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Abstract
The recent advances in location tracking technologies and the widespread use of 
location-aware applications have resulted in big datasets of moving object trajec-
tories. While there exists a couple of research prototypes for moving object data-
bases, there is a lack of systems that can process big spatiotemporal data. This work 
proposes HadoopTrajectory, a Hadoop extension for spatiotemporal data processing. 
The extension adds spatiotemporal types and operators to the Hadoop core. These 
types and operators can be directly used in MapReduce programs, which gives the 
Hadoop user the possibility to write spatiotemporal data analytics programs. The 
storage layer of Hadoop, the HDFS, is extended by types to represent trajectory data 
and their corresponding input and output functions. It is also extended by file split-
ters and record readers. This enables Hadoop to read big files of moving object tra-
jectories such as vehicle GPS tracks and split them over worker nodes for distributed 
processing. The storage layer is also extended by spatiotemporal indexes that help 
filtering the data before splitting it over the worker nodes. Several data access func-
tions are provided so that the MapReduce layer can deal with this data. The MapRe-
duce layer is extended with trajectory processing operators, to compute for instance 
the length of a trajectory in meters. This paper describes the extension and evaluates 
it using a synthetic dataset and a real dataset. Comparisons with non-Hadoop sys-
tems and with standard Hadoop are given. The extension accounts for about 11,601 
lines of Java code.
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1  Introduction

Nowadays, knowledge of the spatial and temporal data is very important for you 
in all fields. Understanding the processes at the basis of movement will help to 
discover useful information. It is essential to forecast the impact of human-caused 
environmental changes and outline conservation strategies. Spatiotemporal data 
come in huge masses from various sources such as web data, IoT data, scientific 
data, etc. This data deluge, more commonly known as big data, have introduced 
unprecedented performance and scalability challenges to data management and 
processing systems. The large volume of spatiotemporal data is beyond the capa-
bility of legacy systems to store, process and analyze. These data come in dif-
ferent forms such as vehicle tracking logs and user activities on mobile. Vehicle 
tracking logs represent each trajectory as multiple of records. In contrast, each 
user activity data is represented as one record.

In many cases, data are characterized by two very important dimensions: (geo-
graphical) space and time. In a two-dimensional space, spatial data types only 
provide simple object structures, such as single points, lines, and simple regions. 
In a three-dimensional space, spatiotemporal data types enable the user to 
describe the dynamic behavior of spatial objects over time. The dynamic behavior 
refers to the continuous change in the locations of the spatial objects over time. 
The number of collected raw data increases exponentially so that any analysis task 
becomes more complex. Hadoop (http://hadoo​p.apach​e.org/) makes it possible to 
run applications on thousands of commodity hardware nodes and handling thou-
sands of terabytes of data. So, the biggest enterprises use Hadoop as a back-end 
of their tools, such as Environmental Systems Research Institute (ESRI) (https​://
www.esri.com/). ESRI developed a geometry Application Programming Interface 
(API) for Java. It allows users to build geometrical functions for Hadoop-related 
systems. But, it lacked the capability of indexing the objects. Hadoop is powerful 
but there are two problems when using it.

The first problem is that Hadoop is not aware of the nature of the spatiotem-
poral data. Some of these data are correlated with each other like moving object 
trajectories. Each moving object consists of multiple lines of file input. The HDFS 
deals only with heap files. Big data files are split into block files that are stored and 
replicated on the data nodes across the cluster. The data splitting process is done at 
the record level. It means that the data of one moving object might get partitioned 
over multiple block files in HDFS. Therefore, any operation takes more time to 
access these files in order to reconstruct the moving object. Clearly, this will nega-
tively affect the efficiency of queries on moving objects. We address this problem by 
injecting the file syntax of moving objects into the HDFS architecture. So, it is able 
to understand their storage structure and to respect this structure when splitting files. 
Most of the previous systems were built on the top of Hadoop and use Hadoop as a 
black box, whereas Hadoop is not aware of the nature of the data. All the data types 
are defined in the main application, not in Hadoop. Hadoop extension addresses this 
in many applications such as ParallelSECONDO (Güting and Lu 2015), HadoopGIS 
(Aji et al. 2013), TRUSTER (Yang et al. 2009), PRADASE (Ma et al. 2009).

http://hadoop.apache.org/
https://www.esri.com/
https://www.esri.com/
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The second problem is that Hadoop does not provide index structures able to 
prune some data before performing an operation. Accordingly the whole dataset is 
partitioned and sent to the data nodes. In the first part of our contribution (Bakli 
et al. 2018), we extended Hadoop with a spatiotemporal Algebra. It consists of mov-
ing object types built in HDFS and operators built as MapReduce jobs. Operators 
can be chained and nested, both in sequence and in parallel to build complex analyt-
ics jobs. However, in the experiments, we observed that the dominant runtime cost 
was due to the HDFS overhead to copy data to all nodes. It also overtook the advan-
tages gained from MapReduce. Therefore, we address this problem by introducing 
global spatiotemporal indexing and partitioning technique into the HDFS. So, it is 
able to filter the data before sending it to nodes.

The overall paper objective is to build a moving object data management system 
based on MapReduce. This shall be realized as a Hadoop extension. There are gen-
erally three approaches for such an integration:

1.	 Put Hadoop on top of a Moving Object Database (MOD). In such a way, the 
worker nodes have stand-alone MOD instances, and Hadoop orchestrates their 
work, as illustrated in Fig. 1a.

2.	 Put a MOD on top of Hadoop. In this setting, Hadoop would act as a file man-
ager and a processing framework, while all user interaction is done via the MOD 
interface, by means of queries, as illustrated in Fig. 1b.

3.	 Extend Hadoop by spatiotemporal types and operators. This integrates the moving 
object data management into the core of Hadoop. So, MapReduce programs can 
define and process moving object types, as illustrated in Fig. 1c.

We applied the third approach of integration. It is the most challenging among 
these variants as it requires a non-naive change into the Hadoop system and a com-
plete parallelism of MOD. Yet, it provides the maximum flexibility for writing scal-
able moving object data management programs. So, the contribution of this paper 
can be summarized as follows:

•	 Extending Hadoop with spatiotemporal types and operators.
•	 Building an index structure to optimize the data transfer between Hadoop nodes 

while processing queries.
•	 Introducing operators for index access.

Fig. 1   The three integration alternatives
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•	 Adding index support to operators in the MapReduce where suitable.
•	 Showcase optimized queries based on the BerlinMOD benchmark.

The rest of this paper is organized as follows. Section 2 reviews the closely related 
work about this study. Section 3 explains the proposed HadoopTrajectory in details. 
Section 4 evaluates the performance of the proposed Algebra and compares it with 
the SECONDO system. Finally, Sect. 5 concludes the paper and mentions the future 
development in Sect. 6.

2 � Related work

A moving object database system MOD is a database system that is able to store, 
query and manage moving object data, also called trajectories. There exist few pro-
totypes for such a system: such as SECONDO (Gting et al. 2004), Hermes (Pelekis 
et  al. 2006), and DEDALE (Grumbach et  al. 1998). These three systems manage 
trajectories of moving objects. DEDALE (Grumbach et al. 1998) uses a constraint 
DB approach for managing moving objects. In such a representation, a spatial object 
is represented as a set of constraints that represent its area. Adding other dimensions 
to the data is by definition supported by introducing additional variables such as a 
third spatial dimension and the time and by expressing more constraints over these 
variables. Both SECONDO and HERMES use an abstract data type model for mov-
ing objects (Güting et  al. 2000). In contrast DEDALE uses a constraint database 
model. The abstract data types for moving objects encapsulate the trajectory infor-
mation in types that are supported by the database system. For instance, SECONDO 
provides the types: mpoint for a temporal spatial point, mregion for a temporal spa-
tial region, mreal for a temporal numeric value, etc. Using these types, it is pos-
sible to store within a tuple a trajectory of a car, represented as an mpoint instance. 
Query operators can then be expressed on such a trajectory. For instance, an opera-
tor speed(mpoint) would yield the time-dependent speed of the car, represented as 
an mreal. HERMES implements the same model as SECONDO, yet on top of Post-
greSQL and ORACLE. The ADT approach facilitates building indexes and query 
optimization methods. There are many spatiotemporal indexes for instance, 3DR-
tree (Theodoridis et al. 1996), TB-tree (Pfoser et al. 2000), STR-tree (Pfoser et al. 
2000), FNR-tree (Frentzos 2003) and MON-tree (De Almeida and Güting 2005). 
Despite the optimization that can be done in MOD systems to speed up the query 
processing, they remain non-scalable. Such systems are expected to be run on a sin-
gle node server.

Scalable moving object databases Since these MOD prototypes are not scalable and 
hence cannot support big spatiotemporal data processing, it was natural to extend them 
in the direction of distributed databases. For example, ParallelSECONDO (Güting and 
Lu 2015) is a version of SECONDO that uses Hadoop (http://hadoo​p.apach​e.org/). 
Hadoop is used as a communication manager for scheduling and coordinating the tasks 
between worker nodes, each of which runs a regular SECONDO instance, and con-
tains a complete copy of the data. Each node in the cluster contains Hadoop and mini 
SECONDO to run the job. The user query is converted by the master node into a set 

http://hadoop.apache.org/
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of parallel query statements. These statements are scheduled to worker nodes. Their 
individual results are communicated back to the master, which in turn compiles them 
and generates the final query answer. Distributed SECONDO (Nidzwetzki and Güting 
2015) is another SECONDO version that implements a distributed moving object data-
base without using Hadoop. It uses CASANDRA as a storage layer, instead of Berke-
lyDB which is used in the original SECONDO. It thus inherits the high availability and 
the fast updates from CASANDRA. Both the management and query processing are 
performed by SECONDO nodes.

GeoMesa (Fox et  al. 2013) is a spatiotemporal database used to store, query and 
transform the spatiotemporal data at a large scale. It is built on the top of Apache Accu-
mulo, which is a key value store built on the top of Hadoop. GeoMesa organizes the 
data using geohashes and timestamps. The keys are generated as a combination the 
geohash and the temporal value.

Extending Hadoop with spatiotemporal functionality In contrast to MOD systems, 
this approach seeks to extend Hadoop (or other big data frameworks) with spatiotem-
poral support. Hadoop is used not only for task scheduling and monitoring, but rather 
extends to task execution. This is the approach that is used in this paper. One recent 
work also exist following this approach, called ST-Hadoop (Alarabi and Mokbel 2017) 
short for spatiotemporal Hadoop. It is a temporal extension of SpatialHadoop (Eldawy 
and Mokbel 2015). SpatialHadoop pushes the spatial types and operators inside the 
core of Hadoop to be as built-in. This includes the basic GIS types of point and region. 
It implements two levels of indexing, a global index functioning on the master node 
and a local index functioning on the data slice of every worker node. SpatialHadoop 
uses three types of indexes: grid files, R-tree, and R+-tree. It provides a set of spatial 
operators, with index integration wherever possible. Our work builds on some Spatial-
Hadoop data types and operators. We also utilize the concept of building two levels of 
indexing, which was originally introduced in SpatialHadoop, in indexing the spatiotem-
poral data.

ST-Hadoop extends it with a temporal support. It implements a single spatiotempo-
ral type called STPoint, which is a triple of (latitude, longitude, time). It can process big 
files of STPoints and evaluate selectivity and join predicates on them (e.g., overlap and 
within_distance). The global index of SpatialHadoop is extended by a temporal slicer 
that partitions the input files into slices according to a given temporal granularity: day, 
week, month. Within every slice, the SpatialHadoop kind of index is built. Accordingly 
the operators will first filter by time, fetch the corresponding slices, and process them 
using temporal extensions of SpatialHadoop operators. ST-Hadoop cannot express the 
notion of a trajectory and cannot accordingly express trajectory level operations such as 
speed, intersects. It is limited to processing sets of discrete temporal points. A detailed 
comparison between ST-Hadoop and our work will be discussed in Sect. 8.

3 � HadoopTrajectory architecture

The goal of the proposed HadoopTrajectory is to develop a spatiotemporal data 
processing framework that is highly scalable and highly available. Therefore, we 
inject the spatiotemporal logic into the core of Hadoop and take advantage of 
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MapReduce running on commodity clusters. On top of this framework, spati-
otemporal big data application can be written.

The proposed HadoopTrajectory includes the following components:

1.	 Indexing in the form of a spatiotemporal 3DR-tree structure, that is used as a 
global index on the whole dataset of moving objects and their trajectories.

2.	 Partitioning the big data files of moving objects into multiple chunks. Partition-
ing is done based on disk page size, preserving the semantic and the structure 
of moving objects (e.g., one moving object shall not be split over multiple parti-
tions).

3.	 Linking each moving object with its metadata that can be in other files. It helps 
answer queries both at the trajectory level and at the moving object level. Note 
that one moving object may have multiple trajectories, e.g., a car performing 
multiple trips.

4.	 Operators to process trajectories, including the computation of movement attrib-
utes (e.g., speed, direction), predicates, and trajectory restriction to space and 
time. Many of these operators utilize the index.

5.	 Jobs in the form of the user MapReduce task that invokes the aforementioned 
components to perform big spatiotemporal data processing.

These components are grouped into the following architectural layers, as 
depicted in Fig.  2. The following enumerates the layers and their components. 
These will be explained in detail in the following sections.

•	 The Storage Layer We extend the HDFS so that it can manage spatiotem-
poral data. The extension has four parts: the spatiotemporal types, the global 
index, the moving object data partitioner and the linker. The global index 
is a spatiotemporal 3DR-tree used to index and filter the moving objects. A 
job can take the advantages of the index if some of its predicates are index 
supported, such as passes and intersects. Accordingly, an index filter can be 
invoked, so that only the result candidates are sent to worker nodes. The parti-
tioner works in combination with the index to split the big data file into blocks 
and to link the moving objects inside the block files to the index. The linker is 
used to link the moving object trajectory information. We build some opera-
tors for creating and scanning the index: IndexCreate, IndexScan and Multi-
ple-IndexScan. For partitioning the big input files, the Partition and the IDS-
can are implemented. Finally, the Link operator is implemented for linking the 
trajectories with other attributes that may exist in the input files (e.g., the car 
license number, owner, the trip purpose, etc).

•	 The MapReduce Layer We extend the Hadoop MapReduce with the support 
functions needed to interact with the storage layer components, e.g., index, 
partitioner, and linker. This includes the functions: IndexFilter, ObjectFilter, 
ObjectFileSplitter, and ObjectRecordReader. The IndexFilter scans the global 
index and retrieves the moving object identifiers that intersect a given spati-
otemporal box. The ObjectFilter is used for queries which require a specific 
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moving object by its ID. The ObjectFileSplitter extends the Hadoop FileSplit-
ter function, so as to be able to split the input files. This function is the main 
component of the Partition operators of the storage layer. Finally, the Objec-
tRecordReader is an extension of the HDFS RecordReader. It allows Hadoop 
to understand the different formats/structures of moving object trajectories. 
For example, we used three datasets in the experiments that come in different 
file structures. Implementing multiple RecordReader classes in hence neces-
sary to cope with this.

•	 The Operation Layer It groups the spatiotemporal operators that can deal with 
the extension types.

4 � Storage layer

In this section, we describe our HDFS extension. First, the idea of the global index 
and its use is explained. We then illustrate the index implementation into HDFS. 
Finally, we explain the partitioner and the linker and their implementation in HDFS.

4.1 � The global index

The global index is applied to the big moving object data files. As Hadoop is 
schemaless and does not have the notion of a relation, we had to implement 
couple of hooks to integrate the index in the HDFS environment. The ultimate 
goal is to filter out the data that has no chance to be among the query results, 
before dispatching the data and the jobs to the cluster nodes. The idea of the 
global index has been proposed in SpatialHadoop. Here, we reuse this idea in 

Storage Layer

Linking Data

Building Global Index
3DRTree

MapReduce Layer

Trajectories
Dataset

IndexFilter ObjectRecordReader

ObjectFilter

Operations Layer
WindowIntersect

IDScanIndexScan Passes

Master

Slave

Trajectory

ZoneTraj

TrajLen
IndexCreate

Partitioning Data

ObjectFileSplitter

Present

atPeriods

User
Queries
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Queries

Taxi
Trajectory

(Kaggle.com)

Link Partition defTime

Fig. 2   The proposed architecture of the HadoopTrajectory
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the context of spatiotemporal data. The global index directly links to the block 
files and understands their partitions and their metadata (i.e., all the information 
that describe the trajectory such as speed, type, etc ). All the information about 
the global index is stored in the master file. It is used to organize the data in the 
other nodes for more efficient update and faster access. The data is divided into 
many partitions and stored in the worker nodes. The global index serves as a pri-
mary mean to uniquely identify partitions in the worker nodes.

We have implemented two index structures, from which the user can choose 
Grid and R-tree. The Grid is a space partitioning structure that splits the 3D 
extent of the input data into cubes, each of which is mapped to one or many files. 
This structure allows that one trajectory spans multiple grid cells. The 3DR-tree 
is a data partitioning structure that stores the 3D bounding boxes of the trajec-
tories. Both indexes support queries based on spatiotemporal windows. All the 
information about the index is stored in the main memory of the master node. 
The index maps the bounding boxes directly to the partitioned files, so that the 
big input files are not anymore used. We allow for two granularities in creat-
ing an index: the trajectory and the moving object. In the trajectory granularity, 
one 3D box per trajectory is stored into the index, whereas in the moving object 
granularity, the 3D boxes of all the trajectories that belong to the same moving 
object are unioned into a single 3D box, and this box is stored into the index.

Consider a job of MapReduce that needs to perform a spatiotemporal filter on 
the data. As illustrated in Fig. 3, it will pass the requested spatiotemporal range 
of the query to the index. The index will apply filtering methods and search its 
internal structure for the overlapping trajectories and return their identifiers. The 
scanner (i.e., partitions scanning process) will then identify the files/partitions 
that contain the data of these trajectories, open each file only once, and retrieve 
all its associated trajectory data. The opening and reading of a file is imple-
mented via a TrajectoryInputSplit, which is our extension to the Hadoop Input-
Split object. To this end, the index access terminates. As will be explained in 
Sect. 6, the data of these trajectories will be again partitioned over multiple files 
and distributed over the worker nodes to further execute the task.

Matching With The Global
Index

Partitions

Filtering
methods

Scanning

Required Data

Scanning
methods

P1 P2 P3P

Requested Range Query

Fig. 3   Global index description
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4.2 � The partitioner

The goal of the partitioning is to split the big input files into multiple smaller ones, 
so that they can be managed more efficiently. Additionally the partitioner will create 
a master file that maps trajectory identifiers to the partitions/files that contain their 
data (i.e., a hash map). The partitioning is done independently from the indexing. 
There are two major considerations for trajectories data partitioning. The first is to 
avoid the examination of many trajectories to obtain the desired ones (i.e., favoring 
small partitions). The second is to avoid the distribution of the trajectory segments 
over many files. That is, a single moving object trajectory consists of a list of seg-
ments, each of which describes a part of the movement. This requirement in contrast 
to the previous one might result in bigger partitions. Yet, it is important to avoid 
scanning many blocks to retrieve the information about a specific moving object.

We have performed an experiment with multiple partition sizes to assess a good 
size choice. Figure 4 shows the access time of selecting a random trajectory from 
the HDFS blocks. The data were generated using BerlinMOD benchmark (Düntgen 
et al. 2009) with scale factors of 2, 10. The scale factor is the parameter by which 
one can control the size of the generated data by BerlinMOD. For instance, when 
it is set to be 1, trajectories of 2000 vehicles running on the street network of Ber-
lin for 28 days are simulated, requiring about 11 GB of disk space. Increasing this 
number will exponentially increase both the number of vehicles and the simulation 
duration and vice versa. BerlinMOD generates the data in the SECONDO format, 
which follows the sliced representation of moving objects in Forlizzi et al. (2000). 
In this representation, a trajectory is a sequence of so-called units, each of which is a 
tuple  <start time, end time, start point, end point>.

With a block size of 128 MB, the access time to retrieve the units of the trajec-
tories increases because it needs to iterate over many objects in one file. Note that 
the file is the data access unit. The default block size of Hadoop 1, 2 is 64 MB and 
128 MB, respectively. In our case, a file of such size will contain many objects with 
many trajectories which can negatively affect the performance gain of the index. 
Therefore, we alter this setting and use smaller block sizes. We have experimented 

Fig. 4   The access times of selecting moving objects
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with different block sizes and found that the time constantly decreases with the 
decrease in the block size, e.g., 64 MB, 32 MB, and up to the last value, which 
is called the default block size of the operating system. As it is not possible to go 
beyond the OS block size, we choose it. Using the default page size is also an advan-
tage when the memory is small since it does not require using a large RAM space in 
the worker nodes.

Table 1 shows, on the other hand, the time cost of partitioning. The data is parti-
tioned into chunks of different sizes: 128 MB, 64 MB, 32 MB, and the default page 
size of 4 MB. The smaller the block size, the more time the partitioning takes.

4.3 � The linker

We allow that the input files include other attributes besides the trajectory attribute. 
These attributes are required to be given in separate files, using the same identifier 
as the one used in the trajectory files. For instance, an input can reflect the schema:

<Id, car model, plate number, trajectory>
To pass this input, it is required to have in one file the attributes: Id, car model, 

and license number. The trajectory file must then contain the attributes: Id, trajec-
tory. A sample of the input files of such a schema is illustrated in Fig. 5. The job of 
the linker is similar to that of the partitioner, yet on the attribute files.

4.4 � Spatiotemporal data types

The types that we have implemented have been inspired from the MOD model in 
Güting et al. (2000). Specifically, these types have been implemented: instant, inter-
val, periods, points, regions, trajSegment, trajectory. The three time types instant, 
interval, and periods represent a single timestamp, a time interval, and a set of time 

Table 1   The cost of partitioning Block size Scale 2 cost (s) Scale 10 cost (s)

128 MB 648 2516
64 MB 537 2164
32 MB 589 2278
Default page size 712 2449

selfiatadateMeliFseirotcejarT
Id Trajectory Id Model Plate
101 ((2007-05-28-08:36,2007-05-28-

08:37,4.11,1308,12793,1310),(2007-
05-28-08:37,2007-05-28-
08:38,12793,1310,12808,1314),...)

101 BMW B-RL01

102 ((2007-05-28-08:52:53,2007-05-28-
08:52:55,9716,-55,9716.93,-46.7183),...)

102 Toyota B-TX13

103 ((2007-05-28-09:03:00,2007-05-28-
09:03:02,7324,7804,7298,7832))

103 BMW B-ZV11

Fig. 5   Stored trajectories information
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intervals, respectively. The two spatial types points and regions have been added to 
the spatial types in SpatialHadoop. The trajSegment type represents a segment of 
the trajectory (i.e., a linear interpolation between two consecutive location observa-
tions). The trajectory type is a list of trajSegments, ordered by time. Most of these 
types of system has been proposed in a previous work (Güting et al. 2000).

These types have been carefully integrated into the core of Hadoop with cor-
responding HDFS input/output formatters and splitters. Since Hadoop accepts its 
input in the form of files, we have also defined certain file formats for each of these 
types. Conceptually, the data are organized in this hierarchy: 

Moving Object: <Id, List<Trajectory> >
Trajectory: <Id, List<Segment> >
Segment: <Tstart, Tend, X1, Y1, X2, Y2>
TrajectoryData: <Id, Car model, ...etc>

For more flexibility, multiple file formats have been defined for some types. Our 
extension will expect that the input files respect these formats. For the trajectory 
type, for instance, one file format would expect one trajectory per line, encoded in a 
nested way: one pair of brackets for the whole trajectory within which every x, y, t 
observation is enclosed in a pair of brackets. Another accepted format is to put each 
trajectory in multiple lines, where each line is a single segment: Id, t1, t2, x1, y1, x2, y2 , 
where the Id identifies the trajectory and will be repeated for all its segments.

4.5 � Index operators

The proposed HadoopTrajectory provides operators for building and scanning mov-
ing object trajectories. These operators are described in details in the following:

IndexCreate This operator creates for the input trajectory file, either a Grid or a 
R-Tree as described in Sect. 4.1. The index is stored in multiple files: a master file 
that contains the index structure and multiple data files. In the Grid, a data file will 
contain the identifiers of one cube cell. In the R-Tree, a data file will contain the 
identifiers in a leaf node in the tree. The operator can either be used to index indi-
vidual trajectories or to index the moving objects, where one moving object might 
have multiple trajectories.

The operator accepts six parameters, namely input directory, output directory, 
index type, granularity, trajectory files, and the overwrite flag. The input directory in 
conjunction with the trajectory files defines the input data. The input directory might 
contain other files, for instance those containing descriptive attributes. These will 
be ignored by the operator. The index type can be set to either Grid or R-Tree. The 
granularity parameter determines whether to index individual trajectory or mov-
ing objects. In the case of trajectory granularity, the input file is expected to have 
a single identifier column. In the case of moving object granularity, two identifiers 
are expected: object identifier and a trajectory identifier. Finally, the overwrite flag 
instructs the operator to first delete existing indexes. If this flag is not set, and older 
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indexes exist, an error will be raised. The next command describes how to use the 
IndexCreate operator: 

IndexCreate input: <input> output: <output>
indexType: <Grid or R-tree>
granularity: <MO or Traj>
trajFiles: <trajectories files> -overwrite

IndexScan This is the operator for searching the index. It scans the index and 
extracts the chosen granularity identifiers that have chances to overlap the search 
window. The index is built on the 3DMBR or the trajectories; hence, a refine step 
is necessary by evaluating the predicate on the filter results. The resulting identi-
fiers are returned as an in-memory list to the calling operator. Average run times for 
the different scale factors of BerlinoMOD data are shown in Fig. 6. It accepts three 
parameters: the input directory, output directory, and (queryRange or point). The 
input directory points to the index file. The index can be queried either using a range 
or point. In either cases, it will return the overlapping trajectory identifiers. The syn-
tax of the operator is as follows: 

indexScan indexInput:<Index> output:<Output>
queryRange:<t1,t2,x1,y1,x2,y2>
(or queryPoint: <x,y,t>)

MIndexScan MIndexScan stands for Multiple IndexScan is an efficient version of 
the previous operator whenever it is required to query the index using multiple query 
ranges and points. Calling this function once, in comparison with calling IndexScan 
multiple times, saves the time of loading the index into the main memory, which 
would happen many times in the case of calling the IndexScan many times. Addi-
tionally, if there are duplicates in the query points/ranges, the MIndexScan will scan 
the index one per different query.

Fig. 6   Scanning the index on different BerlinMod scales
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The comparison in Fig.  7 is between the single call of the MIndexScan and 
the corresponding multiple calls of the IndexScan operator. The operator accepts 
three parameters: input directory, output directory, and (queryRanges or points). 
The input directory contains the index location. The (points or queryRanges) 
parameter points to a file that contains the query points or regions. The operator 
has the following syntax: 

MIndexScan indexInput:<Index> output:<Output>
queryRanges: <file>
(or queryPoint: <file>)

Partition This operator partitions the input files into smaller ones and stores them 
in HDFS. It is described in detail in Sect. 4.2. The mapping between trajectory iden-
tifiers and the files/partitions is stored in a master file. This facilitates accessing the 
trajectories by their identifiers. The operator accepts three parameters: the input 
directory, the output directory, and the granularity. Similar to the IndexCreate, this 
operator can perform on two granularities: trajectory and moving object. It has the 
following syntax: 

Partition input:<input> output:<output>
granularity: <MO or traj>

Link As described before, the trajectory can have descriptive attributes in other 
files. The Link operator splits them into smaller files for the efficient access, in a 
similar way as the Partition operator. It accepts three parameters: input directory, 
output directory, and granularity. The syntax is as follows: 

Fig. 7   The comparison between IndexScan and MIndexScan
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IDScan To perform a query on the data of a specific moving object or a spe-
cific trajectory, the IDScan operator can be used. For example, find all trajectories of 
vehicle number “1025” from 02:30 to 23:00. The IDScan operator is used to identify 
and fetch the files/partitions that contain that trajectory data, as well as the descrip-
tive attributes. It will then sequentially scan these files and fetch the specific objects 
of the query. The operator accepts four parameters: the two input directories, the 
output directory, and the moving object identifier (or trajectory identifier). The input 
is the partitioned files (i.e., the output directories of the Partition and the Link opera-
tors). Following is the syntax: 

WindowIntersect The operator integrates both the IndexScan and the IDScan 
operators. It starts by calling the IndexScan operator using the given range or point. 
For the resulting identifiers, it calls the IDScan to fetch the trajectory data of these 
identifiers. This operator is the most used index access interface. It accepts four 
parameters: indexInput directory, trajectory directory, queryRange, and queryPoint, 
as in the following syntax: 

WindowIntersect indexInput:<index directory>
partitionsInput:<trajectory directory>
output:<output> queryRange:<t1, t2, x1, y1, x2, y2>
(or queryPoint: <x, y, t>)

MWindowIntersect The operator is like the previous one, but it can process mul-
tiple ranges or multiple points by calling MIndexScan. It accepts four parameters: 
indexInput directory, trajectory directory, queryRanges and queryPoints, as in the 
following syntax: 

MWindowIntersect indexInput:<index directory>
partitionsInput:<trajectory directory>
output:<output> queryRanges: <file>
(or queryPoint: <file>)

5 � MapReduce layer

This section describes the part of the extension that is applied to the Hadoop 
MapReduce layer. The main role of this layer is to invoke the storage layer opera-
tors and prepare the individual tasks for the individual mappers. Figure 8 shows the 
architecture of this MapReduce layer extension. It consists of two main components: 
the file splitters and the trajectory record readers.

Link input:<input> output:<output>
granularity: <Mo or Traj>

IDScan trajInput:<trajectory input>
descInput:<descriptive input>
<output> Id:<MOId or TrajId>
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Hadoop provides a FileSplitter class that is used to split the input files into n 
splits and distribute them to all mappers. It is a process that runs on the master node 
of the Hadoop cluster. The TrajectoryFileSplitter is an extension to the Hadoop File-
Splitter which understands the file format of the trajectories. Whenever a MapRe-
duce job asks to process big trajectory files, the TrajectoryFileSplitter is invoked to 
produce n splits of the file and distribute them over the worker nodes. Note that the 
file format of a trajectory file is fundamentally different than any file format that the 
Hadoop FileSplitter can deal with. Hadoop file splitters cannot deal with data values 
that span multiple lines. Our TrajectoryFileSplitter is so flexible to perform this task. 
As mentioned in Sect. 4.4, different trajectory file formats can be accepted. Accord-
ingly, multiple TrajectoryFileSplitter class had to be implemented. Here, we refer to 
all of them using the name TrajectoryFileSplitter.

The TrajectoryFileSplitter also understands the global index of the storage layer. 
That is, instead of operating over the whole input files, it operates over the result 
of the global index, i.e., IndexScan and IDScan. The user, while writing a MapRe-
duce task, has the possibility to invoke the global index. The TrajectoryFileSplitter 
applies the IndexScan or the IDScan functions on the master file to select the mov-
ing objects that will be processed by the mappers based on a query window or a 
query Id, respectively.

The TrajectoryRecordReader is a process that runs on every mapper. It will parse 
the received split into key value pairs, where the key is the trajectory Id and the 
value is the trajectory data. This is a necessary step that is required before the map-
per function starts. The TrajectoryRecordReader extends the Hadoop RecordReader 
so that it can understand the trajectory file format. Again, we have implemented 
multiple TrajectoryRecordReader classes to deal with the different possible trajec-
tory file formats. All the trajectory file splitters and the trajectory record readers 
have been implemented in two variants: one for the trajectory granularity and the 
second for the moving object granularity.

6 � Operation layer

The combination of the storage layer extension with the new features in the 
MapReduce layer extension allows for efficient realization of many moving object 
operators. These operators are themselves MapReduce jobs. They can be used in 

HDFS

MOFileSplitter
TrajFileSplitter

IndexScan - IDScan

MORecordReader
TrajRecordReader

Map
<Id, MO>

or
<Id, Traj>

Split 1

MORecordReader
TrajRecordReader

MapSplit n
<Id, MO>

or
<Id, Traj>

Fig. 8   The MapReduce extension architecture
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the users’ MapReduce code to express more complex tasks. In this section, we 
describe some representative operators.

6.1 � Passes

The Passes operator is a MapReduce job used to find all moving objects that have 
passed a specific spatial point. It calls the WindowIntersect operator to filter the 
trajectories using the index and stores the candidate trajectories on desk. Then it 
creates a new job, which is responsible for checking and retrieving the trajecto-
ries which passes the point (i.e., the refine step). This job consists of one mapper 
class. If the granularity is at the object level, this operator will retrieve and match 
all the trajectories that are related to this moving object and checks whether any 
of them passes the spatial point. In trajectory granularity, a bounding box is cal-
culated for every trajectory, which increases the efficiency of the index. The oper-
ator accepts five parameters called indexInput, partitionsInput, output, point, and 
shape. The indexInput parameter is the HDFS directory that contains the index 
files. The partitionsInput parameter points to the partitions in HDFS. The point 
parameter is the spatial point on which the passes condition is checked. The syn-
tax is as follows: 

Passes indexInput:<Input>
partitionsInput:<Input> output:<output>
point:<x,y,t>

6.2 � Trajectory

Trajectory operator is used to retrieve the specific moving object trajectory based 
on the identifier. It retrieves all the segments of a moving object trajectory. This 
operator calls the IDScan operator to access the storage layer for retrieving the 
trajectory segments. This operator can be applied on both object and trajectory 
granularities. For the object granularity, it produces the spatial projection of all 
the trajectories of the given object. For the trajectory granularity, it projects only 
the asked trajectory. This operator takes three or four parameters: input directory, 
output directory, the moving object identifier, or (the trajectory identifier). Fol-
lowing is the syntax: 

Trajectory partitionsInput: <Input> output:<Output>
objectID (or trajID): <Identifier>

6.3 � Length

The Length operator is used to compute the driving distance of the moving 
object trajectory. It is the path that a moving object follows through space as a 
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function of time. The operator firstly calls the IDScan operator for retrieving the 
segments of a moving object trajectory. Then, it creates a job for calculating the 
length of this trajectory. This job consists of one mapper and reducer classes. 
The mapper class is responsible for calculating the length of an individual seg-
ment, and the reducer class is responsible for summing the lengths of all trajec-
tory segments. This operator can again work on both granularities: object and 
trajectory. This operator takes three or four parameters: input directory, output 
directory, the moving object identifier, or (the trajectory identifier). The input 
represents the partitions directory stored in HDFS. The trajectory identifier 
parameter is used to define a specific trajectory. The syntax 

Length partitionsInput: <Input> output:<Output>
objectID (or trajID): <Identifier>

6.4 � ZoneTraj

This operator is used to retrieve set of moving objects in a specific region sur-
rounding a point of interest. It is very similar to the Passes operator except that 
the query argument is a circle defined by the user. The query zone is passed as x, 
y, r, t where x and y are the coordinates of the center of attention, r is the radius 
of the coverage, and t is the timestamp. The operator calls the WindowIntersect 
operator to retrieve all the objects in the zone. This operator is useful in discover-
ing the vehicles that are in an accident place. It works both in the object granu-
larity and in the trajectory granularity. The operator takes the four inputs called 
indexInput, partitionsInput, output directories, and zone attribute. The value of 
zone attribute is defined as x,y, and radius. The following is the syntax: 

ZoneTraj indexInput:<Input>
partitionsInput:<Input>
output:<output> zone:<x,y,radius,t>

7 � Using HadoopTrajectory

This section illustrates the use of HadoopTrajectory in the MapReduce jobs. First, 
the user needs to decide the data access method, either processing the whole input 
files or using one of the index access methods of the storage layer. Clearly, this deci-
sion depends on the task to be implemented. Most of the spatiotemporal filtering 
tasks can benefit the IndexScan operator.

The first example answers the query: what is the driving distance that each of the 
visitors of a shopping mall had to drive, assuming that we have all the car trajecto-
ries of the city. Such a query can be expressed by aggregating the length of trajec-
tories that passed the mall location. Since all the operators needed to express this 
query are implemented in HadoopTrajectory, the user function is simply a sequence 
of operator calls as follows: 
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In this example, the Passes operator will be used; thus, it makes sense to use the 
IndexScan access function. Its result is passed to the IDScan operator for fetching 
the data of all the trajectories that pass the query point. Then the Length operator 
is called on these trajectories to compute their travel distance in meters. Because 
the operators Passes, Length exist in HadoopTrajectory, they can be directly called 
in the user code, without the need to specifically write MapReduce jobs for them. 
Indeed calling each of them will initialize a MapReduce job in the back-end.

The second example analyzes the trajectories with the goal of extracting trip 
information (start point, end point, start time, end time). For this, there is no direct 
operator in HadoopTrajectory, rather a MapReduce job has to be implemented by 
the user using HadoopTrajectory types and primitive operations. 

ExtractTripInformation( InputDirectory, AnalysisOutDirectory )
{

JobConf conf=new JobConf("job.class");
conf.setJobName("job");
conf.setJarByClass(job.class);
conf.setInputFormat(TrajInputFormat.class);
TrajInputFormat.addInputPath(conf,

new Path(InputDirectory));
conf.setOutputFormat(TextOutputFormat.class);
TextOutputFormat.setOutputPath(conf,

new Path(AnalysisOutDirectory));
conf.setMapperClass(AnaysisMapper.class);
conf.setOutputKeyClass(LongWritable.class);
conf.setOutputValueClass(Text.class);
conf.setNumReduceTasks(0);
JobClient.runJob(conf);

}
AnalysisMapper(K, V)
{

String result=V.getStartPoint();
result+=","+V.getLastPoint();
result+=","+V.segments.get(0).timeStart;
result+=","+V.size();
Text text=new Text(result);
outputCollector.collect(K,text);

}

AnalyzeTrajectories(TrajectoryDirectory, IndexDirectory, QueryPoint)
{

IndexScan(IndexDirectory, IndexScanOutDirectory, QueryPoint);
IDScan(TrajectoryDirectory, IDScanOutDirectory,

IndexScanOutDirectory);
Passes(IDScanOutDirectory, PassesOutDirectory, QueryPoint);
Length(PassesOutDirectory, TrajLengthOutDirectory);

}
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It sets the configurations of a MapReduce job, i.e., the object conf, and then runs 
the job. The mapper function is illustrated in the AnalysisMapper code segment. It 
basically computes trajectory attributes such as the starting point, ending point, etc.

8 � Experimental evaluation

This section experimentally evaluates HadoopTrajectory on different datasets 
and different analysis tasks. In the following, three experiments are presented and 
discussed.

For the purpose of comparison, four environments are setup; Distributed SEC-
ONDO, standard Hadoop, the HadoopTrajectory, and ST-Hadoop. A dedicated clus-
ter is used in all the experiments. It consists of three nodes. Two of them have quad 
cores i7-3770 CPU 3.40 GHz, 32 GB RAM, HDD of 1 TB running Ubuntu 14.04. 
The third node has 2 core i5-4210U CPU 2.40 GHz, 8 GB RAM, running Ubuntu 
14.04.

To make a comprehensive comparison, we use two different datasets: (1) Ber-
linMOD benchmark dataset (Düntgen et al. 2009) as synthetic data and (2) the taxi 
trajectory dataset as real data (https​://www.kaggl​e.com). These file formats of these 
datasets are quite different, yet our HadoopTrajectory contains the methods that 
can deal with them. On the two datasets, we execute a set of queries that will be 
described in more detail in the coming section.

BerlinMOD is a benchmark for moving object databases. It contains a data gen-
erator that simulates the movement of cars in the city of Berlin and records their 
tracks. The generator simulated the commutes from home to work and back to home. 
With some probability, the cars also do leisure trips. The simulator is adjusted in 
many ways to mimic real-life scenarios. The size of the generated data can be con-
figured with a parameter called scale factor as described in Sect. 4.2. Additionally, 
BerlinMOD has a set of 26 benchmark queries covering the functions of a moving 
object database system; selections, joins, nearest neighbor, etc. In this experiment, 
we evaluate 8 queries for which the required operators have been implemented.

BerlinMOD generates a table Cars and another table Trips. The first stores a sin-
gle trajectory per vehicle that represents its complete track over all the simulation 
days (i.e., object granularity). The trips table stores one trajectory per every individ-
ual trip of the vehicle (i.e., trajectory granularity). Other look-up tables are created 
to form the queries as follows:

•	 QueryLicences 100 vehicle licenses chosen at random from the base table of car 
data. It contains vehicle identifier, license, car type, and car model.

•	 QueryPoints 100 point chosen at random from trips data table. Thus each point 
is traversed by at least one trip.

•	 QueryRegions 100 random regions (convex polygons) with varying sizes in Ber-
lin.

•	 QueryInstants 100 instant chosen at random that fall in the simulation timespan.

https://www.kaggle.com
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•	 QueryPeriods 100 temporal intervals generated at random that overlap the simu-
lation timespan.

The taxi trajectory dataset contains the GPS observations of a complete year (from 
01/07/2013 to 30/06/2014) of 442 taxis running in the city of Porto, in Portugal 
(https​://www.kaggl​e.com). These taxis operate through a taxi dispatch central, using 
mobile data terminals installed in the vehicles. The dataset contains 1,710,671 tra-
jectories and has a disk storage size of 1.9 GB.

8.1 � Query efficiency

We compare four platforms in terms of execution time: (1) HadoopTrajectory, (2) 
Standard Hadoop, (3) Distributed SECONDO (Nidzwetzki and Güting 2015), and 
(4) ST-Hadoop (Alarabi and Mokbel 2017). The used Hadoop version is 2.7.3. 
The Distributed SECONDO version was downloaded from the SECONDO Web-
site1 on 6/7/2017. The used ST-Hadoop version was downloaded from GitHub2 
on 10/8/2018.

Both HadoopTrajectory and Distributed SECONDO can represent trajectories 
and manipulate them. Therefore, we compare the two frameworks using Berlin-
MOD queries and data. Comparing with standard Hadoop has been accomplished 
by using the data types of our extension, yet without the other components of 
indexing, partitioning, and linking. The goal is to evaluate the gain of the index. 
We also compare with ST-Hadoop (Alarabi and Mokbel 2017). As ST-Hadoop 
does not implement a type for trajectories, and rather uses a timestamped point 
type, it was not possible to express all the experimental queries on it, so we dis-
cuss it later in this section.

BerlinMOD data is generated at different scale factors starting from 1 (5 GB) to 
12 (63 GB). The goal is to test the index efficiency using windows of different sizes. 
First, we compare the index creation process in HadoopTrajectory and Distributed 
SECONDO. Index creation in our HadoopTrajectory takes less time than Distrib-
uted SECONDO for big datasets as illustrated in Fig. 9. Note that the indexing, par-
titioning and linking can all run in parallel, which makes the whole process quite 
efficient.

Figure 10 illustrates the run times of the following BerlinMOD queries:

(a)	 What are the models of the vehicles with license plate numbers from QueryLi-
cences? It is not a spatiotemporal query.

(b)	 Where have the vehicles with licenses from QueryLicences1 been at each of the 
instants from QueryInstants1? It is a spatiotemporal query.

(c)	 Which license plate numbers belong to vehicles that have passed the points from 
QueryPoints? It is a spatiotemporal query.

1  http://dna.fernu​ni-hagen​.de/ secon​do.
2  https​://githu​b.com/lmara​bi/st-hadoo​p.

https://www.kaggle.com
http://dna.fernuni-hagen.de/%20secondo
https://github.com/lmarabi/st-hadoop
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(d)	 What is the longest distance that was travelled by a vehicle during each of the 
periods from QueryPeriods?. It is a spatiotemporal query.

(e)	 List the pairs of licenses for vehicles, the first from QueryLicences1, the second 
from QueryLicences2, where the corresponding vehicles are both present within 
a region from QueryRegions1 during a period from QueryPeriod1, but do not 
meet each other there and then.? It is a spatiotemporal query.

(f)	 Which points from QueryPoints have been visited by a maximum number of 
different vehicles?. It is a spatiotemporal query.

As illustrated in Fig. 10a, distributed SECONDO takes less time than the other two 
solutions because the Hadoop-based solutions have the high overhead of distributing 
the required trajectories to the worker nodes. For simple queries such as this one, the 
overhead is more dominant over the distribution benefit.

Figure  10b shows the ability of our framework to apply the aggregation func-
tions by using filtering methods before running these aggregations. Hadoop takes 
the largest time because it needs to check all moving objects trajectories. As shown 
in Fig. 10c, the proposed HadoopTrajectory framework utilizes the HDFS extension 
to achieve the best performance and minimize the running time. It is similar to query 
(d), but this query contains more operations. After filtering the moving objects, we 
need to calculate the length of each trajectory which meet the conditions. Then, we 
apply max function to get the largest distance between all moving objects.

In Fig.  10d, our HadoopTrajectory takes less time than distributed SECONDO 
and Hadoop. The implementation of the query in Distributed SECONDO is very 
complicated and it needs to call many operations and to use many indexes. Fig-
ure  10e demonstrates the MIndexScan operator. This operator filters all moving 
objects data and selects objects that overlap with the points in QueryPoints file.

On the taxi trajectory dataset, the following analysis tasks have been 
implemented:

•	 What is the longest trip?
•	 What are the stop points for each trip?
•	 How many trips starts from the city center, another place or random street?

Fig. 9   Time to index different BerlinMOD scale factors
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•	 How many trips occurred based on phone call?
•	 What is the average number of trips per day?

These tasks have been executed for different durations; a specific day, a month, 
or a year. They have also been executed for different grouping levels; per vehicle 
and all trips. For instance, the first analysis task when executed for a January 
2014 and the vehicle grouping level reads as follows: What is the longest trip per 
taxi vehicle, during January 2014. When the same task is executed for all trips, it 
reads as follows: what is the longest trip among all the input trips during January 
2014.

Figure 11a illustrates the average run times of the five analysis tasks, on the vehi-
cle grouping level. The comparison is done between standard Hadoop and Hadoop-
Trajectory. The run time comparison for the all trips grouping level is illustrated in 
Fig. 11b. As expected, the proposed extension out performs the standard Hadoop, 
thanks to the indexing, partitioning, and linking components.

Another comparison between the proposed extension and ST-Hadoop, we imple-
mented this comparison by using one node. The specifications are Intel i7-7800 3.4 
GHz of 6 cores, 32 GB DDR4 memory, and 1 TB SSD storage. We use Hadoop 

Fig. 10   The run times of the six BerlinMOD queries on the three platforms

Fig. 11   a Runtime of the query find the longest trip per taxi vehicle, b runtime of the query find the long-
est trip among all the input trips 
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2.7.2 and Java 1.8 running on Ubuntu 18.04. We have implemented query (c) in ST-
Hadoop and compared it with HadoopTrajectory. This was the only query among 
our experimental queries that could be implemented with the available types and 
operations in ST-Hadoop.

Figure  12 shows that HadoopTrajectory outperforms ST-Hadoop in processing 
such those kinds of trajectories. This query requires to load QueryPoints and Data-
MCar files to find what are the moving objects that have passed each point in the 
QueryPoints file. In HadoopTrajectory, this maps to an MIndexScan followed by 
the Passes predicate. In ST-Hadoop, the query is implemented as a MapReduce job, 
where the reduce is not really required. The mapper called the ST-Hadoop index 
scan operator (STRangeQuery) for every point in QueryPoints to retrieve the can-
didate objects. We had to implement in the mapper the logic of line intersects point 
to check whether a query point falls on the interpolated line between two trajectory 
points. We had to do this, as ST-Hadoop does not provide a passes operator nor 

Fig. 12   Runtimes of query (c) by using different dataset sizes

Table 2   Expressiveness comparison with ST-Hadoop

ST-Hadoop HadoopTrajectory

Types STPoint, STPointTweets, STPointTrajectory, 
Slice, Point

MovingObject, Trajectory, 
TrajSegment, TrajData, Points, 
Regions, Periods, Interval, 
Instant, Point

Operators STJoin, STJoins, STRangeQuery, STHash Passes, Traj, Length, ZoneTraj, 
AtInstant, AtPeriod, DefTime, 
WindowIntersect, Present, Parti-
tion, Link, IDScan, IndexScan, 
MIndexScan, MWindowIntersect
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a trajectory data type. Table 2 lists the supported types and operators in both ST-
Hadoop and HadoopTrajectory.

9 � Conclusion

In order to process massive amounts of moving objects data, a HadoopTrajectory 
is proposed in this paper. Initially, we have carried out an extensive survey of the 
literature, which confirmed our initial hypothesis that there is a lack of support for 
big spatiotemporal data processing. Accordingly, we worked to fill-in this gap by 
extending Hadoop with trajectory data types. The standard behavior of HDFS would 
distribute all the moving object data of the big input file to the cluster nodes. In 
many cases, it is possible to filter the trajectories beforehand by means of indexing 
and ignore those that have no chance to contribute to the result. Accordingly, a 3DR-
tree index was implemented. Again, it had to be carefully integrated into the Hadoop 
framework. We have extended all the Hadoop framework layers to accommodate the 
index. The index itself and the associated physical file management routines have 
been added to the HDFS storage layer. The MapReduce layer has been extended 
with index access and management methods, that can be invoked from within the 
operators and the user programs. Our spatiotemporal data management operators 
have been further extended to make use of this indexing infrastructure. Finally, we 
have rewritten the BerlinMOD queries using this optimization and extensively eval-
uated the performance gain, which showed a notable advantage.
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