (***p b 0.001 vs. Control). Oral administration of EA (100mg/kg) for 7
1 vs. Veh+TBI). Values are represented as mean ± SEM, one-way ANOVA followed by



Fig. 4. This figure shows the brain tissue content of IL-6 48 h after TBI. IL-6 was elevated significantly after TBI (***p b 0.001 vs. Control). Oral administration of EA (100 mg/kg) for 7
consecutive days before induction of TBI (once daily) reversed IL-6 48 h after TBI (###p b 0.001 vs. Veh+TBI). Values are represented as mean ± SEM, one-way ANOVA followed by
post-hoc Tukey's test, n = 8.
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inhibition of themitogen activated protein kinase (MAPK)/extra cellular
signal-regulated kinase (ERK) pathway and has no significant effects on
the stress-activated protein kinases (SAPK)/jun amino-terminal kinases
(JUK) pathway [67]. As seen in our results the decreased fEPSP slope and
PS amplitude observed in rats with TBI were associated with elevated
levels of IL-6 in brain tissue (Fig. 4). The mechanisms that regulate
IL-6 expression in the hippocampus have yet to be elucidated [76].
Many activities of IL-1β on glial cells are mediated by IL-6 [70].

It is clear that IL-1β has a role as a neuromodulator in the hippocam-
pus [62] and themaintenance of LTP in hippocampus depends on it [15,
55,73]. Although IL-1β receptors are found in all parts of the brain, the
highest densities of these receptors are in the hippocampus and they
are localized in the granular neurons of DG [7,48,56]. It has been
shown that synaptic transmission enhancement which happens during
LTP is closely linked to AMPA-type glutamate receptor (AMPAR) activi-
ties [33]. Furthermore previous studies have shown the role of IL-1β as
an N-methyl-D-aspartate receptor (NMDAR) modulator [74]. On the
other hand it has been suggested that AMPAR behavior is modulated

via activation of NMDARs and its associated Ca2þ influx [9,21,35].

IL-1β raises the Ca2þ influx through NMDA receptors by activating Src
kinases which leads to NR2A/B subunit phosphorylation [74]. Elevated
levels of IL-1β cause memory impairment [23]. It has been suggested
that three events affecting the magnitude of LTP, involving glutamate
releasemodulation, the function of NMDARs and calcium channel influx
can be influenced by IL-1β [45]. Our observations illustrated that inhibi-
tion of hippocampal LTP was associated with a significant increase in
brain content of IL-1β (Fig. 3). The results of our study have shown
that subchronic administration of EA before TBI induction maintained
the hippocampal LTP due to a significant decrease in brain content of
Fig. 5. Brain tissue Evans blue dye content 48 h after TBI. Evans blue dye contentwas increased s
consecutive days before induction of TBI (once daily) reversed it 48 h after TBI (###p b 0.001 vs.
Tukey's test, n = 8.
IL-1β and IL-6. As shown in Fig. 3 and Fig. 4, EA pretreatment reduces
brain content of IL-1β and IL-6 to normal levels. Together with other
parts of our results, the effect of EA on LTP recoverymaydirectly depend
on its anti-inflammatory effects through decreasing the elevated levels
of IL-1β and IL-6.

To our knowledge, this is the first study using EA to prevent synaptic
plasticity impairment following TBI. The results of the present study sug-
gest that EA may act as a potent neuroprotective component against TBI.
Our results indicate that hippocampal LTP was recovered to control
levels. The decreased fEPSP slope and PS amplitude observed in rats
with TBI were significantly prevented in EA pretreated animals. Accord-
ing to our behavioral data and neurological outcome scores, EA pretreat-
ment improves the neurological behaviors. Furthermore, in EApretreated
rats the BBB function was normal and the brain content of IL-1β and IL-6
had no significant changes when compared with the Control group. Our
data indicated that EA decreases brain content of IL-1β and IL-6 (com-
pared with TBI induced rats) which may lead to restoring hippocampal
LTP, restoring neurological behaviors and also maintenance of BBB,
which may show the effects of EA on astrocyte recovery due to its anti-
inflammatory actions. Although several reports have indicated different
effects of EA such as antimutagenic, anti-inflammatory, antiviral, anticar-
cinogenic, antioxidant and free-radical scavenging activities [16,42,57,
71,78], the exact mechanisms by which EA induces these effects have
not been fully revealed.

Conclusion

Our findings suggest that EA is able to prevent cognitive, learning
and memory deficits induced by TBI and prevent brain inflammation
ignificantly after TBI (***p b 0.001 vs. Control). Oral administration of EA (100mg/kg) for 7
Veh+TBI). Values are represented asmean± SEM, one-way ANOVA followed by post-hoc



Fig. 6. Veterinary coma scale (VCS) 48 h after TBI. VCS has decreased significantly after TBI (***p b 0.001 vs. Control). Oral administration of EA (100mg/kg) for 7 consecutive days before
induction of TBI (once daily) reversed it 48 h after TBI (###p b 0.001 vs. Veh+TBI). Values are represented as mean ± SEM, RM-ANOVA followed by post-hoc Tukey's test, n = 8.
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following traumatic brain injury, thereby subsequently diminishing the
inflammatory factors such as IL-1β and IL-6. Inflammation-related
factors are among the primary causes of impairment induced by TBI.
The preventive effects of EA can be explained via modulation of these
factors which refers to its antioxidative and anti-inflammatory nature.
Our results support the role of EA in the prevention of impairment
induced by TBI.
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