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Abstract. In this paper we implement an echo state network within the concept of
actor-critic design to obtain optimal control policy for a mobile robot. The robot is
asked to anticipate future rewards/punishments and react accordingly. Experimen-
tal results show that the proposed approach is simple and effective.

1 Introduction

Dynamic programming is one of the most general approaches to obtain optimal control
policies for autonomous systems. However, due to the so-called ’curse of dimensional-
ity’ [1], this approach can only be applied to simple and small-scale problems. Over the
years, many efforts have been done to circumvent this problem by building a system,
called ’critic’, to approximate the cost function in dynamic programming [2, 3]. The
idea is to use function approximation structures such as neural networks to approximate
value functions (i.e. mapping state-action pairs to a value estimate) and therefore ad-
dressing large-scale problems. Once the critic network is converged, the control policy
improvement step is carried out to adapt the parameters of the controller. However,
implementing this framework in real applications needs fast online training algorithms
as well as robust modelisation of the robot-environment interaction. Recurrent neu-
ral networks (RNNs) are powerful tools to learn such systems, for two main reasons.
First, they are universal approximators of dynamical systems [4]. Second, they can
exhibit continuous dynamics; a suitable property to model robot-environment interac-
tion. To overcome the training difficulties of RNNs, concept of “reservoir computing”
such as echo state networks (ESN) [5] has been proposed. The core idea of reservoir
computing consists to use a large RNN as a “pool” of excitable complex dynamics,
from which readout neurons can learn to extract the current state. This reduces the
complexity of training to simple linear regression while preserving the recurrent prop-
erty of the network. In this paper we implement the ESN as critic network within the
concept of adaptive critic design (ACD) [3] to obtain optimal control policy for a real
mobile robot interacting with its environment. The ESN critic has to consider contin-
uous state/action space, deal with uncertainties, and be computationally cheap in order
to deal with real-world constraints. Recently, we implemented ESNs within the frame-
work of Actor-Critic reinforcement learning to generate behavior of obstacle avoidance
for a real robot [6]. In this work, we train an ESN-critic to estimate the long-term cost
by robot’s sensations associated with future higher rewards. Anticipating future nega-
tive rewards enables the robot to react earlier in order to maximize future rewards by
trying other movement directions.
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2 Actor-Critic Design with ESN

We assume that the world (robot-environment) consists of statesS and actionsA, with
the mapping between states from which actions being defined by a probabilistic tran-
sition functionF (ś|s, a) : S × A × S → [0, 1]. Suppose that one associates with this
system the performance index (cost-to-go) in the Bellman equation of dynamic pro-
gramming

J(k) =

∞
∑

i=0

γiU(k + i) (1)

whereU is called the utility function andγ is the discount factor with0 < γ ≤ 1. In
order to predict future rewards the ESN critic is asked to estimateJ by minimizing the
following error measure over time

‖E‖ =
∑

k

Ek =
∑

k

[Ĵ(k) − U(k) − γĴ(k + 1)]2 (2)

whereĴ(k) = Ĵ [s(k), a(k), k, θc] andθc represents the parameters of the ESN critic.
An ESN (Fig. 1. a) is formed by a so-called ”dynamic reservoir”, which contains a large
number of sparsely interconnected neurons with non-trainable weights. The activation
of internal neurons is updated according to

X(k) = f(WinV (k) + WX(k − 1)) (3)

Ĵ(k) = fout(W outX(k)) (4)

wheref = tanh(), andfout is chosen as a linear activation function (identity). The
input Win and internalW weight matrices are generated randomly. The input vector
V is a concatenation ofS andA, andX represents the state vector of internal neurons.
An essential condition for successful using of ESN is the “echo state” property, where
the internal state is required to be an “echo” of its history. In practice it was found that
when the spectral radius ofW is |λmax| < 1, we do have an echo state network1. If this
condition is met, only weights connections from internal neurons to the output (W out)
are to be trained. This could be done by any suitable off-/on line training methods, such
as (recursive ) least squares [7]. When the overall cost (expressed as a sum of allU(k)
in the near future) is estimated, the objective is then to choose a control sequencea(k)
(k = 1, 2, ...), so thatJ is minimized (Fig. 1. b). The control action can be computed
as follows

a(k + 1) = a(k) − δ
∂Ĵ(k)

∂a(k)
(5)

whereδ is a learning rate. The gradient of̂J with respect toa(k) can be computed
using the chaine rules

∂Ĵ(k)

∂a(k)
=

∂Ĵ(k)

∂X(k)

∂X(k)

∂a(k)
(6)

1During the remainder of this paper the spectral radius will be dsigned by the parameterα.
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(a) (b)

Fig. 1: Actor-Critic Design with ESN. (a) Basic architecture of ESN: Dotted arrows
indicate connections that are possible but not required. (b) ESN as a critic network for
ACD design.

where
∂Ĵ(k)

∂X(k)
= W out (7)

Assuming thatWin = [WaWs] concatenation of action and state input weights we
obtain

∂X(k)

∂a(k)
= (I − X2(k))WT

a
(8)

Hence
∂Ĵ(k)

∂a(k)
= W out(I − X2(k))WT

a (9)

3 Implementation

We consider the scenario presented in Fig. 2. The mobile robot has a differential-
drive, and its geometric configuration is described byq = [x, y, φ]T where(x, y) are
its coordinates, andφ its heading angle. It is equiped with8 infrared (IR) proximity
sensors and two encoders to provideq at any time. We consider a continuous state space
S(k) = {x(k), y(k), di(k)|i = 1, 2, . . . , 8} (odometrie and distances to obstacles), and
continuous action space in a form of desired speeds for the right and left wheelsa(k) =
{vr, vl}. The reinforcement signal varies continuously according to the variations of
the sensory inputs as follows

ri(k) =

{

di(k) − λth if di(k) ≤ λth

0 if di(k) > λth

(10)
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Fig. 2: Scenario: The robot is moved periodically forward and backward at the front of
the obstacle, and learning system must be able to predict future negative rewards before
reaching the distance thresholdλth.

whereλth defines the threshold, above which the given sensor’s reading can be consid-
ered as approaching obstacle (producing of negative rewards). The utility function is
chosen as

U(k) =

8
∑

i=1

ri(k) (11)

The first experiment tests the learning performance of ESN-critic in predicting future
rewards before reaching the distance thresholdλth. We started the experiment with an
untrained ESN-critic, and we initialized the discount factorγ = 0. The robot is moved
periodically forward and backward at the front of the obstacle, and after each period
(episode) we increasedγ with a step0.05 in order to expand the time horizon and thus
enabling the ESN critic to learn sensations associated with future negative rewards. Fig.
3 shows the anticipated rewards vs. sensory input, where we can observe how reward
anticipation evolve with number of episodes.
In the second experiment the robot is asked to generate “well timed” actions in order to
avoid future negative rewards and to maximize the reward in other directions of move-
ment. To learn this behaviour we let the robot moving in the direction of the obstacle in
order to acquire a negative reward, and react according to the control policy (5). After
repeating this process several times, the robot showed the desired behavior by changing
the movement direction earlier before its IR-sensors detected the obstacle (Fig. 4. a).
In both experiments we set the ESN spectral radiusα = 0.6, and the number of neurons
in the reservoirN = 6. The input and the internal synaptic connections weights were
randomly initialized from a uniform distribution over[−1, +1], and the internal weight
matrixW has a sparse connectivity of20%.

4 Conclusion

We trained ESNs within the frame of adaptive critic design to adress reinforcement
learning problems with continuous time and space. In a partially observable environ-
ment the ESN-critic was asked to estimate the long-term cost by robot’s sensations
associated with future higher rewards. The first results have shown that a small ESN (6
internal neurons) could generalize successfully in presence of new environmental per-
ceptions (but similar to those seen during training) and anticipate the expected negative
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Fig. 3: Anticipated rewards vs. sensory inputs. (a) At each time step ESN-critic
is trained with new data (arround 30 input/ouput data per one episode) in order to
memorize sensations associated with future negative rewards. After some episodes the
ESN-critic began to anticipate negative rewards according to the actual state. (b) The
expected and actual robot’s sensation are compared with the anticipated reward over
time. With time, we can see how the negative reward is produced before crossing the
distance thresholdλth which is represented by the peaks of the actual sensation.
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(b) Rewards anticipation

Fig. 4: Reward and Action Anticipation: In this experiment the robot should antici-
pate future rewards and react accordingly. During first episodes negative rewards with
action are generated when reaching the distance thresholdλth. After many episodes,
the timing of anticipating the negative reward (negative peak) moved slowly towards
the left (b) enabling to choose desired actions earlier in order to maximize the reward
in other directions (a).
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rewards. It was also shown how the robot uses reward anticipation to react earlier in
order to maximize future rewards by trying other movement directions.
During training it was not easy to find optimal values for the learning parameters. With
a “relatively” large reservoir dimension (N > 15 neurons) the ESN-critic lost stability
at many times. The same observation was made when using a smallα ∈ [0.1, 0.5].
Our next step is to study the effect of these parameters on the overall learning perfor-
mance. We will also consider time/space varying reward signals, so that the robot must
be able to adapt its behavior when the environment changes its topology.
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