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Abstract. Use of predictive models for making business-critical decisions is on 
the rise. However, serious challenges remain on managing data mining models 
and integrating them with business services using service-oriented architectures 
(SOA) to provide real-time Business Intelligence (BI). These challenges include 
model aging, management scalability, timely-communication among parties on 
model changes, semantic gap on interpreting models, and business process 
integration. We describe a data mining model management system that 
addresses these challenges to support sustainable and operationalized BI. 
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1   Introduction 

Business analysts and marketing experts in financial, telecommunication, and retail 
industries collect huge amounts of data on sales, customer behavior and partner 
profiles. They use data mining algorithms to detect patterns in historical data and to 
forecast future outcomes. Data mining models require deep understanding of complex 
statistics and algorithms as well as in-depth domain knowledge. It takes complex and 
composite models to predict the next purchase of customers who buy diapers, or 
browse digital cameras or finance offers. These models have a high initial 
development cost both time-wise and monetary. Therefore, we should consider 
models as valuable business assets and provide system support to increase their 
sharing and utility in the enterprise.  

There are serious challenges regarding building, updating and sharing complex 
data mining models across the enterprise: (1) All models inevitably age over time and 
their predictive performance changes as the products, customers, and business 
environments change (especially in the Electronics domain that offers different 
generations rapidly). For example, the concept of a “high-end” digital camera shifts 
from 3 to 5 to 10 Megapixels within a few years. One has to continuously feed new 
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data into a model, monitor its performance and constantly tune parameters to retain 
good results. (2) Mining algorithms can now be easily obtained from off-the-shelf BI 
suites [9], [10], [12] and it is common to find practical BI deployments that 
incorporate hundreds of data mining models in banks, retailers, insurance companies, 
telcos and even casinos [8], [13]. However, there is lack of support for effectively 
managing and utilizing these large collections. Manual management is impractical, 
faulty, and unresponsive to quick change. (3) Then, there is the issue of timely-
communication among the business people and the statisticians or model developers. 
Large-scale and dynamic nature of the models and the organizations makes it 
impractical to timely inform multiple parties about model-related events. Models that 
don’t catch emerging patterns or forecast accurately are detected only after serious 
business consequences. Today, stakeholders email each other and developers 
overwrite model parameters causing the valuable interactions to be lost or buried in 
emails and databases. Meanwhile, the business opportunities have been lost or the 
customer problems have been aggravated. (4) Finally, there is a semantic gap between 
statisticians who talk about regressions, accuracy, confidence, and ROC vs. business 
analysts who talk about customer retention strategies, addressable markets, etc.  

Overall, current data mining systems have not effectively addressed the challenges 
mentioned above. Specifically, we observed these problems during the development 
of HP Labs’ Retail Store Assistant (RSA) platform [1], which aims to provide real-
time personalized offers to customers through multiple retail channels including 
kiosks, web, and mobile devices using data mining models as well as business rules. 
The personalized coupons are presented to users by combining information from a 
user’s current shopping list, user’s past profile [2], business rules set in the frontline 
campaign process, and BI gained from this and other users’ overall purchase 
behaviors (e.g. via clustering). For example, the system uses data mining models to 
predict customer’s preferences and best matching products. Each component is 
published as a web service and the overall design uses a SOA. 

2   Overview of Our Solution 

The issues with model complexity due to business complexity cannot be simplified 
magically (see “No Magic” in [8]). Tools can help sift through large data and help 
store models, but it takes coordination among people in different roles, different 
departments, and even different organizations (due to partnership or outsourcing) to 
discover actionable knowledge. Yet, we can design systems to increase access of 
multiple stakeholders to model development process, automate tedious and repetitive 
tasks, reduce delays, and finally capture rich information to track model provenance 
and help with future inquires and management. 

We developed a system solution that can track a data mining model lifecycle from 
creation, to business inclusion, to performance deterioration ("aging" or “decay”), to 
maintenance, and finally to expiration and archival. It also tracks rule-model and 
model-to-model dependencies, so that if a model needs to be evicted from repository 
due to poor performance, then related entities that depend on this model are informed 
promptly. We track dependencies over multiple repositories through a workflow in a 



business process management (BPM) system with web service capabilities described 
below. We also define rich and extensible set of model-related metadata to track 
model provenance and capture the collective intelligence that is today left in experts’ 
minds and in silos of proprietary tools. Rich metadata helps close the semantic gap 
between business analysts and model developers leading to actionable BI. For 
example, in our retail kiosk scenario two data mining models for customer behavior 
change detection and fuzzy product matching used by the campaign process would be 
maintained by the model management system described here. 

2.1   Model Lifecycle Management 

We implemented a special workflow to orchestrate data mining model management, 
specifically to handle model lifecycle-related events illustrated in Figure 1, namely 
model created, model referenced and unreferenced (by a business process or rule), 
model deteriorated, model to be expired, and expired states and the triggering events. 
Today, a BPM system lies at the core of many SOA offerings providing the language 
and tools to express business logic in an executable form (e.g. BPEL [15]). We used 
Microsoft Biztalk BPM, but any other system allowing visual or programmatic 
description of workflow logic could have been used.  
Figure 2 shows a partial diagram of the orchestration that synchronizes the 
communication of business analysts, statisticians and the automated model 
performance evaluation routines over model-related events. The orchestration 
publishes a receive port as a web service to receive model-related event calls and 
queries (top-left in Fig.2). Note that this service is for management purposes and not 
for applications to query a specific model’s prediction. Internally, the workflow calls 
model metadata repository to store or query model metadata and to advance models’ 
status. Details of repository Application Programming Interface (API) for adding-
removing models, getting model tags/authors, adding dependencies, etc. are 
straightforward and therefore skipped for brevity. Model repository is currently 
implemented as a .NET library and the data is stored in Microsoft SQL Server.  

 
Fig. 1. Data mining model lifecycle is tracked by a hierarchical state machine. The unique 
feature of this lifecycle is the inclusion and tracking of business-level dependencies. 



 

Fig. 2. A screenshot from the data mining model management workflow implemented in 
Microsoft Biztalk BPM system. 

The orchestration first checks the model event type in the event payload and switches 
to the branch associated with that type of event that represents different model states 
shown in Figure 1. Model is assumed to be in the creation state until it is deployed. A 
MODEL CREATED (or deployed) event informs the orchestration that statisticians 
have deployed a new model into the model repository. Statisticians can raise this 
event by calling the web service published by the orchestration. The event carries the 
model identifier and other basic model attributes (described later). The new model 
goes to an Active state and starts to get managed by our system. Note that the state 
machine in Figure 1 is hierarchical where the Active state embeds REFERENCED 
and UNREFERENCED sub-states. Models that enter Active or ON state are 
initialized to Unreferenced sub-state. The Active state also keeps the history of the 
last state (for each model), so that it can return to this state when models exit and 
reenter Active state. It is also possible to view the state machine as consisting of On, 
Off, and Paused states. 
The related business analysts and other users will be informed when a new model is 
created and deployed. The orchestration does this by compiling a list of subscribers 
based on subscription keywords and notifying them. If analysts choose to integrate 
this model’s prediction in their business rules or processes, then they reference the 
model’s endpoint (e.g. Web Service URI recorded in metadata) and raise the MODEL 



REFERENCED event to inform and be informed about future model status updates. 
Processes can reference model services directly or via a rule-model binding. The 
Reference event payload includes a unique business rule id and the model id and the 
orchestration adds the rule-model dependency information to the given model’s 
metadata in the model repository. When model developers receive MODEL 
DETERIORATED events as a result of the orchestration’s periodic performance 
scans (described later) they determine if they can fix the model by updating internal 
parameters and if so they raise a MODEL UPDATED event. The orchestration 
handles update notifications similar to deteriorations by forwarding them to related 
people such as authors of this model and dependent business rules. If the model 
cannot be fixed (e.g. due to products becoming obsolete), then developers can choose 
to set a model expiration time and raise a MODEL TOBE-EXPIRED event. The 
orchestration will find the business rules dependent on this model using the model 
repository API and notify the associated rule authors. It also sets a timer, so that a 
MODEL EXPIRED event is raised at the expiration time. When the rule authors 
receive expiration notification, they revise their business rules based on other active 
models in the repository, remove references to expiring models, and raise the 
MODEL UNREFERENCED event to the orchestration. Note that this is a viable 
support extension to business process exception handling as the failures are detected 
and fixed at the background when they occur and not when there is a customer request 
with real-time expectations. When a model finally expires, business rules won’t be 
able to access it to get predictions and the orchestration removes the business rule ids 
from the model metadata. If no pending references exist, the orchestration directly 
raises a MODEL EXPIRED event to finish the process. This will remove the model 
from the system and no further notifications related to this model will be raised. 
Note that data mining model lifecycle management and metadata collection 
(described next) is representative of the Business Service Management (BSM) 
functionalities such as configuration, measurement, fault and trouble ticketing, and 
inventory management proposed as extensions to the best practice frameworks in IT 
service management such as the IT Infrastructure Library (ITIL) v3 [6]. 

2.2   Metadata for Data Mining Models 

Figure 3 shows basic model attributes including the globally unique identifier 
(GUID), model name that provides a quick verbal reference, and the textual 
description that explains what the data mining model is about. We also track model 
creation, last access, and expiration times. Author field lists the preferred contacts of 
developers that need to be informed about model lifecycle events. Data mining 
algorithm specifies particular algorithms (decision tree, logistic regression, clustering, 
naive Bayesian, neural network, etc.) used in construction of this model. Other 
metadata fields include model schema for describing I/O attributes, model 
assumptions, tags or keywords, training dataset information, performance evaluation 
methods, event triggers and thresholds values, rules that depend on this model, and 
finally inter-model dependencies. 



 

Fig. 3. Data mining model metadata and the details of basic attributes. 

 
Fig. 4. Model performance evaluation and event triggering parameters (“EventDefinitions”) are 
shown. They describe which function to call when a threshold is passed.  

An input attribute under SchemaDefinitions (not shown due to space) can be selected 
simply from a column in the database (e.g. CustomerId) or it can be an aggregated 
attribute (e.g. The total purchases over the last 3 months). The output attribute 
represents the result/attribute that the data mining model is trying to calculate or 
predict (e.g. The top 10 coupons to offer, churn rate, retention rate, or customer 
response probability). In addition, a data mining model works best (or only works) 
under certain conditions. The model developer can document these model 
assumptions (e.g. data ranges, input data quality, etc.) during the model construction 
and update them with gained knowledge over time. This rich information, beyond 
simple versioning and dependency tracking, gets transferred to the peer model 



builders or business analysts who rely on the correct operation of models when 
making business decisions or creating business rules. Our system will potentially 
reduce the number of failures or exceptions due to violation of undocumented 
assumptions. Image a practical business intelligence system containing hundreds to 
thousands of different models; it would be a daunting task to identify these buried 
assumptions, even if they could eventually be discovered by inspecting the entire data 
mining model. As model complexity increases and inter-model and model-rule 
dependencies proliferate, a model management system such as ours becomes a 
necessity. An analyst or manager cannot sift through raw database tables, try to 
understand SQL queries, or even locate the models during a business chaos such as all 
“personalized” coupons coming out the same, customers refusing to pay, out-of-
stocks occurring, etc. 
Models can be tagged by their authors to allow indexing and textual search. By 
querying a tag, we retrieve models that share the same or similar tags, thus finding 
models that are semantically linked or related to each other. This helps with model 
selection process before model composition. More interestingly, social tagging can be 
applied through our management system creating a perfect application for Enterprise 
2.0 (i.e. Web 2.0 for the enterprise). 
Business rules are also assumed to be represented by GUID in their respective 
repository (e.g. as in Microsoft Business Rule Engine). When a model-change event 
happens (e.g. model deterioration) the author of a dependent business rule gets 
notified by the orchestration. Different models can also depend on each other through 
versioning or other taxonomies. For example, a model can be the result of back-fitting 
of another model, thus having an “improved model” (parent-child) relationship. 
Models can also share the same data source, but might use different data mining 
algorithms, thus having a “Models Sharing Training Dataset X” (peer or siblings) 
relationship. Similarly models can be composed using machine learning to create a 
supermodel and this would create both parent-child and sibling relationships. Our 
system, through the use of rich metadata, allows tracking and managing different 
types of complex model relations. A tool that can crawl through the data mining 
model repository and highlight these relations visually would be extremely valuable. 
However, we do not focus on this topic in our research as there are several products 
that can enable us to add this capability. 
Developers can use their favorite BI tools to build data mining models. Next, they can 
export their model schema (e.g. using the Predictive Model Markup Language- 
PMML [11] format) and enrich that with metadata such as our basic model attributes, 
model assumptions while also exposing their performance evaluation routines through 
public API (SOAP, HTTP, message queues, etc.) to be called by our orchestration 
periodically or per-event-based. Associated with the performance evaluation routines, 
they define event trigger predicates shown in Figure 4. Simple examples include: 
“ROC < 0.57” or “customer retention rate < 0.73”. The orchestration scans through 
the associated performance evaluation results and raises the related event (e.g. 
MODEL DETORIATED) if the criteria evaluates as TRUE. 



3   Prototype Implementation 

We built the orchestration in Figure 2 and the model metadata repository. We 
demonstrated the lifecycle tracking of a few models as shown in Figure 5, which 
shows simulated model events for our CouponPrediction and InkUsage models. The 
date information denotes that coupon model was created, referenced, deteriorated and 
updated in a day time and then referenced again the next day. We can expect models 
to evolve much slower in real-life. However, the detection and handling of critical 
model events has to be done in real-time in order to assure healthy operation of 
systems depending on the BI gained from these models. Figure 6 shows ROC-based 
model performance comparison of two CouponPrediction data mining models for two 
categories. It highlights models with deteriorated performances with a red color. We 
are currently in process of evaluating our system on performance and scalability. 

 

 

Fig. 5. Web front-end to model management system showing models in our repository and their 
status. 

4   Related Work 

We address challenges that start after models are built. Our goal is to let developers 
use their favorite tools (Microsoft, SAS, FairIsaac, Oracle) to build data mining 
models and then register them into our model management system. In other words, 
this work does not focus on the details of algorithmic issues and attribute/parameter 
selection in model construction, which differentiates our work from most existing 
tools and systems [9], [10], [12], [3]. No prior art addresses integration of data mining  



 

 
Fig. 6. Model performance comparison where deteriorated models are marked with red color. 

model collections with business processes to automatically provide business insights, 
while also addressing the model aging, scalability, timely-communication and 
semantic gap challenges. Microsoft Analysis Services (MSAS) provides Analysis 
Management Objects (AMO) library to create, modify and delete data mining objects 
such as cubes and mining models. Their “collections” can contain only mining models 
built on the same data whereas our system can cover and relate all mining models in 
an enterprise. Furthermore, we use model-dependency tracking to relate models to 
rules and other models. Dependency tracking and decay monitoring capabilities of 
SAS Enterprise Miner, FairIsaac Model Builder, and Oracle Data Mining & Analytics 
are limited compared to our system. Data mining models are more complex constructs 
then web service descriptions (WSDL) and API definitions. Therefore, service and 
application lifecycle management systems [5] focusing primarily on versioning do not 
solve problems addressed here. 

Recent research has shown the importance of making models first-class citizens of 
database and called these special repositories modelbases [7]. Yet, there hasn’t been 
any work providing integration of data mining modelbases with business processes to 
automatically provide business insights, while also addressing the model aging, 
scalability, timely-communication and semantic gap challenges mentioned before. 
There also has been increased interest in real-time ETL [14] and data stream 
processing recently. Our work is remotely related to but significantly different from 
the previous research on generic model management. For example, in their “model 
management 2.0” paper Bernstein and Melnik describe techniques for schema 
mapping and matching and propose a system to track the evolution of the model 
schema and mappings among them. These topics are complementary to our current 
system in providing real-time BI. We recently also addressed stream and complex 
event processing issues in another paper [16]. 



5   Conclusions 
Serious challenges on managing data mining models and integrating them with online 
business services have been addressed in this paper. The addressed challenges include 
rapid handling of model deterioration, timely-communication among parties, closing 
the semantic gaps on model interpretations via rich metadata, business process 
integration and management scalability. We designed and implemented a data mining 
model management system and tested it with a few data mining models related to 
retailing. We accessed and used data mining model predictions via web services from 
our retail platform. Our goal is to provide a sustainable, real-time BI support for 
online business services and increase model utility and value across the enterprise. 
We are working on extending our work with new management features and testing 
system scalability with larger model collections. We plan to continue our work by 
running usability tests to tackle presentation issues emerging with large-scale 
deployments. These ethnographic studies will be major contributions towards 
delivering personal analytics or “BI to the masses”. Along the same direction we’re 
investigating ways to provide model management as a service in the cloud. 
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