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Abstract—Wireless network virtualization is emerging as an
important technology for next-generation (5G) wireless networks.
A key advantage of introducing virtualization in cellular net-
works is that service providers can robustly share virtualized
network resources (e.g., infrastructure and spectrum) to extend
coverage, increase capacity, and reduce costs. However, the in-
herent features of wireless networks, i.e., the uncertainty in user
equipment (UE) locations and channel conditions impose signif-
icant challenges on virtualization and sharing of the network
resources. In this context, we propose a stochastic optimization-
based virtualization framework that enables robust sharing of
network resources. Our proposed scheme aims at probabilis-
tically guaranteeing UEs’ Quality of Service (QoS) demand
satisfaction, while minimizing the cost for service providers, with
reasonable computational complexity and affordable network
overhead.

Index Terms—Wireless network virtualization, resource allo-
cation, rate coverage probability, chance-constrained stochastic
optimization.

I. INTRODUCTION

In cellular networks, mobile network operators (MNOs)
have been sharing resources (e.g., infrastructure and spec-
trum) as a solution to extend coverage, increase capacity,
and decrease operational expenditures (OPEX) and capital
expenditures (CAPEX). Recently, due to the advent of 5G
with enormous coverage and capacity demands, scarcity of
the overall spectrum, and potential revenue losses due to
over-provisioning to serve peak demands, the motivation for
sharing and virtualization has significantly increased in cel-
lular networks. Through virtualization, wireless services can
be decoupled from the network resources so that various
services can efficiently share the resources. Our work provides
a virtualization framework that enables network-wide robust
resource sharing with reasonable computational complexity
and affordable network overhead.

We consider a three-layered architecture for wireless net-
work virtualization (WNV) shown in Figure 1. The functions
of each layer are described as follows [1]. Service providers
(SPs) are in charge of providing regular data, voice and
messaging services, as well as specialized services that ap-
ply to specific applications such as the Internet of Things
(IoTs) or other current over-the-top (OTT) services. Resource
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Fig. 1: Wireless network virtualization architecture.

providers (RPs) own the network resources. Virtual network
builders (VNBs) aggregate (pool) the resources from various
RPs, create logical partitions (slice) among these aggregated
resources and allocate them to SPs. A slice of a resource is
called a virtual resource of the SP and a network built with
the virtual resources is known as virtual network of the SP.
Nevertheless, to fully utilize virtualization, the virtual resource
allocation process (i.e., pooling and slicing of the resources)
needs to be investigated thoroughly.

There are various challenges in the virtual resource alloca-
tion process. First, the SPs need to efficiently express their
demands to the VNB. In current literature, authors proposed
that an SP expresses its demand as the aggregated demands of
its user equipments (UEs) [2]–[6]. However, due to uncertainty
in UE locations and channel conditions, satisfaction of aggre-
gated demands cannot provide any guarantee for the individual
UEs’ demand satisfaction. Besides, if the SPs and the VNB
interact frequently to identify the instantaneous demands of
individual UEs, network overhead and computational com-
plexity would be excessive. Furthermore, the VNB needs to
satisfy the SP demands as well as maximize the resource
utilization (i.e., minimize over-provisioning) in the presence
of the aforementioned uncertainties.

Our goal is to address these challenges and design an



efficient virtual resource allocation mechanism. Precisely, we
aim to probabilistically guarantee individual UEs demand
satisfaction and maximize resource utilization, with reasonable
computational complexity and affordable network overhead.
Towards achieving this goal:
• First, we propose a new model for characterizing SP

demands. The requested virtual network of an SP is fully
characterized using four parameters: the minimum data
rate, minimum rate coverage probability, UE intensity,
and the geographical area to be covered.

• Second, we propose a stochastic-programming-based op-
timal virtual resource allocation framework for cellular
networks. Stochastic programming provides a powerful
mathematical tool to handle optimization under uncer-
tainty. It has been recently exploited to optimize resource
allocation in various types of wireless networks operating
under uncertainties (examples include [7]–[13]). In this
paper, using chance-constrained stochastic programming,
we design an optimal virtual resource allocation mech-
anism that maximizes the utilization of the resources
while satisfying the SP demands in the presence of
the uncertainty in UE locations and channel conditions.
This optimization framework can be used also for other
service specific design criteria (e.g., delay, jitter).

• Third, we obtain a closed-form expression for the down-
link rate coverage probability of a typical virtual net-
work. Then, using this expression, we initially solve our
proposed chance-constrained virtual resource allocation
problem following a heuristic greedy approach, where
virtual networks are constructed gradually for the SPs
until the demands of all SPs are satisfied.

• Fourth, after simplifying the downlink rate coverage
probability expression, we derive a mixed integer linear
programming reformulation of our chance-constrained
virtual resource allocation problem and solve it optimally
using CPLEX, which exploits the state-of-the-art branch
and bound (B&B) techniques [14].

• Fifth, considering the possibility of the optimization
model being infeasible due to lack of sufficient resources
in the resource pool, we propose a prioritized virtual re-
source allocation mechanism where virtual networks are
sequentially built for SPs based on their given priorities.

• Finally, we numerically evaluate and compare our
schemes.

The rest of the paper is organized as follows. In Section II,
we describe the virtual resource allocation framework and
the system model. In Section III, we present the optimal
virtual resource allocation scheme. The numerical analysis is
presented and discussed in Section IV. Finally, the paper is
concluded in Section V.

II. SYSTEM MODEL AND FRAMEWORK

We consider a two-dimensional geographical area A that
is covered by a set N of RPs. Each RP has a set of Base
Stations (BSs) deployed in A, and the union of these sets is
denoted by B. The location of BS b ∈ B is given by lb. BS

b operates on bandwidth Wb and transmits with a constant
power 1/µb. The cost for leasing BS b is cb. There exists a set
S = {1, 2, ..., S} of SPs. Each SP wants to cover the entire
geographical area A. The UEs of SP s ∈ S are assumed to be
distributed in A according to a homogeneous Poisson Point
Process (PPP) φs of intensity λs. In the following subsection,
we characterize the SP demands.

A. Demand Characterization of SPs

SP s, s ∈ S , characterizes its demand as follows: Any of
its UEs located anywhere in A needs to have at least a data
rate of κs bps with a minimum probability of βs. Let R̃s be
the data rate of an arbitrarily chosen UE of SP s located in
A. Then, the data rate demand of SP s can be expressed as:

Pr
{
R̃s ≥ κs

}
≥ βs.

Consequently, there is a probabilistic guarantee on the
demand satisfaction of the individual UEs. Let us call
Pr
{
R̃s ≥ κs

}
the virtual network downlink rate coverage

probability.

B. Virtual Resource Allocation Framework of VNB

Upon receiving the demands from SPs, VNB leases a subset
of BSs from B and slices them among the SPs such that their
demands are satisfied. A slice of a BS provides a fraction of
capacity of the BS.

A BS can be sliced in various dimensions (e.g., time,
frequency and capacity region) [2]. In this paper, we consider
the VNB slices a BS in time domain. Specifically, we consider
a slice of a BS is a fraction of active (or, on) time of the BS.
For example, let δbs ∈ [0, 1] , b ∈ B, s ∈ S , be a slice of
BS b allocated to SP s. In that case, if BS b serves for a time
duration of T then δbsT represents the time duration when SP
s is the only SP that accesses BS b. Continuing this example,
δbs equals one if, SP s is the only SP associated with BS b.
Likewise, if SP s is not to be associated with BS b at all, then
δbs would be 0.

The slicing is implemented on a BS as follows. The VNB
associates SPs with the BS and dictates the BS to reserve
the fractions of its active time for each associated SPs. Now,
the BS while serving the UEs of the associated SPs, ensures
that each SP gets its share in each resource allocation cycle.
Hence, in terms of slicing BSs, the VNB’s job is to determine
the fractions of the active time of the BSs to be allocated to
SPs.

C. BS Rate Allocation Model

We consider the following rate allocation model for BSs in
B. A UE of an SP is served by its nearest BS among the set
of BSs allocated to the SP. Each BS performs a proportional
rate allocation for its UEs, i.e., the rate allocated to each UE
is proportional to its spectral efficiency. Hence, assuming a
saturated queue of UEs of SP s, the rate of a typical UE of
SP s associated with BS b is given by:

ρ = δbs

(
Wb

Nbs
log2 (1 + SINRb)

)
(1)
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Fig. 2: Voronoi tessellation of a set of BSs.

where Nbs is the total number of UEs of SP s associated
with BS b during that time instant, δbs is the slice of BS b
allocated to SP s and SINRb is the signal-to-interference-plus-
noise ratio experienced by that typical UE. Note that Nbs and
SINRb are stochastic variables and hence ρ is a stochastic
variable.

The channel gains experienced by the UEs from their
associated BS are assumed to follow a Rayleigh distribution
with mean 1 (i.e., there is no shadowing). Hence, the SINR
experienced by a typical UE at an arbitrarily distance d from
its associated BS (say BS b) can be expressed as [15]:

SINRb =
h d−α

σ2 + I
(2)

where h is the stochastic channel gain, which is exponentially
distributed with mean 1/µb, σ2 is the variance of the additive
noise, α is the pathloss exponent, and I is the cumulative
downlink interference from all other BSs. I can be expressed
as:

I =
∑
j∈B/b

gjr
−α
j (3)

where rj is the distance between the typical UE and the
interfering BS j and gj is the stochastic gain of the channel
between them. We assume that the interference also experi-
ences Rayleigh fading without shadowing. Therefore, gj is
exponentially distributed with mean 1/µj .

D. Problem Statement

Our goal is to design a scheme to be executed at the
VNB to optimally perform the virtual resource allocation, i.e.,
determining the optimal subset of BSs to be leased from B and
determining the optimal fractions of active time of the leased
BSs to be allocated to the SPs. Our optimality criterion is
to minimize the costs of network resource aggregation (i.e.,
maximize the utilization of the resources) while satisfying the
SP demands. Hence, we define the optimal virtual resource
allocation problem as: For given demands of the SPs in S ,
determine the cheapest subset of BSs to be leased from B
such that, when sliced among SPs, these BSs can meet all
SPs demand.

III. OPTIMAL VIRTUAL RESOURCE ALLOCATION

In this section, we propose schemes that are executed at the
VNB to perform the optimal virtual resource allocation. First,
we formulate the problem.

A. Problem Formulation

Let xb, b ∈ B, be a binary decision variable indicating
whether to lease BS b or not. xb equals one if a BS will be
selected and it equals zero otherwise. Then, the optimal virtual
resource allocation problem for the VNB can be formulated
as:

Problem 1: Optimal virtual resource allocation

minimize{
xb,δbs
b∈B,s∈S

}∑
b∈B

cb xb (4)

subject to:

Pr
{
R̃s ≥ κs

}
≥ βs, ∀s ∈ S (5)∑

s∈S
δbs ≤ 1, ∀b ∈ B (6)

δbs ≥ 0, ∀b ∈ B, ∀s ∈ S (7)
xb ∈ {0, 1},∀b ∈ B. (8)

The objective function (4) represents the cost of the leased
BSs. Constraint (5) ensures the demand satisfaction of the SPs
in S. Constraint (6) ensures that the utilization of the leased
BSs does not exceed 100%.

In order to solve Problem 1, the key challenge is to derive
a closed-form expression of constraint (5), i.e., the virtual
network rate coverage probability obtained by the SPs.

B. Virtual Network Rate Coverage Probability

Lemma 1: In the virtualized wireless network model de-
scribed in Section II, for a set of BSs B the downlink rate
coverage probability achieved by the virtual network of SP s,
s ∈ S, is given by (9).

In (9), Pb is the region of the voronoi cell of BS b. Ab is the
area of the voronoi cell Pb. A is the area of the geographical
area A. Du is a circular disc of radius u centered at lb. d
is the distance between BS b and a typical UE of SP s. db,j
is the distance between BS b and an interfering BS j. rj =√
d2 + d2b,j − 2d db,j cos θj and θj is the angle between the

two lines: the line connecting BS b with the typical UE, and
the line connecting BS b with its neighboring BS j as shown
in Figure 2.

Proof : In Theorem 1 in [16], we have derived an expression
for downlink rate coverage probability of a non-virtualized
wireless network that has a similar BS rate allocation model
as in Section II-C except slicing i.e., BSs allocate their full
capacity (or, active time) to a single network (i.e., one SP).
However, in our proposed virtualized wireless network model,
a BS (say, BS b) is potentially time-shared among multiple
SPs. Here, δbs, s ∈ S , represents the fraction of active time
of BS b allocated to SP s. In other words, at a random



Pr
{
R̃s ≥ κs

}
=
∑
b∈B

δbs
Ab
A

[
1− e−λsAb log 2

2πWb

∞∑
n=0

λnsA
n−1
b

(n− 1)!

∫ κs

0

2
nρ
Wb

∫ ∞
0

∫ |lb−vb|
0

µb u
α
(
σ2 + c

)
exp

(
− µb uα

(
2
nρ
Wb − 1

)

×
(
σ2 + c

))
∫ ∞
−∞

e−iωc2π

∏
j∈B\b

∫ 2π

0

µj r
α
j

µj rαj − iω
dv

dω

 d [∇{Pb ∩Du}]
du

du dc dρ

]
. (9)

instant of the active time of BS b, SP s accesses BS b with
a probability of δbs. Therefore, the downlink rate coverage
probability achieved by the virtual network of SP s is obtained
by multiplying the access probability δbs,∀b ∈ B, with
the downlink rate coverage probability of the non-virtualized
network. Hence, we obtain the result in (9).

C. Solution Approach

In this subsection, we discuss how to solve Problem 1 using
(9). As can be seen, Problem 1 is a combinatorial optimization
problem with NP complexity. Therefore, a simplistic solution
approach is to design a heuristic greedy search algorithm
where the solution is determined by iteratively adding BSs
and checking the virtual network rate coverage probability
constraint of the SPs from (9). This is a simple method
to ensure demand satisfaction of the SPs. However, such a
heuristic approach does not provide any theoretical guarantee
for the optimality, i.e., the cost minimization. Hence, we
design an efficient solution approach that can guarantee the
desired optimality.

Our solution approach is based on using CPLEX to exploit
the state-of-the-art branch and bound techniques implemented
in it [14]. To be able to exploit branch and bound (B&B)
method, we need to reformulate Problem 1 as a mixed integer
linear program (MILP). Specifically, we need to express (9)
as a linear function of the binary decision variables xb, b ∈ B
and the continuous decision variables δbs, b ∈ B, s ∈ S . To
achieve this, we want to make the following approximations
and modifications over the virtual network rate coverage
probability derivation in (9).

Recall that (9) is derived from Theorem 1 in [16]. There-
fore, we start with modifying the steps we followed in [16]
to derive Theorem 1. For ease of explanation, let us briefly
describe these steps before discussing the modifications. First,
we derived the probability density function (PDF) of the
distance of a typical UE from its nearest BS, denoted by
fd(u), by assuming the coverage regions of the BSs to form
vornoi cells. Then, we derived the PDF of the cumulative
interference, denoted by I , experienced by a typical UE
located at distance d from its associated BS b, denoted by
fI (c|d). Finally, based on fI (c|d) and fd(u), we derived the
PDF of the received SINR and the rate coverage probability.

Note that we derived fd(u) by assuming the coverage
regions of the BSs to form voronoi cells. Because xb, b ∈ B,
define the shapes of the voronoi cells, expressing fd(u)
as a linear function of the decision variables is extremely
challenging. Instead, we will approximate the coverage region

of BS b as a circular area of fixed radius, denoted by qb. In that
case, the area of the coverage region of BS b can be expressed
as π q2b . Moreover, the cumulative distribution function (CDF)
of d, the distance of a typical UE from its associated BS (say
b), can be written as:

Pr {d ≤ u} =

{
u2

q2b
, for 0 ≤ u ≤ qb

1, otherwise.
(10)

From the CDF (10), the PDF of d can be obtained as
follows:

fd(u) =
dPr {d ≤ u}

du
=

{ 2u
q2b
, for 0 ≤ u ≤ qb

0, otherwise.
(11)

Following the same approximation, for a given d, the PDF
of the angle θj as shown in Figure 2, can be expressed as:

fθj (v | d) =
{

1
2π , for 0 ≤ v ≤ 2π
0, otherwise. (12)

Next, we need to express fI (c|d) as a linear function of
xj ,∀j ∈ B \ b. In [16], to derive fI (c|d), we first derived
its characteristic function, denoted by φI (ω). Therefore, let
us first modify the characteristic function φI (ω). Note that if
xj = 1 (i.e., BS j is selected) then Ij (the interference caused
by that BS on BS b) needs to be considered in φI (ω). On
the other hand, if xj = 0, Ij needs to be ignored. Hence, we
express φI (ω) as:

φI (ω) =
∏
j∈B\b

(
1− xj

(
1− φIj (ω)

))
(13)

where φIj (ω), the characteristic function of Ij , is given by:

φIj (ω) =
1

2π

∫ 2π

0

µj r
α
j

µj rαj − iω
dv. (14)

Hence, fI (c | d) can be expressed as a linear function of
xj ,∀j ∈ B \ b, as:

fI (c | d) =
1

2π

∫ ∞
0

{
e−iωc

∏
j∈B\b

(
1−

xj
(
1− φIj (ω)

) )}
dω (15)

With these modifications, the PDF of the received SINR by
a typical UE associated with BS b can be expressed as (16).

Next, to simplify the expression of (9), we approximate the
load of a BS for SP s, s ∈ S, by the average number of UEs
of SP s served by that BS. Since UEs of SP s are distributed



fSINRb(T ) =

∫ ∫
fSINRb,I,d (T, c, u) du dc =

1

2π

∫ ∞
0

∫ qb

0

µb u
α
(
σ2 + c

)
exp

(
−µb T uα

(
σ2 + c

))
×


∫ ∞
−∞

e−iωc ∏
j∈B\b

(
1− xj

(
1− 1

2π

∫ 2π

0

µj r
α
j

µj rαj − iω
dv

)) dω

 2u

qb2
du dc. (16)

Pr
{
R̃s ≥ κs

}
=
∑
b∈B

δbs
πqb

2

A

{
1− λs log 2

Wb

∫ κs

0

(
2
λsπqb

2ρ

Wb

)∫ ∞
0

∫ qb

0

µb u
α
(
σ2 + c

)
exp

(
−µb

(
2
λsπqb

2ρ

Wb − 1

)
uα
(
σ2 + c

))

×


∫ ∞
−∞

e−iωc ∏
j∈B\b

(
1− xj

(
1− 1

2π

∫ 2π

0

µj r
α
j

µj rαj − iω
dv

)) dω

u du dc dρ

}
. (17)

according to a homogeneous PPP of intensity λs, the number
of UEs of SP s served by a BS (say, b) will be a Poisson
random variable with parameter λs π q2b . Hence, the load of
BS b for SP s is approximated by λs π q2b .

With the mean load approximation, we obtain the PDF of
the rate achieved by a typical UE of SP s, which is associated
with BS b (without slicing) as:

frateb(ρ) =

(
fSINRb (T )

∣∣∣∣dTdρ
∣∣∣∣)

T=

(
2
λsπqb

2ρ
Wb −1

) . (18)

With slicing, as described in proof of Lemma 1, δbs
represents the probability of SP s accessing BS b during its
active time. Hence, the probability that a typical UE of SP
s achieves a minimum rate of κs bps while being associated
with BS b is given by:

Pr
{
R̃bs ≥ κs

}
= δbs

(
1−

∫ κs

0

frateb(ρ) dρ

)
. (19)

Now, recall that UEs of an SP are assumed to be associated
with the nearest BS among the set of BSs allocated to the SP.
Consequently, we obtain the probability of a typical UE of SP
s achieves a minimum rate of κs from a set of BS B, as:

Pr
{
R̃s ≥ κs

}
=
∑
b∈B

Ab
A

Pr
{
R̃bs ≥ κs

}
=
∑
b∈B

δbs
Ab
A

(
1−

∫ κs

0

frateb(ρ) dρ

)
. (20)

Substituting (18) in (20), we obtain a simplified expression
of the downlink rate coverage probability achieved by the
virtual network of SP s in (17).

As can be seen from (17), there are two sources of
non-linearity in (17) (with respect to decision variables
xj and δbs, b ∈ B, j ∈ B \ b, s ∈ S). One is in the form
of a product of different subsets of binary decision variables,
and the other is in the form of a product of different subsets
of binary and continuous decision variables.

A product of binary and continuous decision variables, say
xj δbs, can be equivalently expressed in a linear form by (i)
introducing a new auxiliary non-negative decision variable,

say z, (ii) replace xjδbs by z and (iii) add the following
constraints:

z ≤ xj , z ≤ δbs, z ≥ δbs − (1− xj), z ≥ 0. (21)

Furthermore, a product of binary decision variables, say∏B
j=1 xj , can be equivalently expressed in a linear form by

(i) introducing a new auxiliary non-negative decision variable,
say x, (ii) replace

∏B
j=1 xj by x, and (iii) add the following

constraints:

x ≤ xj ,∀j ∈ {1, 2, · · · , B}

x ≥
B∑
j=1

xj − (B − 1)

x ≥ 0. (22)

Finally, we need to relate the decision variables of BS
selection and slicing as:

xb = 1{∑s∈S δbs>0} ∀b ∈ B. (23)

In this way, we can express (17) as a linear function of
the decision variables. Thus, we reformulate Problem 1 as an
MILP. To make it clearer, in [17], we derive the complete
MILP reformulation of Problem 1 when |B| = 3. After
reformulating Problem 1 as a MILP, we solve it using the
B&B techniques implemented in CPLEX.

D. Special Case

We identify Problem 1 would be infeasible when sufficient
resources are not available in the BSs of B to meet all SPs
demand. In that case, we consider two possibilities i.e., the
VNB can either partially satisfy all SPs demand or completely
satisfy some SPs demand considering their priorities. To
partially satisfy all SPs demand, the VNB leases all the BSs
from B and divides their active time equally among the SPs
i.e., δbs = 1

|S| , ∀b ∈ B,∀s ∈ S. On the other hand, to
completely satisfy prioritized SPs demand, SPs are ranked
based on their priorities and the VNB builds their virtual
networks one by one sequentially according to their ranks as
long as the resources are available in B. Let us discuss this
sequential virtual network building process in details. Recall



that there is lack of sufficient resources in the BSs of B to
meet all SPs demand. Therefore, to build the virtual networks
for the SPs, the VNB needs to eventually select all the BSs
from B. In other words, the set of BSs to be leased is fixed i.e.,
B. Now, to build virtual network for an SP (say, SP s, s ∈ S),
the VNB needs to determine the minimum fractions of active
time of the BSs of B to be allocated to the SP such that its
demand can be satisfied. Let αb ∈ [0, 1], b ∈ B, denotes the
available fraction of active time of BS b. Then, we formulate
a problem as follows:

Problem 2: Virtual resource allocation for SP s, s ∈ S

minimize
{δbs,b∈B}

∑
b∈B

δbs (24)

subject to:

Pr
{
R̃s ≥ κs

}
≥ βs (25)

δbs ≤ αb, ∀b ∈ B (26)
δbs ≥ 0, ∀b ∈ B (27)

The objective function (24) represents the total amount of
virtual resources to be allocated to SP s. Constraints (25),
ensures the demand satisfaction of SP s. Constraint (26)
ensures that the utilization of the BSs does not exceed 100%.

The solution approach for Problem 2 is much simpler than
Problem 1. Since the set of BSs to be leased is fixed, (9) is
a linear function of the decision variables δbs, b ∈ B. Thus,
Problem 2 is a Linear Program (LP). We solve this LP in
CPLEX. If the solution of Problem 2 is infeasible, the VNB
allocates all of the remaining active time of the BSs to SP
s. In that case, SP s is partially satisfied. To clarify all these
steps, we provide Algorithm 1.

Algorithm 1 Virtual Resource Allocation
1: Input: A, B, S, κ, β, λ, ranks of SPs in S
2: Output: x∗b , δ∗bs,∀b ∈ B, ∀s ∈ S
3: Reformulate Problem 1 as MILP and solve
4: if Solution is ‘infeasible’ then
5: x∗b ← 1 ∀b ∈ B
6: Sort SPs in S according to their ranks
7: Initialize: a← 1, αb←1 ∀b ∈ B, δ∗bs←0 ∀b ∈ B, ∀s ∈ S
8: while

∑
b∈B αb 6= 0 do

9: s←S [a]
10: Set range of δbs as [0, αb] ∀b ∈ B
11: Solve Problem 2 for SP s
12: if Solution is ‘infeasible’ then
13: δ∗bs ← αb ∀b ∈ B
14: EXIT
15: end if
16: αb ← 1− δ∗bs ∀b ∈ B
17: a← a+ 1
18: end while
19: end if
20: Report x∗b , δ∗bs, ∀b ∈ B,∀s ∈ S

In Algorithm 1, the VNB first executes Problem 1. If the
solution is infeasible, it executes Problem 2. In each iteration,
based on the solution of Problem 2 i.e., δ∗bs, ∀b ∈ B, the VNB
updates αb, ∀b ∈ B.

2 km

RP 1 RP 2 RP 3

2 km

0

0

Fig. 3: Locations of BSs.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
virtual resource allocation scheme. We consider the following
evaluation set up. Three RPs make ten BSs available in a
geographical area of 2× 2 km2, as shown in Figure 3. Based
on the conventional assumption that the BS locations form a
homogeneous PPP, we obtain the BS locations as a realization
of a homogeneous PPP of intensity 2.5/km2. All three BSs of
RP 1 transmit with a constant power of 23 dBm and have cell
radius of 0.3 km. All six BSs of RP 2 transmit with a constant
power of 30 dBm and have cell radius of 0.4 km. The BS of
RP 3 transmits with a constant power of 46 dBm and has cell
radius of 0.7 km. All ten BSs operate over a bandwidth of 20
MHz. Noise variance (σ2) is set to −174 dBm/Hz. Pathloss
exponent (α) is set to 4. The cost of leasing a BS is $100
from RP 1, $200 from RP 2 and $300 from RP 3.

In this set up, first, we evaluate the preciseness of (17)
for computing the virtual network rate coverage probability.
In Figure 4, we compute the virtual network rate coverage
probability obtained by an SP that accesses full capacity of all
ten BSs. As can be seen that the virtual network rate coverage
probability computed from (17) and (9) are closely matched.
This validates the preciseness of (17).

Next, we benchmark the optimality of our proposed B&B-
techniques-based solution approach for Problem 1 against the
brute-force-search-based approach. To conduct this evaluation,
we consider three SPs who wish to provide wireless services
within the considered geographical area shown in Figure 3. SP
1 requires its UEs to have a minimum data rate of 3 Mbps with
probabilistic guarantee of 0.7. SP 2 requires its UEs to have
a minimum data rate of 1 Mbps with probabilistic guarantee
of 0.8. SP 3 requires its UEs to have a minimum data rate of
512 Kbps with probabilistic guarantee of 0.9. All SPs have
the same UE intensity. All SPs have the same priority, i.e., if
the MILP is infeasible, then δbs = 1

3 , ∀b ∈ B, ∀s ∈ S.
In Figure 5, we plot the cost of leasing BSs, and in Figure 6,

we plot the virtual network rate coverage probability obtained
by the SPs. As can be seen, as long as sufficient resources
are available in B, all the schemes ensure satisfaction of the
SP demands. However, when the UE intensity is low, the
greedy-search-based solutions are incurring significantly high
cost to meet the SP demands, whereas the B&B solutions
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Fig. 4: Virtual network rate coverage prob-
ability vs. UE intensity of the SP.
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Fig. 6: Virtual network rate coverage prob-
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TABLE I: SP demands satisfaction according to their ranks.

UE intensity (λ) Satisfied SPs
15 SP 1, SP 2, SP 3
30 SP 1, SP 2
45 SP 1
60 none

are incurring almost similar costs as the brute-force-search-
based solutions. This shows the efficiency of our proposed
B&B-techniques-based approach for achieving the desired
optimality.

Finally, in the same evaluation set up, we study the per-
formance of the sequential virtual resource allocation scheme
(i.e., Problem 2) by assuming an arbitrary ranking scheme as:
First SP 1, second SP 2, and then SP 3. In Table I, we vary the
UE intensity of the SPs and enlist the satisfied SPs. As can be
seen, the SP demands are satisfied based on their priorities.

V. CONCLUSIONS

In this paper, we provided a virtualization framework that
probabilistically guarantees UE demands satisfaction while
minimizing the cost of leasing BSs. Through simulations, we
showed the gains brought by our proposed scheme. Further-
more, the network overhead of our proposed framework and
the computation load of the VNB are both reasonable since
the proposed approach does not require the SPs, the VNB,
and the RPs to interact to identify the instantaneous demands
of individual UEs. To summarize, our proposed framework
efficiently performs virtual resource allocation with affordable
network overhead and reasonable computational complexity.
In future, we plan to design an efficient suboptimal solution
approach for Problem 1 in order to find good solutions in
dense scenarios with reasonable computational complexity.
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