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Abstract—We are on the cusp of a new era of connected
autonomous vehicles with unprecedented user experiences,
tremendously improved road safety and air quality, highly
diverse transportation environments and use cases, as well as a
plethora of advanced applications. Realizing this grand vision
requires a significantly enhanced vehicle-to-everything (V2X)
communication network which should be extremely intelligent
and capable of concurrently supporting hyper-fast, ultra-reliable,
and low-latency massive information exchange. It is anticipated
that the sixth-generation (6G) communication systems will fulfill
these requirements of the next-generation V2X. In this article,
we outline a series of key enabling technologies from a range
of domains, such as new materials, algorithms, and system
architectures. Aiming for truly intelligent transportation systems,
we envision that machine learning will play an instrumental role
for advanced vehicular communication and networking. To this
end, we provide an overview on the recent advances of machine
learning in 6G vehicular networks. To stimulate future research
in this area, we discuss the strength, open challenges, maturity,
and enhancing areas of these technologies.
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I. INTRODUCTION

In recent years, vehicle-to-everything (V2X) communication
has attracted significant research interest by both

academia and industry. As a key enabler for intelligent
transportation systems (ITS), V2X encompasses a broad
range of wireless technologies including vehicle-to-vehicle
(V2V) communications, vehicle-to-infrastructure (V2I)
communications, and vehicle-to-pedestrian (V2P)
communications), as well as communications with vulnerable
road users (VRUs), and with cloud networks (V2N) [1].
The grand vision is that V2X communications, supported
by the sixth generation (6G) of wireless systems [2],
will be an instrumental element of future connected
autonomous vehicles. Furthermore, V2X communications
will bring far-reaching and transformative benefits such as
unprecedented user experience, tremendously improved road
safety and air quality, diverse transportation applications and
use cases, as well as a plethora of advanced applications.

Attempts to enable these applications are built upon the
existing V2X communication technologies, such as dedicated
short-range communication (DSRC) and cellular-V2X
(C-V2X) [3]. DSRC is a wireless communication technology
dedicated to automotive and ITS applications. For decades,
DSRC has been the only technology for V2X communication.
In dense and high-mobility environments, however, DSRC
suffers from major drawbacks such as limited coverage, low
data rate, limited quality-of-service (QoS) guarantees, and
unbounded channel access delay. Leveraging standard cellular
technologies, 3GPP has been developing the cellular vehicular
communications standard, known as C-V2X. C-V2X enables
every vehicle to communicate with different entities of a
V2X network (such as V2V, V2I, V2P, and V2N) [4]. In
March 2017, 3GPP Release 14 proposed using an LTE
network for V2X communication with two air interfaces:
a wide area network LTE interface (LTE-Uu) and a direct
communications interface (PC5, also known as LTE side-link).
The LTE-Uu is responsible for vehicle to network (V2N)
communication, while the LTE side-link is responsible for
V2V and V2I communications, which may operate without
support from the cellular network infrastructure [5]. The
main focus of Release 14 is to deliver data transport services
for fundamental road safety services such as cooperative
awareness messages (CAM), basic safety messages (BSM), or
decentralized environmental notification messages (DENM).
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Fig. 1: Evolution of V2X communications.
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Fig. 2: Overview of V2X communications.

In Release 15 (announced in 2019), 5G New Radio (5G
NR) V2X technology was introduced to support advanced
V2X services such as vehicle platooning, advanced driver
assistance, remote driving, and extended sensors [6], [7].
In addition, the performance of PC5 interface has been
enhanced in Release 15 (known as LTE-eV2X) in terms
of higher reliability (employing transmit diversity), lower
latency (with the aid of resource selection window reduction),
and higher data rates (using carrier aggregation and higher
order modulation e.g., 64-QAM), while retaining backward
compatibility with Release 14 LTE-V2X. Note that 3GPP
has recently announced the second phase of 5G NR in
Release 16, which aims at bringing enhanced ultra reliable
low latency communication (URLLC) and higher throughput.
The evolution of V2X communications is summarized in 26
Fig. 1.

A. Why 6G V2X?
Although 5G-NR V2X offers improved performance with

advanced services, its improved performance is achieved
through investing more in spectral and hardware resources

while inheriting the underlying mechanisms and system
architectures of LTE-based V2X [8]. Meanwhile, it is
anticipated that the number of autonomous vehicles will
grow rapidly in the future due to urbanization, increased
living standards, and technological advancements. This will
drive an explosive growth of communications devices and
digital applications to enable intelligent autonomous vehicles.
In addition, the rising demand for many emerging services
in autonomous vehicles ranging from 3D displays that
offer more depth and more natural viewing experience
and free-floating, to holographic control display systems, to
immersive entertainment, to improved in-car infotainment, will
bring forth new communication challenges to the V2X network
[8]–[12]. All these advances will drastically push the capacity
limits of existing wireless networks, posing new scientific
and technical challenges for vehicular networks in terms of
data rate, latency, coverage, spectral/energy/cost efficiency,
intelligence level, networking, and security, among others.

With this vision in mind, 5G NR-based V2X networks
may be unable to meet such a wide range of requirements
and use cases. Moreover, while the concepts associated



TABLE I: An Overview of Key 6G-V2X Technologies

Category Technology Strength Open Challenges Maturity Enhancing Areas

Revolutionary Tech.

Programmable
V2X Environment

• Intelligent V2X environments;
• Effective mitigation of path

loss, shadowing, multipath and
Doppler effect

• Reflection optimization
• Channel estimation in highly dynamic

V2X environment
FFFFF PHY layer

Tactile
Communications

• Real-time transmission of haptic
information

• Enhanced vehicle platooning
and remote driving

• Simultaneous requirements for high rates,
ultra-low latency, and high reliability in
high mobility environments

• Suitable codecs and efficient
reconstruction for the haptic data

FFFFF Haptic interactions

Quantum
Computing

• Superior computational
capability

• Enhanced security

• Design of quantum devices
• Security architecture, characterization of

entanglement distribution
FFFFF Computing &

security

Brain-Vehicle
Interfacing

• Enables brain controlled
connected vehicles

• Managing uncertainties

• Scalability of brain-controlled vehicles
• Comprehensive real-world testing

FFFFF Driving experience

Blockchain • Highly distributed
• Significantly enhanced security

• Algorithm design for ultra-low latency
application

• Increasing throughput and scalability
FFFF Security

THz
Communications

• Extremely high throughput
• Higher spectrum

• Design of transceiver architectures
• Propagation measurement and channel

modeling
FFFFF PHY layer

ML-aided V2X
Design

• Suitable for highly adaptive and
complex V2X environments

• Performance enhancement

• Performing effective training in highly
dynamic environments

• Processing big-data in real-time
FFFF PHY & MAC

layers, Security

Evolving Tech.

Hybrid RF-VLC
V2X

• Ultra-high data rates
• Low setup cost

• Inter-compatibility between VLC and RF
• Interference management

FFF PHY & MAC
layers

Multiple Radio
Access

Technologies

• Inherent benefits of sub-6 GHz,
mmWave and/or THz for long
communication range

• Hyper-high data throughput

• Dynamic configurations meet different
QoS requirements

• Beam and interference management
FFFF PHY & MAC

layers

Non-orthogonal
Multiple Access

(NOMA)

• Massive connectivity
• Ultra-low latency

• Cross-layer optimization for grant-free
NOMA

• Adaptive NOMA and OMA
FFFF PHY & MAC

layers

New Multicarrier
Scheme

• Significantly enhanced
resilience to Doppler

• Higher spectrum- and power-
efficiencies

• Backwards-compatibility with LTE and 5G
NR

• Scalable multicarrier schemes in highly
dynamic vehicular environments

FFFF PHY layer

Advanced Resource
Allocation

• Cross-layer resource allocation
• Context and situation awareness

• Efficient and scalable deployments
• Distributed intelligent solutions

FFFF PHY & MAC
layers

Integrated
Localization and
Communications

• Enhanced localization
• Secured localization

• Unified design of transceivers
• Optimal waveform design

FFFF Positioning

Satellite/UAV
Aided V2X

• Extra wide coverage
• Flexible aerial base-station

• Energy-efficient computation &
transmission

• Robust reception in high mobility
environments

FFFF PHY & MAC
layers

Integrated
Computing

• Faster computing and enhanced
security

• Low operational cost

• Integration of cloud, edge, and fog
computing

• Heterogeneous design to support different
data sources

FFF Computing

Integrated Control
and

Communications

• Control-communications
co-design

• Enhanced platooning

• Derivation of fundamental limits
• Understanding of control and wireless

networks interaction
FFFF Control

with ITS has been studied for many years, legacy
V2X communication systems can only provide limited
intelligence. Therefore, a significant paradigm shift away from
traditional communication networks to more versatile and
diversified network approaches is needed. It is anticipated
that such a transformation will start from the recently
proposed 6G wireless communication network, which aims to
combine terrestrial and several non-terrestrial communication
networks such as satellite and unmanned-aerial-vehicle
(UAV) communication networks. This will enable genuinely
intelligent and ubiquitous V2X systems with significantly
enhanced reliability and security, extremely higher data rates
(e.g., Tbps), massive and hyper-fast wireless access (i.e., down
to sub-milliseconds with billions of communications devices
connected), as well as much smarter, longer, and greener
(energy-efficient) three-dimensional (3D) communication

coverage [2]. Because of the extremely heterogeneous network
composition, diverse communication scenarios, and stringent
service requirements, new techniques are needed to enable
adaptive learning and intelligent decision making in future
V2X networks. It is foreseen that 6G will work in conjunction
with machine learning (ML) not only to unfold the full
capability of the radio signals by evolving to intelligent
and autonomous radios, but also to bring a series of new
features such as enhanced context-awareness, self-aggregation,
adaptive coordination, and self-configuration [8].

B. An Overview of Key 6G-V2X Technologies

To achieve the aforementioned ambitious goals, 6G will
require the integration of a range of disruptive technologies
including more robust and efficient air interfaces, resource
allocation, decision making, and computing. Fig. 2 illustrates



such a 6G-V2X system where a range of vehicular
communication technologies are adopted to serve various
advanced use cases. For example, UAVs and low earth orbit
satellites can support V2X systems with significantly enlarged
and seamless coverage, helping enhance the communication
QoS particularly in some blind corners which might exist
in traditional terrestrial communication systems. Edge/fog
computing and caching will help V2X communication devices
achieve faster computation, optimized decisions, and longer
battery life. Visible light communication (VLC) aided V2X
communications will operate along with traditional RF-based
communications to achieve ultra-high data rates, low setup
cost, low power consumption, and enhanced security.

There are a range of key technologies that we believe
will enable the future vision of 6G-V2X as an intelligent,
autonomous, user driven connectivity and service platform for
ITS. We will introduce these technologies in the following
with more detail in the subsequent sections. We classify
these technologies into two categories: revolutionary V2X
technologies and evolutionary V2X technologies. Strength,
open challenges, maturity, and enhancing areas of these
technologies are summarized in Table I. First, we consider
technology areas such as intelligent reflective surfaces
(IRSs), a range of new ML techniques, and brain-vehicle
interfacing as key enablers (from the perspectives of new
materials, algorithms, and neuroscience, respectively) for more
intelligent V2X, which will further enhance and revolutionize
evolving V2X technologies. Tactile communications will
provide drivers and passengers with an unprecedented travel
experience in the future by exchanging sensory information
such as haptics anytime and anywhere. Emerging quantum
computing technology will endow 6G-V2X systems with
superior computational capabilities, while we will also
see significantly enhanced security along with the use
of blockchain technologies. Furthermore, terahertz (THz)
communications will enable ultra high data rates never
experienced before.

C. Contribution and Organization

The main contribution of this paper is a comprehensive
overview of the scientific and technological advances that have
the capability to shape the 6G vehicle-to-everything (6G-V2X)
communications. Revolutionary 6G-V2X technologies such
as brain-vehicle interfacing, tactile communications, and
terahertz communications, will be introduced in Section II.
In Section III, we present major 6G-V2X technologies (e.g.,
integrated localization and communications, satellite/UAV
aided V2X, integrated computing, etc) that have evolved over
recent years and are going through further enhancements. The
recent advances in machine learning for 6G vehicular networks
are summarized in Section IV. Finally, conclusions are drawn
in Section V.

II. REVOLUTIONARY TECHNOLOGIES FOR 6G-V2X

In this section, we introduce some of the promising
revolutionary technologies with the potential to be used in
6G-V2X.

A. Programmable V2X Environment

Fig. 3: Intelligent reflecting surface at intersection.

In conventional communication theory, wireless channels
are regarded as a destructive and adversarial entity, yielding
distorted received signals, causing excessive training overhead,
yet having limited channel capacity. One of the most
destructive wireless channels is called doubly selective channel
(i.e., time-and-frequency selective) which widely appears in
vehicular communication systems due to the mobility of
transmitter and/or receiver. Furthermore, V2X communication
signals may experience significant shadowing effects due to
high-rise buildings in urban areas or hills and major vegetation
in rural environments. To achieve robust information flow, LTE
and 5G NR-based V2X systems are configured with large
subcarrier spacing as well as dense pilot placement. However,
this may result in a considerably reduced spectral efficiency,
not to mention very complex signal processing algorithms at
the receiver.

More recently a disruptive communication technique called
intelligent reflective surfaces (IRSs) has attracted increased
attention, aiming at creating a smart radio environment by
customizing the propagation of radio wavefronts. Specifically,
IRSs are man-made programmable metasurfaces (consisting
of a vast amount of tiny and passive antenna-elements with
reconfigurable processing networks), which can effectively
control the phase, amplitude, frequency, and even polarization
of the incident wireless signals to overcome the negative
effects of natural wireless propagation. As such, IRSs allow
the environment itself to be considered as an element
of the communication system, whose operation can be
optimized to enable higher rates, enlarged coverage and
uninterrupted connectivity. The recent work in [13] shows that
sufficiently large IRSs can outperform traditional relay-aided
systems in terms of throughput, while allowing nearly passive
implementation with reduced complexity.

6G-V2X can take advantage of IRS in coverage-limited
scenarios (e.g., V2X communications operating at



millimeter-wave (mmWave) or THz bands) or unfavorable
propagation conditions (e.g., non-line-of-sight communication
links). In such scenarios, the use of an IRS can enhance
the vehicular channel conditions by introducing enhanced
multi-path propagation which will result in larger transmission
coverage. An out-of-coverage traffic intersection is an ideal
use case scenario for using an IRS, because the V2V
communication links may be blocked by buildings and other
obstructions. Measurements have shown that the strength of
the received V2V signal power reduces quickly over distance
away from the intersection due to such blockages [14], [15].
As such, vehicles located in perpendicular streets may not
communicate with each other very well, which could result in
significant degradation of V2V communication performance.
To mitigate this issue, IRSs may be installed on the surfaces
of buildings around the intersection. The communication
coverage of transmitting vehicles in the perpendicular streets
can thus be enhanced by fine tuning the reflecting elements
of IRS. An IRS-assisted vehicular communication scenario
is illustrated in Fig. 3. It is interesting to point out that IRS
can be employed for mitigation of the Doppler effect and
multi-path fading as well, making IRS an appealing research
direction for significantly enhanced V2X communication
in 6G. To efficiently integrate with 6G-V2X, IRS needs to
overcome some fundamental challenges such as reflection
optimization, optimal placement of IRS, channel estimation
in a highly dynamic vehicular environment and adaptation to
different spectrum ranges.

B. Quantum Computing Aided V2X

6G-V2X is expected to support more spectrum, a very
large number of densely connected vehicles, a wider range
of applications, higher complexity in the processed signals,
and more stringent requirements in terms of reliability,
latency, and power efficiency compared to 5G-based V2X.
In order to meet these requirements, 6G-V2X networks
require significant computational resources than are currently
available. Those resources are necessary in order to perform
many computationally intensive tasks in a hyper fast
manner. The advent of quantum computing promises a
radically enhanced computational dimension to wireless
communication, supporting the ultra-fast execution of highly
complex algorithms, in particular signal processing tasks
which cannot be carried out in a real-time manner with
traditional computing resources. 6G-V2X equipped with
quantum computing will be able to perform extremely complex
and currently time-consuming algorithms to significantly
enhance V2X services. For example, the implementation
of advanced machine learning algorithms which require
big data processing and massive training (e.g., finding an
optimum geographic route with multiple objectives) is a very
challenging task. In such scenarios, traditional computing
often sacrifices optimality, while quantum computing can
efficiently achieve optimality with reduced complexity [10],
[16].

In addition to the superior computational ability,
quantum computing offers enhanced security in wireless

communications. Note that security in V2X communications is
significantly more important than traditional communications
since, for example, security breach in autonomous vehicles
can cause fatal accidents. As the wireless spectrum is shared
between vehicles and other types of cellular users (e.g.,
pedestrians), V2X communications may be vulnerable to
malicious attacks, and traditional encryption strategies may
not be adequate. quantum computing has the inherent security
feature of quantum entanglement that cannot be cloned
or accessed without tampering with it [8], making it an
appropriate technology to enhance 6G-V2X communications
security. Moreover, quantum domain security is based on the
quantum key distribution (QKD) framework that allows to
detect any malicious eavesdropping attempt.

Although quantum computing can be a promising
technology for 6G-V2X from different aspects, much more
research is needed to exploit and implement the benefits of
quantum computing in V2X communication. For example,
current quantum computer chips can only operate at extremely
low temperature (close to zero Kelvin), which makes them
usable only in vehicular infrastructure. To use them in the
vehicles, significant research is needed on the thermal stability
of quantum computer chips. Other fundamental challenges
include development of large-scale quantum computing,
design of quantum security architectures, and characterization
of entanglement distribution.

C. Tactile Communications in V2X

Tactile communication is a revolutionary technology,
which enables a paradigm shift from the current digital
content-oriented communications to a steer/control-oriented
communications by allowing real-time transmission of haptic
or olfactory information (i.e., touch, smell, motion, vibration,
surface texture) [17]. Integrating human sensual information,
tactile communication in 6G-V2X is expected to provide
a truly immersive experience for on-board vehicle users
[18]. In addition to traditional applications of multimedia
communications (e.g., on-board meetings/demonstrations,
infotainment), tactile communication will enhance vehicular
specific applications such as remote driving, vehicle
platooning, and driver training by enabling fast and reliable
transfer of sensor data along with the haptic information
related to driving experience and trajectories.

While tactile communication has enormous potential, the
progress in this area is still in its infancy and many
problems remain open. For example, tactile communication
requires extremely high-speed and extremely low-latency
communication to ensure reliable and real-time exchange
of large volumes of haptic information. These stringent
connectivity constraints are very difficult to meet in high
mobility vehicular environments. This is because they require
higher frequencies (e.g., mmWave or even THz) to meet their
data demand. However, those higher frequencies are not very
reliable particularly in mobile environments. For example,
in [19], we showed that even in an indoor environment
THz networks may not be able to provide highly reliable
high-rate communications. This, in turn, motivates research



to develop a new breed of services called highly reliable high
rate low latency communications (HRLLC) that can provide
a combination of traditional 5G services (e.g., enhanced
mobile broadband (eMBB) services that ignore reliability and
URLLC services that ignore rate). Apart from the above
challenges, tactile communication poses several fundamental
challenges including design of application-specific control and
communication protocols, development of human-to-machine
interfaces for wireless haptic interactions, and design of
suitable haptic codecs to capture and represent the haptic data,
and exact reconstruction of received haptic data.

D. Brain-Vehicle Interfacing

In a brain-controlled vehicle (BCV), the vehicle is
controlled by the human mind rather than any physical
interaction of the human with the vehicle. While this may be
quite a futuristic scenario, for people with disabilities, BCVs
offer great potential for improved independence by providing
an alternative interface for them to control vehicles. Brain
activity signals can be translated into motion commands to
the vehicle through the use of a brain-computer interface.
Although the current vision is for fully automated vehicles,
the adaptability of humans will play an irreplaceable role in
managing the uncertainties and complexity of autonomous
driving [20]. By keeping humans in the loop, BCV is
also expected to mitigate the limitations of autonomous
driving in challenging and uncertain environments such as
rural and unstructured areas. Current wireless communication
(e.g., 5G) and computation technologies are not able to
realize BCV as services related to brain-machine interactions
will require simultaneously ultra-high reliability, ultra-low
latency, and ultra-high data rate communication and ultra-high
speed computation. For example, a coarse estimation of
the whole brain recording demand is about 100 Gbps
[21], the transmission of which is not supported by the
existing wireless technologies. However, through full-phased
brain-vehicle interfacing and machine learning techniques,
6G-V2X must enable learning and adapting the behaviour of
human drivers.

Recently, research has demonstrated the feasibility of
BCV. For example, authors in [22] and [23] have
shown a brain–computer interface-based vehicle destination
selection system. Although successfully tested under different
conditions, the currently designed BCV is not a scalable
solution since this would require a wireless connection
to support brain-machine interactions with high coverage,
availability, speed, and low latency to provide reliability
and safety for the end-users. THz communications can
be a potential solution to enable high-throughput and
low-latency brain-vehicle interfacing. Fundamentally different
performance metrics (e.g., quality of physical experience
(QoPE)) need to be introduced and quantified to capture
the physiological characteristics and then map into the
conventional wireless QoS metrics [21]. Moreover, extensive
real-world experiments are required to demonstrate the
effectiveness of BCVs, as most of the existing works on BCV
has been verified through simulation only.

E. Blockchain-based V2X

The widespread deployment of V2X networks very much
relies on significantly enhanced security for large scale
vehicular message dissemination and authentication. The
consideration for this imposes new constraints for resource
allocation in V2X networks. For example, mission critical
messages should have ultra-resilient security to deal with
potential malicious attacks or jamming, whilst multimedia data
services may require only lightweight security due to the large
amount of data. These two types of security requirements
lead to different frame structures, routing/relaying strategies,
and power/spectrum allocation approaches. 6G-V2X can
adopt a blockchain system that is viewed as a disruptive
technology for secured de-centralized transactions involving
multiple parties. Compared to traditional security and privacy
techniques, the use of blockchain can provide a wide range
of enhanced security and privacy services without requiring
any third parties [24]. Through the inherent distributed
ledger technology of blockchain, 6G-V2X communication can
perform distributed security management, offloading certain
tasks with mobile cloud/edge/fog computing, and content
caching. A blockchain-based security solution (e.g., smart
contract or consensus mechanism) in 6G-V2X is expected to
not only allow verification of the authenticity of a message,
but also preserve the privacy of the sender [25], [26].
Moreover, the characteristics of blockchains are of interest for
management of unlicensed spectrum, which allows different
users to share the same spectrum. 6G-V2X may also utilize
a blockchain-based spectrum sharing approach, which has
the potential to provide secure, smarter, low-cost, and highly
efficient decentralized spectrum sharing [27].

While several attempts have been made to realize
blockchain-based communication network [24], a
straightforward adoption of an existing blockchain technology
is not suitable for V2X communication scenario due to its
dynamic network characteristics and real-time data processing
requirement. Despite blockchain’s great potential in enabling
enhanced security and network management, the technology
itself suffers from high latency and hence new blockchain
algorithms with ultra-low latency need to be developed before
they can be applied to 6G-V2X. Limited throughput and
scalability of current blockchain technology are also major
open problems that require a thorough investigation.

F. Terahertz-assisted V2X networks

THz communication, which operates at terahertz bands
(0.1-10 THz), is envisioned as a promising approach to
alleviate increasingly congested spectrum [10], [28] at
lower frequencies. Leveraging the availability of ultra-wide
bandwidth, THz communication will be able to provide
transmission rates ranging from hundreds of Gbps to several
Tbps. Such an extremely high throughput will enable
a plethora of new V2X application scenarios such as
ultra-fast massive data transfer between vehicles and haptic
communications. Since THz communication is able to provide
fiber-like data rates without the need for wires between
multiple devices at a distance of a few meters, it may also



VLC Link

RF Link

Backhaul Link

Fig. 4: Hybrid RF-VLC-based V2X communications.

be used in on-board use cases such as the BCV scenario,
where extremely high throughput and low latency wireless
communication is required.

While the THz spectrum brings a number of unique
benefits, there are many major challenges to be addressed,
such as transceiver architectures, materials, antenna design,
propagation measurement, channel modeling, and new
waveforms. In particular, it is essential to characterize and
understand THz radio propagation in different V2X scenarios
such as highway, urban, and in-vehicle. One of the main
challenges in THz-assisted 6G-V2X will be the effective
use of traditional cellular and new THz bands. As such,
suitable dynamic resource scheduling is required to exploit
their unique benefits. For example, while THz communication
offers very high data rates, it is only suitable for short-range
V2X communications. In this case, resources may be allocated
in THz bands to those transmitters with receivers within a
short range. Note that appropriately designed relaying or IRS
techniques (as done in [29]) can be potential solutions to
extend the coverage of TH-based V2X communications.

III. EVOLUTIONARY TECHNOLOGIES FOR 6G-V2X

In this section, we present a range of technologies that may
be classified as evolutionary. While they have reached a certain
maturity due to extensive research, testing, and deployment in
the past, significant further development and trials are needed
to adapt them to meet the new challenges and requirements in
6G-V2X.

A. Hybrid RF-VLC V2X System

In 6G-V2X, it is expected that the vehicle and its
occupants will be served at extraordinarily high data rates
and with extremely low latency. However, this feature may
not be feasible with standalone radio-frequency (RF)-based
V2X communication as conventional RF-based vehicular
communication often suffers from high interference, large
latency, and low packet delivery rates in highly dense scenarios
[30], [31]. One alternative approach may be the combination
of RF and visible light communication (VLC)-based V2X

communications, where along with radio waves, visible
light can be used as a medium of communication in
vehicular networks. The ultra-high data rate ( potentially up
to 100 Gbps) achieved by light emitting diode (LED) or
laser diode (LD)-based VLC [32] and its inherent features
(such as low power consumption, enhanced security, and
anti-electromagnetic interference), make VLC technology an
ideal candidate for future ITS. Moreover, a VLC-based V2X
communication system will require minimum setup cost as
VLC-based V2X can be implemented by using the existing
LEDs/LDs in vehicle headlights or pre-installed street/traffic
lights.

In V2X networks, VLC can be mainly used in the
following three scenarios: V2V communication through
headlights/backlights, V2X communication through traffic
lights, and V2X communication through street lights. Note
that the traffic/street lights can be used to establish backhaul
links with one another by using free-space coherent optical
communications [28]. In addition to enhancing the data
rate, VLC can boost the performance of V2X networks
by eliminating the limitations of traditional RF-based V2X
communications. For example, in the presence of big vehicle
shadowing, RF-based V2V communication suffers from severe
packet drop due to high path-loss and packet collision [33].
In this scenario, the transmitting vehicle can communicate
with the big vehicle through VLC and then the big vehicle
can relay the messages to the vehicles in the shadow region.
Similarly, using VLC, traffic/street lights can also be used
in the urban intersections to relay the messages to facilitate
communication between vehicles from perpendicular streets,
where traditional RF-based V2V communication often suffers
from severe packet loss. Note that while RF-based solutions
(e.g., big vehicle or roadside unit (RSU) relaying) of the above
problems are studied in the literature, such solutions can cause
severe interference in the high-density scenarios due to the
RF-based re-transmissions [14].

Although extensive research has been carried out on
VLC-based V2X communication in the past decade, VLC
has not been included in the 5G-V2X standard. Several open
issues still need to be solved for enabling hybrid RF-VLC
V2X. These include interoperability between VLC as well
as RF technologies and deployment issues. In an outdoor
environment, the performance of VLC degrades due to the
interference caused by natural and artificial light sources.
On the other hand, the received signal strength in VLC
may dramatically vary due the vehicles’ mobility [34], [35].
Hence, ambient lighting induced interference and mobility
induced channel variations need to be properly addressed
before deploying VLC in 6G-V2X systems.

B. Large Scale Non-orthogonal Multiple Access (NOMA)

6G-V2X will require massive connectivity for timely,
reliable, seamless and ubiquitous exchange of V2X messages.
This is to allow connected vehicles to constantly sense and
interact with the environments for full situational awareness
and hence considerably improved safety. A key enabling
technology for 6G-V2X networks to meet these requirements



is NOMA. Compared to traditional orthogonal multiple access
(OMA) schemes, NOMA allows multiple users to utilize
time and frequency resources concurrently for both random
access and multiplexing [36], [37]. There are two main
types of NOMA: power-domain NOMA [38], [39] and
code-domain NOMA [40], [41], such as sparse-code multiple
access (SCMA) [42]–[44] and resource spread multiple access
[45], in which multiple users are separated by different
power levels and different codebooks/sequences, respectively.
In recent years, NOMA has been proposed for grant-free
access to achieve ultra-low latency massive connectivity whilst
achieving superior spectrum efficiency.

As a matter of fact, NOMA can be a strong complement
to other aforementioned 6G-V2X enabling technologies for
use in both V2V and V2I communications. For example,
NOMA can be used for distributed V2V autonomous
scheduling, where connected vehicles need to contend for
the random access control channel to reserve resources for
data packet transmissions. In large scale 6G-V2X networks,
the control channel with traditional random access schemes
may be saturated, leading to severe collisions on scheduling
assignment packets and significant loss of data packet
reliability. With the application of NOMA (e.g., SCMA)
for control channels, collisions of scheduling packets can
be significantly reduced and the reliability of data packets
can thus be improved. NOMA can also be applied in large
scale 6G-V2X networks to achieve efficient data packet
transmission. This requires multiple communication modes,
such as unicast and multicast, which have been added for
V2X communications (in addition to broadcast) since Release
15. These multiple communication modes pave the way for
the application of NOMA, where broadcast packets may
be superimposed by unicast or multicast packets targeting
very close neighboring vehicles [46]. In this scenario, power
domain NOMA, in which a large portion of transmit power is
allocated to broadcast packets and the remaining for unicast
or multicast packets, may be used.

Despite significant research efforts by both academia
and industry, however, NOMA has not been adopted in
5G NR as no consensus has been achieved in 3GPP.
While existing research works have been reported on
the applications of NOMA to V2X networks, they are
mainly focused on the V2I links and centralized resource
allocation. Many problems of NOMA remain open. For
example, how to efficiently coordinate and schedule different
users for NOMA transmissions to co-exist with the current
OMA (e.g., orthogonal frequency-division multiple access)
communications? How to design a highly flexible and
scalable NOMA scheme which can strike a balance between
overloading factor, reliability and user fairness? How to
design practical and efficient large-scale NOMA for connected
and autonomous vehicle (CAV) applications, especially in
distributed V2V network scenarios?

C. Exploration of Multiple Radio Access Technologies

Exploiting the higher frequency spectrum in the mmWave
and THz range is vital to achieve the 6G KPIs (e.g., Tbps

data rates, billions of connected devices, sub-milliseconds
of access latency). The rich frequency resources at
mmWave and THz bands can provide larger bandwidth
(e.g., multi-Gigabits and 10s GHz for mmWave and THz,
respectively) than the one available at sub-6 GHz, which
is highly congested in existing cellular systems. These rich
frequency resources are needed to enable high data rates
and low latency for 6G-V2X communications. Extensive
research has been carried out studying infrastructure-based
5G mmWave communications, such as channel modelling and
massive multiple-input multiple-output (MIMO) beamforming.
However, V2X communications in mmWave and THz
frequency bands suffer from excessive propagation loss and
susceptibility to blockage by obstacles such as vehicles and
buildings. In addition, the much smaller cells in mmWave
and THz bands may significantly increase the frequencies of
handovers. These problems make it challenging for mmWave
and THz communication systems to provide the relevant QoSs
needed for the expected advanced V2X applications [19]. It is
foreseen that multi-radio access technologies with sub-6 GHz,
mmWave and/or THz will be needed to work together in future
6G-V2X networks [47]. For example, while mmWave and THz
radios will provide extra bandwidth and capacity to 6G-V2X
networks, but sub-6 GHz radios are critical for the enabling
of long communication ranges and connectivity stability.

There are a number of challenges to be addressed for
efficient usage of multi-radio access technologies. From the
perspectives of mmWave and THz V2X communications, the
excessive propagation loss and signal blockage necessitate the
use of directional beamforming. The directional connectivity
makes V2V operation with mmWave and/or THz radios
very challenging for vehicles in high moving speeds.
Communication between two vehicles over a mmWave
link including the physical channel and communications of
mmWave for V2V has been studied [48]. However, the
challenges that mmWave and THz introduce at the MAC layer
due to beamforming communications remain largely open
for 6G V2V networks. Novel schemes for coordination and
collaboration among these multi-radio access technologies are
needed in order to tackle MAC layer challenges, such as fast
link configuration and beam management, contention-based
channel access, sidelink autonomous scheduling, distributed
congestion control and interference management at MAC
layer. Moreover, the use of IRS combined with high
frequencies is worthy of a close investigation as it has the
potential to help alleviate some of those challenges, as shown
in [29].

D. Advanced Resource Allocation

Radio resource management (RRM) will play a crucial
role in 6G-V2X networks, especially for providing the
QoS required by advanced V2X applications. The base
stations usually take the main responsibility for RRM in
the current cellular V2X networks, which has been widely
studied in the literature [49]–[51]. However, there are
several major challenges for RRM in 6G-V2X networks. As
previously mentioned, 6G-V2X networks will very likely need



multi-radio technologies to deliver the expected QoS. The
resources of different technologies will need to be taken
into account in the RRM decision making. Solutions that
smartly use the characteristics of different technologies (e.g.,
higher rate for mmWave and better reliability for sub-6
GHz) are needed. Moreover, most current RRM approaches
in the literature use either fixed rules, analytical models or
supervised learning in relatively low-dimensional scenarios.
However, existing 5G RRM research has mainly focused on
infrastructure-based communications [52]–[54]. The expected
problem dimensionality will significantly increase for 6G-V2X
networks partly due to mmWave deployment and coexistence
of multiple V2X use cases with additional direct V2V
communications and autonomous resource control operational
modes. Moreover, the fast-moving nature of V2X networks
and the stringent QoS requirements that must be met to support
advanced V2X use cases make the RRM problems more
challenging.

In order to address the above challenges of supporting
multi-radio technologies and increased algorithm complexity,
advanced resource allocation schemes are needed, which
could be built with the support of context awareness and
cross-layer design. A hybrid RRM framework can be created,
in which both dedicated radio resources and a shared resource
pool are allocated to the connected vehicles for V2V and
V2I communications. The dedicated radio resources to the
individual CAVs ensure a basic but critical level of QoS is
guaranteed for various CAV applications. The shared resource
pools are then provided to flexibly accommodate the temporary
loss of mmWave or THz connections and adapt to fast
changing network conditions. The allocation can be adjusted
adaptively according to the QoS feedback and the context.
Context awareness of the communication system and the
driving environment could be pivotal for cross-layer design
of RRM solutions. For instance, in [55], we showed how one
could use such smart multi-radio solutions (at mmWave and
sub-6 GHz) with context-awareness to provide a reliable video
performance at high mobility. To deal with the very large
action space and time complexity of RRM and QoS control
problems, distributed intelligent solutions over multi-radios
that are able to dynamically allocate resource blocks (RBs)
and power should be designed following the hybrid RRM
framework. Reinforcement learning could be applied to design
such intelligent solutions. More discussion on the ML-based
resource allocation will be presented in section IV.

E. New Multicarrier Scheme

6G should provide ultra-reliable high-rate V2X
communications in high mobility environments. Connected
vehicles and high-speed trains, moving at speeds of 1000
km/h or even higher, will communicate with each other and
the surroundings including various sensors, infrastructure
nodes (e.g., roadside units, base stations, robots), satellites,
and the internet cloud. Innovation is needed to deal with
the notorious Doppler effect as well as the resultant
doubly selective channels (i.e., rapidly time-varying and
frequency-selective channels) [56]. In both LTE and 5G

NR, orthogonal frequency-division multiplexing (OFDM)
and its variants are adopted for high-rate transmissions [57],
[58]. Nevertheless, OFDM is very sensitive to the Doppler
effect which may destroy the multi-carrier orthogonality
and result in increased amounts of inter-carrier interference
and inter-symbol interference. To overcome this drawback,
some advanced multicarrier waveforms [59] may be excellent
candidates to 6G V2X. A promising multicarrier waveform is
filter-bank multicarrier (FBMC) which enjoys tight spectrum
containment as well as relatively strong resilience to carrier
frequency offsets and Doppler spreads. These advantages give
FBMC a great potential for the support of a diverse range of
modern use cases where flexible time-frequency allocations
are highly demanded [60].

Recently, orthogonal time-frequency-space (OTFS) has
emerged as an effective multi-carrier scheme by spreading
each information symbol over a two dimensional (2D)
orthogonal basis function spanning across the time-frequency
domain [61]–[63]. In principle, OTFS is capable of converting
a time-varying multipath channel into a relatively static
delay-Doppler image of the constituent reflectors. The
2D basis function in OTFS, called discrete symplectic
Fourier transform (DSFT), is essentially an orthogonal
precoding transform to harvest the diversity gain from
time, frequency, and space domains. Thus, it would be
interesting to investigate new multicarrier transforms with
reference to OTFS for enhanced performance in high mobility
environments. Besides, the existing NOMA studies are
mostly focused on its application for massive machine-type
communications with low mobility and low-rate transmissions.
To provide ultra-reliable high-rate massive connectivity (driven
by augmented reality/virtual reality (AR/VR) and autonomous
driving), it is also promising to study the integration of NOMA
(e.g., SCMA) and OTFS (or its variants) to exploit the benefits
of these two disruptive techniques.

F. UAV/Satellite Assisted V2X

Due to the inherent property of wide area coverage, UAVs
can be used as aerial radio access points in the 6G-V2X
network. UAVs can provide different types of services for
vehicular users, such as relaying, caching, and computing
[64]. Particularly, in a highly dense vehicular environment,
UAVs can cooperate with the static network infrastructures
nodes (i.e., base stations) in managing the wireless network
to enhance the user experience. Because of their nearly
unrestricted 3D movement, UAV can offer a number of unique
V2X applications as a flying agent, such as: a) providing an
advance road accident report prior to the arrival of rescue
team, b) monitoring traffic violations to assist law enforcement
agencies, and c) broadcasting warning about road hazards
that occurred in an area not pre-equipped with an RSU [65].
Despite significant advancements in UAV technology, there
exist several challenges in the area of UAV-enabled V2X
system. For example, it is highly challenging to maintain
reliable and high-speed wireless communication between
UAVs and ground vehicles, as mobility of both UAVs
and ground vehicles will lead to highly dynamic channel



characteristics. While line-of-sight links are expected for
UAV-ground vehicle channels, systematic measurements and
modeling of such channels are still ongoing [66]. Several
other key challenges include safety and regulations, seamless
integration with existing networks, and limited battery life of
UAVs.

Satellites are another potential aerial communication
platform for 6G-V2X communications. An example of a
satellite-assisted V2X communication system is illustrated
in Fig. 5. In current V2X standards, satellites are currently
only used for localization purposes. It is worth mentioning
that the data rates of satellite communication have been
increasing significantly in recent years. For example,
multi-beam satellites [67] have been widely adopted in
satellite communication systems due to their capability to
enhance wireless data rates. Thus, communication via satellite
can be a potential technique for 6G-V2X to assist the
communication between vehicle and remote data server in an
out-of-terrestrial-coverage scenario. Similar to the UAV-based
V2X communication, a satellite can also perform computing
and network management tasks. To enable satellite-assisted
V2X communications, an extensive investigation is required to
accurately model the characteristics of the channels between
satellites and high mobility vehicles. It will also be challenging
to integrate the different communication mechanisms (e.g.,
PHY or MAC layer transmission protocol) adopted in V2X
and satellite communications.

From the PHY point of view, another key research problem
is how to attain the highest power transmission efficiency for
high-rate and long-range satellite communications. This may
not be attained by OFDM due to its high peak-to-average
power ratio (PAPR) which ultimately limits its maximum
communication coverage. The time has come for the
research community to rethink and revisit several traditional
modulation schemes which enjoy constant signal envelopes
such as continuous phase modulation (CPM) [68]. A
drawback of conventional CPM is that it may not be
suitable to support high-rate communication as OFDM does
[69]. Although MIMO could be a way to address this
problem, CPM’s continuous phase constraint prevents its
straightforward integration with MIMO. Recently, a new phase
modulation on the hypersphere (PMH) has been developed
for load-modulated MIMO [70], [71]. It is noted that PMH
is capable of achieving the highest power efficiency, while
having the advantage of approaching the capacity of Gaussian
inputs. Application of PMH for satellite aided long-distance
V2X deserves a close investigation.

G. Integrated Computing for V2X

Although cloud computing has been widely used in
vehicular networks, on their own, cloud-based solutions
may not be able to meet many of the very delay-sensitive
applications of V2X networks. Edge/fog computing is a
newly introduced paradigm, which enables faster distributed
computing and better security at low operational cost. Edge
computing operates in a stand-alone mode whereby the data
processing is performed on the nodes that are close to the
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Fig. 5: Satellite-assisted V2X communications.

end users. On the other hand, fog computing has multiple
interconnected layers and could interact with the distant cloud
and edge nodes [12]. By leveraging computing resources at
edge/fog nodes located at the edge of the network, 6G is
expected to provide more user aware, scalable and low-latency
services for vehicles. Complex algorithms used in V2X
network can be solved in real time by offloading complex
computational tasks to the edge/fog nodes. One of the use
cases of fog computing can be navigation under real-time
traffic conditions. For example, fog computing can be used
to provide navigation-based real-time traffic conditions as
illustrated in Fig. 6. The navigation query generated by a
vehicle can be sent to the nearest fog node and then relayed to
the destination fog node by a hop-by-hop relaying mechanism,
where each fog node in the hopping chain collects real-time
traffic information in its coverage area. Upon receiving the
traffic reports from the other fog nodes, the originated fog
node computes the optimal path for the vehicle that generated
the query.

An integration of cloud, edge, and fog computing is
required in 6G-V2X to exploit the unique benefits of the
computing technologies. For instance, together with the edge,
fog can perform timely data processing, situation analysis,
and decision making at close proximity to the locations
where the data is generated, while together with the cloud,
fog can support more sophisticated applications such as data
analysis, pattern recognition, and behavior prediction [12].
Moreover, it has been demonstrated that network coding [72]
can be effectively used to trade abundant computing resources
at the network edge for communication bandwidth and
latency. 6G-V2X can exploit the inherent benefits of edge/fog
computing and network coding by properly integrating these
two techniques. While edge/fog computing provides a number
of unique benefits for V2X network, there exist some
fundamental challenges and open problems such as building
an integrated computing architecture, handling security and
privacy issues, managing handover, and optimising computing
resources.

H. Integrated Localization and Communication

Acquiring precise location information of a vehicle in
real-time is becoming indispensable, not only to explore
endless opportunities of location-based services but also
to explore advanced V2X applications such as real-time



Fig. 6: Fog node assisted traffic navigation.

3D mapping for building an accurate environment model.
In addition, accurate location information enhances the
performance of the wireless communication system. It
is anticipated that 6G will bring a new feature called
integrated localization and communication (ILAC) into the
wireless communication network [11]. In this new paradigm,
leveraging ultra massive MIMO, mmWave technologies, and
UAV/satellite networks, centimeter-level localization accuracy
is expected. On the other hand, the vehicles’ location
information can assist wireless networks with a wide range of
information such as location-aided channel state information,
beam processing, routing, network design, operations, and
optimization to effectively utilize network infrastructure and
radio resources. Research has already started in this direction,
in [73], location information has been used in cognitive radios
and for network optimization applications, whereas in [74],
[75] resource allocation utilizing location information has
been proposed for a multi-user and multi-cell system. A
comprehensive survey can be found in [76] on location-aware
communication across various layers of the protocol stack. In
[77]–[81], joint localization and data transmission have been
studied for 5G networks using different beamforming schemes.
A key challenge here is how to allocate the radio resources
effectively between localization and communication while
maintaining their QoS requirements. To tackle this problem,
ML-based approaches can be used since ML can unfold
the full capability of the radio resources intelligently [11].
Optimal waveform design with ultra-high spectral efficiency
is another challenge for ILCA, which can be solved through
effective spectrum sharing techniques. The unified design of
transceivers also needs to be considered for the seamless
integration of localization and communication.

I. Integrated Control and Communication

Integrated communication and control will play a crucial
role in 6G and could potentially help in improving advanced
and autonomous V2X services. One of the use cases of
integrated communication and control is vehicle platooning
[82]–[84], where a group of vehicles travels closely together
in a coordinated movement without any mechanical linkage.
The key benefits of vehicle platooning include increased road

capacity, a rise in fuel efficiency and comfortable road trips.
Each vehicle in the platoon must know its relative distance and
velocity with its neighboring vehicles in vehicle platooning
to coordinate their acceleration and deceleration. Most of the
prior works in this direction are either communication-centric
[85]–[87] or control centric [88]–[90]. The former entirely
abstracts the control mechanism, while the latter assumes
that the performance of the communication networks is
deterministic. However, such an assumption can impair the
performance of the system. For example, if the exchange
of the information is delayed, which can be caused by the
uncertainty of the wireless channel, the stable operation of the
platoon will be jeopardized. Therefore, to enable autonomous
platooning, integrated communication and control will play
an important role. There are only a few works have been
reported in the literature such as [91], [92], which jointly
studied the communication and control systems in a V2X
network, particularly for vehicle platooning. Although control
and communication theories are well studied in the past,
existing tools are not yet adequate for analysing integrated
control and communication design [93]. For example, the
fundamental limits of wireless control in real-time applications
(e.g., vehicle platooning) are still unknown. On the other
hand, the tight interaction between vehicle control and wireless
networks is not yet well-understood. Understanding this
interaction will play an important role in the field of integrated
communication-control design for autonomous vehicles.

IV. KEY MACHINE LEARNING PERSPECTIVES

Recent advances in ML research with the availability of
large datasets and storage, and high computational power [94]
have enabled various novel technologies such as self-driving
vehicles and voice assistants [95]. In view of this background,
ML has become increasingly indispensable and instrumental
towards a highly autonomous and intelligent operation of
tomorrow’s 6G vehicular networks [96].

The design of traditional wireless communication systems
heavily relies on model-based approaches in which various
building blocks of communication systems are judiciously
modeled based on analysis of measurement data. While these
model-based approaches have demonstrated their successes



in traditional communication system design, there may be
some scenarios in 6G-V2X in which accurate modelings
(e.g. interference model, accurate channel estimation, etc.)
are unlikely [94]. Since ML is capable of extracting the
characteristics and identifying (even certain deeply hidden)
relationships between input and output data, it can be
adopted as a powerful tool in aforementioned scenarios where
traditional communication system design may suffer from
model mismatches. Additionally, the data-driven nature of ML
can help inferences and predictions about channel dynamics,
user behaviour, network traffic, application requirements and
security threats, thus leading to better resource provisioning
and improved network operation [94].

In this section, we describe the potential applications of
ML in future 6G-V2X networks. We discuss the grand vision,
significant opportunities, and major challenges of ML, with
a key focus on the physical layer, radio resource allocation,
and the system security. In addition, we introduce federated
learning which is one of the most promising ML technologies.
A summary of this section is shown in Fig. 7.

A. ML for New Physical Layer

The vast range of data services in future V2X
communications necessitates the judicious selection of coding,
modulation, waveform, and multiple access schemes. In
6G-V2X, it is highly desirable to design an adaptive
PHY which can accommodate diverse use cases and the
corresponding technological requirements.

Due to a potentially high mobility, the large Doppler spread
may cause extremely fast channel fading which prevents
accurate channel estimation. Although linear minimum
mean square error (LMMSE) estimation produces optimal
performance for linear and stationary channel environments
[97], it may not be effective for complicated channel
conditions especially in highly dynamic environments.
Moreover, since conventional methods generally estimate the
channel state information first and then recover the transmit
signals, excessive signal processing latency at the receiver may
be incurred [98]. From this point of view, ML is envisaged to
help improve channel estimation in future 6G-V2X networks.
In [99]–[101], deep learning has been adopted to optimize the
channel estimation through the training of neural networks.
However, due to long training period and large training
data, the learning based channel estimation in [99]–[101]
includes offline training. In this case, the potential mismatch
between the real channels and the channels considered in the
training phases could result in performance degradation [95].
How to carry out effective channel estimation/prediction in
highly dynamic environments is a challenging and interesting
research problem.

Furthermore, the design of channel codes such as
low-density parity-check (LDPC) or polar codes, for example,
is usually handcrafted with a relatively simple channel model
(e.g. Gaussian or Rayleigh). Such a handcrafted channel code
may lead to compromised error correction capabilities when it
is adopted over a high mobility V2X environment. In such a
scenario, a connected vehicle may experience a rapid variation

of interference when it moves from one location to another at
a high-speed. Therefore, it is of strong interest to investigate
how to efficiently generate channel code on-the-fly for more
flexible rates, lengths, and structures which are well adaptive
to the rapidly-varying communication environments.

As mmWave communication is expected to be widely used
in 6G-V2X, beamforming and massive MIMO technologies
are desired to overcome the notorious high path loss
problem. The works in [102] and [103] pointed out that the
existing beamforming methods for vehicular communication
networks suffer from the overload problem incurred by
frequent switching. Adaptive beamforming in a vehicular
communication scenario [103] and [104] is possible, but
frequent beam training may be needed. Thus, it is desirable
to develop new approaches to help reduce frequent training
and heavy overhead while guiding the design of intelligent
ML-based beamforming.

The high heterogeneity and dynamics of vehicular networks
will increase the complexity of the environment including
the varying wireless channels. As discussed, in legacy
communication systems, different blocks of the PHY layer
are usually optimized independently for ease of design.
Such a design paradigm may not be optimal when different
QoS requirements (e.g., latency, reliability, spectrum- and
energy-efficiencies, and implementation cost) have to be met,
particularly over very complex vehicular channels. Different
functional blocks at the PHY layer would need to be
configured jointly and adaptively according to the dynamically
varying environment [95]. For instance, ML-based enhanced
adaptive coding and modulation (ACM) is likely for
significantly reduced communication latency as well as
improved robustness [105], [106]. ML can also be applied
to jointly optimize multiple configurations. In this case, an
ML-based joint optimization needs to be developed while
taking into account the entire end-to-end physical layer
architecture [107].

B. ML for Improved Radio Resource Management

Radio resource allocation, as a classical problem in wireless
networks [108], has received tremendous research attention in
the past years. Although numerous radio resource allocation
approaches (e.g., based on greedy algorithm, game theory and
optimization) have been investigated, investigations on RRM
are needed to satisfy certain new features of 6G-V2X networks
such as high mobility, heterogeneous structure and various
types of QoS requirements.

First, the mobility of vehicles leads to fast handovers over
the links, leading to frequent resource allocation. While the
channel quality and network topology may vary continuously,
conventional resource allocation approaches would potentially
need to be rerun for every small change, incurring huge
overhead [109]. Here again, ML based approaches offer
promise as an efficient tool for data-driven decisions to
enhance vehicular network performance [110]. For example,
in [111], the prediction capability of ML is adopted to
facilitate rapid response to dynamic change of traffic loads.
Their proposed ML-based approach is able to predict the
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Fig. 7: Summary of potentials and open issues of ML for 6G-V2X

future traffic load (about bursty traffic patterns) and assign the
available channel to certain links, thus helping avoid potential
network congestion as well as rapid channel allocation.

The scarcity of qualified real datasets for vehicular
networks is considered as a big challenge for the use of
ML [112]. Reinforcement learning (RL) may be exploited
when pre-labeled datasets are not available. For instance,
in [113], RL is adopted for a vertical handoff strategy of
V2I networks, in which RSUs, as learning agents, take into
account of information from vehicles (i.e., average received
signal strength, vehicle velocity and the data type) as well
as traffic load for optimal handoff decisions. Without prior
knowledge of handoff behaviour, their proposed RL-based
method can achieve rapid and accurate handoff to ensure
seamless mobility management. In [114], RL is employed
for a user association solution in heterogeneous vehicular
networks (i.e., macro, pico and femto cells). It is shown that
high data rate with load balancing is attainable by learning
an enhanced association policy based on the data of traffic
loads and the pilot signal strengths received at vehicles. As
indicated in [113] and [114], RL, which does not require prior
knowledge of vehicular environment, is expected to attract
increasing research attention compared to learning approaches
requiring data sets obtained in advance (i.e., supervised and
unsupervised learning).

To use RL for radio resource management problems, it is
imperative to seek RL solutions that can quickly converge. In
this regard, one of the major challenges in RL is the so-called
exploration and exploitation dilemma [115]. Specifically, an
RL agent has to decide between exploration or exploitation,
i.e., whether to explore the unknown states and try new actions
in search for better ones for future adoption or to exploit those
examined actions and adopt them. While exploration increases
the flexibility of the agent to adapt in a dynamic environment
at the expense of a possible degradation in the agent’s learning
accuracy, exploitation drives the agent’s learning process
to local optimal solutions [116]. When resource allocation
problems are modeled with the large state/action space,
finding a good tradeoff between exploration and exploitation
is indispensable in order to improve computational time and
convergence speed [117]. For a large-scale network with
multiple vehicles, the state and action space in RL may grow

very large. In this case, it is likely that a large number of
states are not frequently visited and therefore a much longer
time would be required for convergence.

To alleviate this problem, deep reinforcement learning
(DRL) has been investigated recently. In [118], multiple
parameters of local observations, including channel
information of V2V and V2I links and interference
levels, are considered to manage the sub-band and power
allocation issue. With their problem modeled with a large
state/action space, DRL is adopted to extract the mapping
relationship between the local observations and the resource
allocation-and-scheduling solution. Moreover, DRL is
particularly effective in dealing with the high complexity of
joint optimization problems that often arise when dealing
with wireless V2X resource allocation [119].

It is worth mentioning that a single-agent learning
framework is considered in prior art (e.g., see [118]), where
each agent in the same network may take its action without
collaborating with any of the others [120]. Such independent
choice of actions could influence other agents’ rewards,
hindering the convergence of the learning process [121].
Thus, when ML is applied to a vehicular network with
multiple agents, the challenge of competitive collaboration
should be considered for effective multi-agent learning. As an
example, in [122], the problem of joint channel assignment
and power allocation in C-V2X networks is studied with
multi-agent learning. When dealing with multi-agent RL, it is
often meaningful to use game-theoretic tools [123] to provide
fundamental and rigorous analysis of the RL process.

C. ML for Security Management

The integration of diverse connectivity and the stringent
data provision of services for 6G-V2X will exacerbate
the security challenges. While 6G-V2X aims at providing
seamless connectivity between infrastructural nodes and
vehicles, the broadcast nature of vehicular communication
makes it susceptible to malicious attacks. Various types of
malicious attacks (e.g., authentication and authorized attacks,
and data forgery and distributions [124]) could target a
vehicular network. Given that, in a V2X system, private user
information such as user identity or trajectory are exchanged
over wireless link, the development of new user identification



and authentication scheme is of particular importance to
maintain secure and legitimate access of data/services/systems
[125].

ML can be adopted for detection and prevention of
intrusions. In [126] and [127], supervised learning with
classification capability is proposed as an effective mean to
identify vehicles’ abnormal behavior. It is noted that the
training and detection process relies on existing labeled data,
and therefore such a supervised learning may be incapable
of detecting novel/unknown attacks. In [128] and [129],
unsupervised learning which is capable of clustering and
does not require labeled data, is considered for real-time
detection. Specifically, an intrusion detection by using
K-means clustering is proposed for vehicular networks in
[128]. To deal with attacks which which can dynamically in
real time, anomaly detection using unsupervised learning is
studied in [129]. However, since these approaches consider
either misuse detection or anomaly detection, they may not be
effective in a real scenario where known and unknown attacks
can take place at the same time. In addition, reactive detection
is mainly considered in the existing detection approaches to
save communication cost. However, in a 6G-V2X network
where the communication resources are relatively abundant,
proactive exploration-based security approaches are expected
to be useful for enhanced security level [96]. For example, in
[130], a proactive anomaly detection approach is adopted to
connected cars for cyber-threat prevention.

Security issues in wireless communication are usually
managed in the upper layers of the protocol stack using
cryptographic-based methods. However, the management and
exchange of secret keys will be challenging in heterogeneous
and dynamic V2X networks in which vehicles may randomly
access or leave the network at any time [131]. In this regard,
one can complement standard cryptographic approaches
with physical layer security (PLS) solutions [132]. While
PLS techniques exploit the randomness and the physical
characteristics of wireless channels to thwart eavesdropping,
these methods can be sensitive to channel modeling accuracy.
Due to the high mobility and consequently the channel
variations in a V2X scenario, ML can be useful for accurate
channel estimation and tracking which may benefit the
design of more effective PLS-based techniques. Furthermore,
depending on the scenarios and services, different security
levels are expected. For example, consider two vehicles which
follow each other either on a deserted road or at an busy
intersection. Due to the vehicles’ movement, the latter has
a higher amount of factors which may affect the decision
making, resulting in stringent security requirements [133]. ML
may be employed in the latter case to dynamically decide the
required security level as well as the most appropriate PLS
solution.

ML can also be used to design better control and
communication mechanisms that can prevent data injection
attacks on vehicular networks, in general, and vehicular
platoons, in particular, as shown in [134].

When ML is adopted to improve the security, ML-based
solution needs to be validated with respect to the end-to-end
network performance. As already mentioned, ML can be used

in functional modules in multiple layers of the networks. Thus,
the use of ML should be synchronized across the network
[135] to ensure overall secure communications [136].

D. Federated Learning for 6G-V2X

A critical issue for efficient applications of ML is the
training of ML models, which may be used at the base stations
or in the vehicles. The training of large ML models in remote
clouds is an obvious solution but could be time consuming.
One problem is that the fast changing vehicular network and
communication conditions may lead to a slow response to
environment changes, thus resulting in degraded performance.
Furthermore, most training samples are generated at the
network edges such as base stations and vehicles and hence
the cost and latency of transferring such data to a remote
cloud could be very high. Against this background, local
training of ML models is a desirable solution in 6G-V2X
networks. As each base station or vehicle may hold only a
small number of training samples, joint training of ML models
with shared training samples is a potential way to improve ML
model accuracy and generalization of performance. However,
a major concern for the joint training is privacy, in which
base stations and vehicles may not want to compromise
by sharing training samples. Federated learning, emerged
in recent years to address the privacy and communication
overhead issues associated to the training of ML models, has
attracted extensive research interests for enhanced wireless
networks [137]–[140].

Deemed to be an excellent ML approach for more efficient
6G-V2X networks, there are several technical challenges to
be tackled for effective applications of federated learning.
In the existing research works on federated learning of
wireless networks, supervised learning is mainly considered.
As reinforcement learning models are more likely to be
used, a scalable federated reinforcement learning framework
which can cover many different 6G-V2X use cases is
needed. In addition, since many V2X applications are
mission-critical, it is often not possible to allow federated
reinforcement learning to learn from scratch to avoid an
unstable phase at the beginning of the learning process.
Another challenge of federated learning involving vehicles
is the short inter-connectivity between the vehicles. The
vehicles may be out of communication range with the base
stations or other vehicles which are involved in the federated
learning. Hence, the vehicles may need to participate in
federated learning while they are parked. Finally, the impact
of the wireless channel on the federated learning performance
deserves a deeper investigation. As shown in [138], wireless
errors and delays can affect the accuracy of federated learning.
This effect can be further exacerbated in a mobile V2X
network due to the high-speed mobility of the vehicles and the
dynamics of the channel. Further research on the joint design
of wireless and learning mechanisms for V2X is needed.

V. CONCLUSIONS

In this article, we have identified a number of key enabling
technologies and revolutionary elements of next-generation



6G-V2X networks by unfolding their potential features and
advantages that are far beyond the capabilities of 5G.
Further, we have provided an overview of recent advances on
applications of machine learning in 6G vehicular networks,
which is widely regarded as a key to pave the way towards
truly intelligent transportation systems. For each enabling
technology, we have highlighted and discussed the major
advances, the most pressing challenges as well as the potential
opportunities. We expect this article to provide academic
and industry professionals with key insight into 6G-based
next-generation V2X which in turn will stimulate more
research with innovative solutions towards the practical design,
testing and deployment of these technologies.
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[83] J. Thunberg, N. Lyamin, K. Sjöberg, and A. Vinel, “Vehicle-to-vehicle
communications for platooning: Safety analysis,” IEEE Networking
Letters, vol. 1, no. 4, pp. 168–172, 2019.

[84] H. Hu, R. Lu, Z. Zhang, and J. Shao, “REPLACE: A reliable
trust-based platoon service recommendation scheme in VANET,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1786–1797,
2017.

[85] L. Xu, L. Y. Wang, G. Yin, and H. Zhang, “Communication information
structures and contents for enhanced safety of highway vehicle
platoons,” IEEE Transactions on Vehicular Technology, vol. 63, no. 9,
pp. 4206–4220, 2014.

[86] A. Sarker, C. Qiu, and H. Shen, “Connectivity maintenance for
next-generation decentralized vehicle platoon networks,” IEEE/ACM
Transactions on Networking, vol. 28, no. 4, pp. 1449–1462, 2020.

[87] P. Fernandes and U. Nunes, “Platooning with IVC-enabled autonomous
vehicles: Strategies to mitigate communication delays, improve safety
and traffic flow,” IEEE Transactions on Intelligent Transportation
Systems, vol. 13, no. 1, pp. 91–106, 2012.

[88] L. Xiao and F. Gao, “Practical string stability of platoon of
adaptive cruise control vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 12, no. 4, pp. 1184–1194, 2011.

[89] V. S. Dolk, J. Ploeg, and W. P. M. H. Heemels, “Event-triggered control
for string-stable vehicle platooning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 12, pp. 3486–3500, 2017.

[90] Y. Liu, C. Zong, and D. Zhang, “Lateral control system for vehicle
platoon considering vehicle dynamic characteristics,” IET Intelligent
Transport Systems, vol. 13, no. 9, pp. 1356–1364, 2019.

[91] T. Zeng, O. Semiari, W. Saad, and M. Bennis, “Joint communication
and control for wireless autonomous vehicular platoon systems,” IEEE
Transactions on Communications, vol. 67, no. 11, pp. 7907–7922,
2019.
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[97] V. Savaux and Y. Louët, “LMMSE channel estimation in OFDM
context: A review,” IET Signal Processing, vol. 11, no. 2, pp. 123–134,
Apr. 2017.

[98] Z. Gong, F. Jiang, and C. Li, “Angle domain channel tracking with large
antenna array for high mobility V2I millimeter wave communications,”
IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 5,
pp. 1077–1089, Aug. 2019.

[99] T. Li, M. R. A. Khandaker, F. Tariq, K. Wong, and R. T. Khan,
“Learning the wireless V2I channels using deep neural networks,”
in IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Nov.
2019.

[100] R. Sattiraju, A. Weinand, and H. D. Schotten, “Channel estimation in
C-V2X using deep learning,” arXiv:2003.02617, 2020.

[101] S. Moon, H. Kim, and I. Hwang, “Deep learning-based
channel estimation and tracking for millimeter-wave vehicular
communications,” Journal of Communications and Networks, vol. 22,
no. 3, pp. 177–184, 2020.

[102] V. Va, T. Shimizu, G. Bansal, and R. W. Heath, “Position-aided
millimeter wave V2I beam alignment: A learning-to-rank approach,” in
IEEE 28th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), Feb. 2017, pp. 1–5.

[103] A. Klautau, P. Batista, N. González-Prelcic, Y. Wang, and R. W. Heath,
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