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Abstract. Many models in economics involve discrete choices where a
decision-maker selects the best alternative from a finite set. Viewing the array
of values of the alternatives as a random vector, the decision-maker draws a
realization and chooses the alternative with the highest value. The analyst is
then interested in the choice probabilities and in the value of the best alter-
native. The random vector has the invariance property if the distribution of
the value of a specific alternative, conditional on that alternative being cho-
sen, is the same, regardless of which alternative is considered. This note shows
that the invariance property holds if and only if the marginal distributions of
the random components are positive powers of each other, even when allowing
for quite general statistical dependence among the random components. We
illustrate the analytical power of the invariance property by way of examples.
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Many models in economics involve discrete choices where a decision-maker chooses
the alternative with the highest value from a finite set of options with random values.
Much analytical power can be gained if the maximum value is statistically indepen-
dent of the choice. Equivalently, as we shall see, we may require that the distribution
of the maximum, conditional on alternative i being chosen, does not depend i. We
characterize this invariance property while allowing the random values of the alter-
natives to be statistically dependent.
Our main result, Theorem 1, concerns multivariate distributions that have multi-

variate extreme-value copulas. For such a distribution, the invariance property holds
if and only if the univariate marginal distributions are positive powers of each other.
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A special case of the “if”part of this result was given by Resnick and Roy (1990b),
who showed that certain multivariate distributions with Gumbel marginals have the
invariance property. Mattsson, Weibull and Lindberg (2014) generalized this to the
“if” claim in the present Theorem 1. For the independent case, Resnick and Roy
(1990a) proved the “only if”claim for the special case of two non-negative random
variables.
Researchers in economics and in mathematical psychology have treated the topic

of invariance a number of times. However, with few exceptions, earlier research
assumes statistical independence between the components of the random vector in
question. Strauss (1979, Theorem 4) showed that the multinomial logit model is
the only additive random utility model with statistically independent error terms
for which the invariance property holds. De Palma and Kilani (2007) revisited the
additive random utility case with independent error terms, and proved that for error
terms that are i.i.d. with finite expectation, a weaker invariance property, namely
invariance in terms of expected values is equivalent to the error terms being Gumbel
distributed. In an innovative study, Train and Wilson (2008) used the invariance
property of multinomial logit models for maximum-likelihood estimation in a class of
combined stated and revealed preference experiments.
The invariance property is by no means evident or always realistic. The “only

if”part of our main result shows precisely what subclass of distributions, within the
wide class considered here, the researcher then has to avoid if invariance appears
unrealistic or unnatural in the application at hand. In particular, the independent
multivariate normal distribution does not have the invariance property except in
the i.i.d. case (see example illustrated in Figure 1 below), whereas the multivariate
extreme-value distribution with Gumbel margins, used in the McFadden class of
GEV models, does have the invariance property. However, the invariance property
has great technical advantages. It implies specific functional forms and enhances
analytical tractability in many applications, such as discrete choice with or without
an outside option, rent seeking, patent races, and innovation contests, see Section 3.
In discrete choice applications there are often outside options. This makes invariance
of the choice probabilities with respect to outside options desirable, since outside
options can then (and only then) be ignored. Section 1 provides general definitions
and some preliminaries, and our main results are presented in Section 2.

1. Definitions and preliminaries
Let N be the positive integers, R the reals and R+ the non-negative reals. We write
vectors in boldface. A univariate function applied to a vector is understood to mean
component-wise application, i.e. ln x = (lnx1, . . . , lnxn). Denote by F the class of
cumulative distribution functions (CDFs) F such that F : Rn → [0, 1], for some
integer n > 1, is twice continuously differentiable and has positive density f with
support Dn ⊆ Rn, where D is a nonempty and (bounded or unbounded) interval. For
convenience we will subsequently refer to Dn as “the support”. Let X = (X1, ..., Xn)
be a random vector distributed according to some such F . Let X̂ = maxiXi be



A note on the invariance of the distribution of the maximum 3

the maximum of the random vector and let F̂ denote its CDF. We write Fi for the
partial derivative of F with respect to its ith variable and F (i) for the ith marginal
distribution of the multivariate distribution F . Define the selection ξ ∈ I = {1, ..., n}
by ξ = arg maxiXi, where the latter set with probability one is a singleton. Let
qi = P (ξ = i). One may also consider the distribution of the maximum conditional

on the selection of a particular alternative i ∈ I: F̂ (i) (t) = P
(
X̂ ≤ t | ξ = i

)
. We

will denote this conditional random variable X̂i.1 In a discrete choice setting, F̂ (i)

is the distribution of achieved (or experienced) utility, conditional on the choice of
alternative i ∈ I, and qi is its choice probability.
It is relatively straightforward in this setting to prove the following three equali-

ties:2 
qi =

∫
Fi (s, ..., s) ds > 0 ∀i ∈ I

F̂ (i) (t) = q−1
i ·

∫ t
−∞ Fi (s, ..., s) ds ∀i ∈ I, t ∈ R

F̂ (t) = F (t, ..., t) ∀t ∈ R.
(1)

We note that the quantities in (1) only depend on how the CDF F ∈ F behaves
near the diagonal of its domain.
By “invariance” we mean that the conditional distributions F̂ (i) are identical

across alternatives i ∈ I:

Definition 1. Amultivariate distribution F has the Invariance Property if F̂ (i) =
F̂ for all i ∈ I. A random vector X has the Invariance Property if its distribution
has the Invariance Property.

The following proposition provides some observations regarding the Invariance
Property.

Proposition 1. Consider a random vector X with CDF F ∈ F .
(i) If X is exchangeable, then X has the Invariance Property.3

(ii) If X has the Invariance Property and T : R → R is a strictly increasing
function, then also Y = (T (X1) , ..., T (Xn)) has the Invariance Property.
(iii) X has the Invariance Property if and only if the selection ξ and the maximum

X̂ are statistically independent.

The first two observations are immediate. We note that the first observation
includes the i.i.d. case. The third follows from

P
(
X̂ > x ∧ ξ = i

)
= P

(
X̂ > x | ξ = i

)
· P (ξ = i) = P

(
X̂i > x

)
· P (ξ = i) .

1Technically, let Ωj = {ω ∈ Ω : Xj (ω) ≥ Xi (ω) ∀i ∈ I}. Then X̂j : Ωj → R is defined by
X̂j (ω) = Xj (ω).

2See e.g. Lindberg, Eriksson and Mattsson (1995, Lemma 1). The general case is more complex,
see Lindberg (2012a). Using results from this paper, the conditions on the functions in F can
be relaxed to just twice continuous differentiability, more in line with the conditions on the linear
homogenous G below.

3A random vector is exchangeable if its distribution is invariant under permutation of its compo-
nents.
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We will express results in terms of so-called copulas. These are functions on the
unit cubes in Euclidean spaces, defined as follows (see Nelsen, 2006, for an excellent
introduction):

Definition 2. A copula is any function C : [0, 1]n → [0, 1] such that
(i) C (x) = 0 if Πi∈Ixi = 0,
(ii) C (x) = xk if Πi∈I\{k}xi = 1,
(iii) If x,y ∈ [0, 1]n and x ≤ y, then VC ([x,y]) ≥ 0.

Here [x,y] denotes the box ×ni=1 [xi, yi] ⊆ [0, 1]n, i.e., the Cartesian product of
the intervals [xi, yi]. Moreover, VC ([x,y]) is the C-volume of this box, defined as the
signed sum of the values C (v) at all vertices v of [x,y], where the sign is positive
(negative) if vi = xi for an even (odd) number of coordinates i ∈ I. Condition
(iii) ensures that the copula assigns non-negative probability mass to any box. By
construction, copulas are then CDFs on the unit cube that have uniform marginal
distributions.
By Sklar’s theorem (e.g. Theorem 2.10.9 in Nelsen, 2006), every multivariate

distribution F : Rn → [0, 1] can be written in terms of its marginal distributions F (i)

and a copula C, so that

F (x) = C
(
F (1) (x1) , ..., F (n) (xn)

)
∀x ∈ Rn. (2)

The copula associated with any CDF thus captures the statistical dependence struc-
ture of the multivariate distribution in question.
In order to state our main result we define the class of copulas that are associated

with multivariate extreme-value (MEV) distributions, to be called MEV copulas. A
multivariate extreme-value (MEV) distribution is any multivariate distribution H
with non-degenerate margins that can be obtained as the limit of component-wise
maxima as follows. Let (Xm)m∈N be a sequence of i.i.d. random vectors, with common
multivariate CDF F . Let am,bm ∈ Rn,m ∈ N be normalizing vectors such that all
components of all vectors am are positive. Using component-wise maximization,
multiplication and division to ease on notation, assume the following limit exists and
let H be the limiting multivariate CDF:

lim
m→∞

P

(
max1≤l≤m Xl − bm

am
≤ x

)
= lim

m→∞
[F (amx + bm)]m = H (x) .

Then H is multivariate extreme-value (see Joe, 1997).4 This is a natural class of
distributions for maximization problems such as when agents make optimal choices,
just as the normal distribution is natural for problems involving averages of random
variables. As shown in Joe (1997, p. 173-174), an MEV copula C must satisfy

4More precisely, if Xl = (Xl1, .., Xln), then max1≤l≤mXl−bm
am

is the vector with jth component
max1≤l≤mXlj−bmj

amj
, and amx is the vector with jth component amjxj .
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C (xα) = [C (x)]α for all x ∈ (0, 1)n and α > 0. It can be shown that the converse
holds, that is, MEV copulas are exactly those that satisfy this homogeneity property.
This equivalence follows from

Lemma 1. A copula C is a copula of an MEV distribution if and only if it is of the
form

C (x) = exp (−G (− ln x)) ∀x ∈ (0, 1)n (3)

for some function G that is homogeneous of degree 1.

(A proof is given in the Appendix.)
We also note that if X = (X1, ..., Xn) is MEV distributed, then evidently so is

any subvector of X. Hence, the copulas of the subvectors also have the form (3).

Lemma 2. For J ⊂ I, let XJ = (Xj)j∈J and similarly for xJ . Let G(J) (xJ) =
limxi→0 ∀i/∈J G (x). If X is MEV-distributed with CDF of the form (2) with copula C
of the form (3), then XJ has the CDF

F (J) (xJ) = exp
(
−G(J)

(
− lnF (j) (xj)

)
j∈J

)
.

The copula of a vector X = (X1, ..., Xn) of independent random variables is the
independence copula

∏n
i=1 xi. This is also an MEV copula by Lemma 1 (where

G is summation). Our focus on distributions with MEV copulas then includes all
independent multivariate distributions.
A simple example of random vectors that have MEV copulas but not the Invari-

ance Property is provided by the multivariate normal distribution with statistically in-
dependent variables. Consider a random vector X = (X1, X2) where Xi ∼ N (µi, σ

2)
and X1 and X2 are statistically independent. Then F has an MEV copula, the prod-
uct function, but the Invariance Property holds if and only if µ1 = µ2. This is due
to the thin tails of the normal distribution. This failure of invariance is intuitively
evident when µ1 and µ2 are far apart. Suppose µ1 << µ2. Then the probability
distribution of X̂2 is almost the same as that of X2, since the probability for X1 > X2

is small. By contrast, the distribution of X̂1 is very different from both that of X1 and
X2; its distribution F̂1 represents an upward biased sample from X1. The diagram
below illustrates this for µ1 = 0, µ2 = 2 and σ2 = 1. The thin curves are the densities
of X1 (solid) and X2 (dashed). The thick curves are the densities for X̂1 (solid) and
X̂2 (dashed).



A note on the invariance of the distribution of the maximum 6

4 3 2 1 0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

x

y

Figure 1: A counter-example to the Invariance Property.

Consider any random vector X = (X1, X2) where X1 and X2 are independent,
X1 has CDF F (1) and X2 has CDF F (2) =

[
F (1)

]α
for some α > 0. As follows from

Theorem 1 below, X̂, X̂1 and X̂2 all have the same distribution, which by (1) is[
F (1)

]1+α
. This is then an example of a random vector that has an MEV copula

(because the components are independent) and also the Invariance Property. This
holds, for example, if one of the components is normal. The diagram shows F (1)

(thin), F (2) (thin dashed), and F̂ (solid), when X1 is standard normal and α = 2.
This is then an example of how the Invariance Property can be achieved based on
the normal distribution and an MEV copula.
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Figure 2: An example of powers of the normal distribution, with the Invariance
Property.

2. Results
We are now in a position to state the main result of this note.

Theorem 1. Consider any F ∈ F satisfying (2) for an MEV copula C that is twice
continuously differentiable with positive first-order partial derivatives. Then F and
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all the multivariate marginal distributions of F have the Invariance Property if and
only if for each i ∈ I there exists an αi > 0 such that F (i) =

[
F (1)

]αi .
(A proof is given in the Appendix.)
The assumption in the Theorem that C is twice continuously differentiable is a

bit stronger than needed, but simplifies the statement and proof. We also note that
it follows from Lemma 2 that all the multivariate marginal distributions of a CDF F
(as in the Theorem) have the Invariance Property if F has it.
Examples of marginal distributions F (i) that satisfy the power equation in the The-

orem are Gumbel distributions with the same standard deviation. The same holds for
Fréchet distributions with the same shape parameter. Indeed, Gumbel distributions
are the basis of the much used multinomial logit model, and its generalization to GEV
choice models, a literature pioneered by McFadden (1974, 1978, 1981). For examples
of choice models based on Fréchet distributions, see e.g. Eaton and Kortum (2002).
Similarly, consider minimization instead of maximization, and a multivariate sur-

vival function that satisfies the corresponding hypothesis of Theorem 1. If it has the
corresponding Invariance Property, and if one of the marginal distributions is Weibull
or Pareto, then the other marginal distributions are so too.
We also note that, except for some special cases, the Invariance Property is not

preserved when one mixes distributions that are invariant. For example, a convex
combination of different Gumbel distributions does not have the Invariance Property.5

Such distributions occur in mixed multinomial logit models (see e.g. McFadden and
Train, 2000).
Theorem 1 characterizes the Invariance Property for those distributions in F that

have twice continuously differentiable MEV copulas with positive first-order partial
derivatives. Could it be that invariance of a probability distribution is equivalent to
the distribution having an MEV copula and marginal distributions that are powers
of each other? That conjecture is false. This follows from the next proposition,
according to which one may change any multivariate distribution at points outside a
neighborhood of the diagonal of its domain without affecting its Invariance Property.
Let L be the diagonal of Dn; L = {x ∈ Dn : x1 = ... = xn}.

Proposition 2. Consider any distributions F, F̃ ∈ F with the same support Dn. If
F has the Invariance Property and F̃ = F on an open neighborhood of the diagonal
L, then also F̃ has the Invariance Property.

To prove this proposition, it is suffi cient to note that by (1), the CDFs of the
unconditional and conditional maxima, F̂ , F̂ (1), ..., F̂ (n), depend only on the values
of the joint distribution F and its partial derivatives on the diagonal. The CDFs
of the unconditional and conditional maxima corresponding to F̃ are then also F̂ ,
F̂ (1), ..., F̂ (n).
The next proposition establishes that the Invariance Property is preserved under

aggregation of components to blocks represented by their maximal member.
5Except perhaps in very special cases
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Proposition 3. Suppose that X = (X1, ..., Xn) has the Invariance Property, and
consider any partition of I into k subsets. For each subset It let Yt = maxi∈It (Xi).
Then Y = (Y1, ..., Yk) has the Invariance Property.

(A proof is given in the Appendix.)
Considering results related to our Theorem 1, Strauss (1979) in his Theorem 5

(without proof6) and Lindberg, Eriksson and Mattsson (1995) in their Theorem 4
(with proof) claim that if the components of a random vector X are of the additive
form Xi = νi +Zi, where the νi’s are scalars and Z is a random vector with CDF F ,
then the Invariance Property holds for all vectors ν if and only if F (z) = φ [G (e−z)]
for some positive homogenous function G (with positive degree) and some function
φ : R+ → [0, 1] such that F is a CDF. All three theorems imply that GEV choice
models have the Invariance Property. However, only our Theorem 1 is applicable to,
e.g., multivariate distributions with Fréchet marginals or, in the case of minimization,
to distributions with Weibull or Pareto marginals. As for the only-if-part, their
theorems require the Invariance Property to hold for all ν ∈ Rn, whereas our Theorem
1 has no such requirement. Also Marley (1989) derived the Invariance Property within
what he termed a “horse race”model, a model that can be viewed as a transformed
version of the above model of Strauss.7

3. Applications
This section discusses two examples in which the Invariance Property is useful.
Throughout we rely on the equivalence of the Invariance Property to the independence
of the selection ξ and the maximum X̂.

3.1. Discrete choice with outside option. The probabilistic basis of a discrete
choice model is a random vector X of (indirect) utilities, each associated with an
alternative i in some set I. Suppose there is also an outside option (say, not to buy
from any one of the n sellers in the market). The decision-maker, who we may think of
as a consumer, chooses the alternative with the highest utility, including the outside
option as a possibility. Such a discrete choice model is, for example, used in models
of monopolistic competition, see e.g. Sattinger, 1984, or Perloff and Salop, 1985.
The utility X0 associated with the outside option acts as a threshold such that

the consumer only chooses one of the alternatives in I if the utility of that alternative
exceeds that of the outside option. Such situations are easily treated when the random
utilities have the Invariance Property.
Suppose that X has the Invariance Property, and that alternative i is chosen if

Xi = X̂ and X̂ > X0, where X̂ = maxi∈I Xi and X0 is the random utility of the
outside option. We henceforth take X0 to be statistically independent from X. We
still use ξ to denote the alternative in I = {1, ..., n} with maximum utility and let qi

6The proof claimed in Robertson and Strauss (1981) is, unfortunately, erroneous.
7See Appendix 2 in Lindberg (2012b).
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denote the probability that ξ = i. Let η ∈ {0} ∪ I denote the chosen option among
all options. With F0 being the CDF of X0, the probability for the outside option is

P (η = 0) = P
(
X̂ ≤ X0

)
=

∫
F (s, .., s) dF0 (s) ;

this probability can be easily calculated from the primitives of the model. Moreover,
it follows from Proposition 1 (iii) that, for any i > 0,

P (η = i) = P
(
ξ = i ∧ X̂ > X0

)
=

∫
P
(
ξ = i | X̂ > s

)
· P
(
X̂ > s

)
dF0 (s)

= qi · [1− P (η = 0)] .

Hence, the presence of an outside option does not affect the conditional probabilities
of the inside options, once the outside option has been rejected by the consumer or
decision maker. This holds for any CDF F0 of the outside option X0, as long as
the latter is statistically independent of X. In particular, the outside option may be
discrete or deterministic.8

We now establish the converse: that if the presence of an outside option does not
affect the inside choice probabilities, then the inside utilities must have the Invariance
Property. Suppose then that value of the outside option is deterministic and that the
inside choice probabilities do not depend on the value of the outside option, i.e.
P
(
ξ = i|X̂ > x

)
= P (ξ = i) for all i ∈ I and x < supD. Then

P
(
ξ = i ∧ X̂ > x

)
= P

(
ξ = i | X̂ > x

)
· P
(
X̂ > x

)
= P (ξ = i) · P

(
X̂ > x

)
.

Hence, ξ and X̂ are then statistically independent, and thus

P
(
X̂ ≤ x | ξ = i

)
= P

(
X̂ ≤ x

)
for all i ∈ I and x ∈ R. That is, the Invariance Property holds: F̂i = F̂ for all i ∈ I.

3.2. Rent-seeking, innovation contests and patent races. Baye and Hoppe
(2003) establish the strategic equivalence between wide classes of rent-seeking games,
innovation contests and patent-races. In their innovation-contest game, n firms com-
pete by employing a finite and positive number of scientists, where each scientist costs

8Outside options in random utility models have been considered before. To the best of our
knowledge, the outside option has then either been (a) deterministic, as in Besanko, Perry and
Spady (1990), (b) independently and identically Gumbel-distributed up to location shifts, as in
Anderson, de Palma and Thisse (1992), or (c) allowed to be statistically dependent with the inside
options in the form of a nested logit model, as in Mattsson and Weibull (1981).
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c > 0 and independently produces an innovation of random value in [0, 1] with CDF
H. All firms pay the costs of their scientists, and the firm with the best idea among
all firms wins the value of its best idea. The other firms win nothing.
Let Xi be the value of firm i’s best idea and let X = (X1, .., Xn). Then X has

the joint CDF F (x) =
∏n

i=1 F
(i) (xi), where F (i) (xi) = [H (xi)]

si and si > 0 is the
number of scientists in firm i. Clearly, F̂ = Hs1+..+sn . Moreover, F has an MEV
copula (by Lemma 1) that satisfies the hypothesis of Theorem 1 and thus has the
Invariance Property. By Proposition 1 (iii), the identity ξ ∈ I of the firm that wins
the contest and the value X̂ of the best idea are statistically independent. Hence, the
expected profit to any firm i can be expressed as

πi (s) = P (ξ = i) · E(X̂)− csi

=
si

s1 + ..+ sn
·
(

1−
∫ 1

0

[H(t)]s1+..+sn dt

)
− csi

Treating the R&D inputs si as positive real numbers, this representation of profit
functions permit game-theoretic analyses of firms’equilibrium investment in R&D
inputs. Moreover, this can be generalized to include “synergy” or “critical mass”
effects with respect to the number of scientists in a firm, by letting the CDF F (i) of the
value of the best idea within any firm i depend in a more general way on the number
of scientists in the firm. Hence, let F (i) depend on si; F (i) (xi) = Ki (xi, si). Such
a function Ki could represent the arguably realistic phenomenon that the marginal
return, in terms of innovations or discoveries, from an additional scientist may be
highest at some intermediate size of a research unit. We could also allow for statistical
dependence between distinct firms’ best ideas by letting the joint CDF F (x) =
C
(
F (1) (x1) , ..., F (n) (xn)

)
for some MEV copula C that satisfies the differentiability

hypothesis of Theorem 1.
To retain statistical independence between the selection of the winning firm and

the value of the best idea, for any subset of firms taking part in the competition, we
can apply the “only if”part of Theorem 1. More specifically, if such a formulation
is to hold for any number of firms and any number of scientists in each firm, the
functions Ki need to be of the power form Ki (xi, si) = [A (xi)]

ri(si) for some positive
functions ri and some CDF A.9

4. Appendix

Proof of Lemma 1. Necessity: Note with Joe (1997, p. 173-174) that an MEV
copula C must satisfy C (xα) = [C (x)]α for all x ∈ (0, 1)n and α > 0. Then G (y) ≡
− lnC (e−y) is homogenous of degree 1. Suffi ciency: Suppose C has the form (3). Let
F be a CDF with copula C and marginals that are unit exponential on the negative
half-axis, i.e. Fi (x) = ex on (−∞, 0]. Then F (x) = C (ex). Let Xi = (Xi1, ..., Xin)

9We note that since firms usually can split their R&D units if they wish, the functions ri can be
taken to be super-additive; ri (s+ t) ≥ ri (s) + ri (t).
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be i.i.d. with CDF F , and let Mk
j = maxi≤kXij. Let Yk =

(
kMk

1 , ..., kM
k
n

)
, then Yk

has the CDF

P
(
Yk ≤ x

)
= P

[(
kMk

1 , ..., kM
k
n

)
≤ (x1, ..., xn)

]
= P

[(
max
i≤k

Xi1, ...,max
i≤k

Xin

)
≤
(x1

k
, ...,

xn
k

)]
=

∏
i≤k

P
[
(Xi1, ..., Xin) ≤

(x1

k
, ...,

xn
k

)]
=

[
C
(
ex1/k, ..., exn/k

)]k
= C (ex) .

Thus all Yk have the same distribution, and hence they converge in distribution
to Y1, say, with the same CDF C (ex). Therefore C (ex) is the CDF of an MEV
distribution and C is an MEV copula.

Proof of Theorem 1. Suffi ciency: Theorem 1 in Mattsson, Weibull and Lindberg
(2014) states that a CDF F ∈ F of the form

F (x1, . . . , xn) = exp (−G (−α1H (x1) , . . . ,−αnH (xn))) , (4)

where G is a homogenous function of degree 1, and H is a univariate CDF, has the
Invariance Property. Suffi ciency then follows from the observation in Lemma 2 that
the multivariate marginal distributions of MEV copulas are also MEV copulas, and
that twice differentiability with positive partials is inherited.
Necessity: Consider the CDF

P (X1 ≤ x1, X2 ≤ x2) = F (x1, x2,∞, ...,∞) = C
(
F (1) (x1) , F (2) (x2) , 1, ..., 1

)
.

By assumption, this CDF has the Invariance Property. As noted in Lemma 2, the
copula for (X1, X2) inherits the MEV property from C. We may thus ignore the last
but two dimensions of F and C, and assume that |I| = 2 at no loss of generality, and
will henceforth write X = (X1, X2). It remains to show that F (2) =

[
F (1)

]α
for some

α > 0.
First, by Lemma 1, we may write

F (x) = exp
(
−G

(
− lnF (1) (x1) ,− lnF (2) (x2)

))
, (5)

where G is homogenous of degree 1 and satisfies the properties necessary for F to
be a CDF Since C by hypothesis is twice continuously differentiable with positive
partials, G inherits these properties (except at the origin). To see this, note that
G (y) ≡ − lnC (e−y1 , e−y2).
Second, by Proposition 1, the Invariance Property remains under any strictly

increasing transformation of the components. Hence, it is no loss of generality to apply
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such a transformation so that F (1) is a Gumbel distribution, F (1)(x1) = exp (−e−x1)
on R. By (1) we then have, for all t ∈ R,

F̂ (1) (t) =
1

q1

∫ t

−∞
F (s, s)G1

(
e−s,− lnF (2) (s)

)
e−sds =

F̂ (2) (t) =
1

q2

∫ t

−∞
F (s, s)G2

(
e−s,− lnF (2) (s)

) f (2) (s)

F (2) (s)
ds,

where f (2) > 0 is the density of F (2) and q1 and q2 are the associated choice proba-
bilities. Differentiation with respect to t gives

1

q1

F (t, t)G1

(
e−t,− lnF (2) (t)

)
· e−t =

1

q2

F (t, t)G2

(
e−t,− lnF (2) (t)

)
· f

(2) (t)

F (2) (t)
.

or (since F (t, t) > 0 and Gi(x) > 0 for all positive x ∈ R2):

f (2) (t) =
q2e
−tG1

(
e−t,− lnF (2) (t)

)
q1G2 (e−t,− lnF (2) (t))

· F (2) (t) ∀t ∈ R. (6)

Since F with F (1)(x1) ≡ exp (−e−x1) and F (2) =
[
F (1)

]α
for any α > 0 has

the Invariance Property (by the established suffi ciency claim of this theorem), F (2)

satisfies this equation, where q1 and q2 = 1−q1 are the associated choice probabilities.
Suppose that F̄ (x1, x2) = C

(
F (1) (x1) , F̄ (2) (x2)

)
is another invariant CDF, but with

F̄ (2) 6=
[
F (1)

]α
for all α > 0. Then F̄ (2) is a solution to (6) for qi = q̄i, where q̄i are

the choice probabilities associated with F̄ . We will show that no such solution F̄ (2)

exists. For this purpose we first show that, for any q̄1 ∈ (0, 1) there exists some α > 0
such that q̄1 = q1 (α), where q1 (α) and q2 (α) = 1− q1 (α) are the choice probabilities
under the CDF F with F (1)(x1) ≡ exp (−e−x1) and F (2) =

[
F (1)

]α
. This can be

established as follows. By Theorem 1 in McFadden (1978),

q1 (α) =
G1 (1, α)

G (1, α)
and q2 (α) =

αG2 (1, α)

G (1, α)

(set V1 = 0 and V2 = lnα in McFadden’s equation (12)). By homogeneity of each Gi

one obtains
1− q1 (α)

q1 (α)
= α · G2 (1/ (1 + α) , α/ (1 + α))

G1 (1/ (1 + α) , α/ (1 + α))

Moreover, since each Gi is continuous and positive on ∆ =
{
y ∈ R2

+ : y1 + y2 = 1
}

also the ratio G2/G1 is continuous and positive on∆. Since∆ is compact, there exists
a, b > 0 such that a ≤ G2 (y) /G1 (y) ≤ b for all y ∈ ∆. Thus, for any q̄1 ∈ (0, 1)
there exist an ᾱ > 0 such that q1 (ᾱ) = q̄1.
According to the Picard-Lindelöf Theorem (see, e.g., Theorem 3.1 in Hale, 1969),

an ordinary differential equation such as (6) has a unique (local) solution through
any given point (t0, x0) ∈ R× (0, 1), for x0 = F (2) (t0) if

Ψ (t, x) =
q2e
−tG1 (e−t,− lnx)

q1G2 (e−t,− lnx)
· x
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defines a continuous function on R × (0, 1) that is locally Lipschitz-continuous in
x. Our function Ψ is continuously differentiable in x and thus also locally Lipschitz
continuous in x. By uniqueness, the solution F (2) =

[
F (1)

]ᾱ
and the hypothesized

alternative solution, F̄ (2) cannot intersect at any point (where their values are in
(0, 1)). Hence, F̄ (2) (t) either lies above or below our solution for all t ∈ R. Assume it
always lies above: F (2) (x2) < F̄ (2) (x2) for all x2 where F (2) (x2) < 1 and F̄ (2) (x2) > 0
(the opposite case can be treated in the same way). The random vector X has the
CDF C

(
F (1) (x1) , F (2) (x2)

)
, where C is the above copula (restricted to n = 2). Let X̄

have the CDF C
(
F (1) (x1) , F̄ (2) (x2)

)
. Further, letY = (Y1, Y2) have the CDF C, and

let F−(i) be the inverse of F (i), for i = 1, 2 and F̄−(2) that of F̄ (2). ThenXi = F−(i)(Yi)
and X̄2 = F̄−(2)(Y2). Clearly F̄−(2) < F−(2) on (0, 1). Since F (2) < F̄ (2) and Y has
positive density everywhere,

q2 (ᾱ) = P (X2 ≥ X1) = P
[
F−(2)(Y2) ≥ F−(1)(Y1)

]
> P

[
F̄−(2)(Y2) ≥ F−(1)(Y1)

]
= P (X̄2 ≥ X1) = q̄2,

a contradiction.

Proof of Proposition 3. Let X have the Invariance Property, i.e., F̂ (i) = F̂ for all
i. It is suffi cient to establish the proposition for the case when two alternatives, say
1 and 2, are merged via the maximum operation. Define Y = X1 ∨X2. It is suffi cient
to show that P (Y ≤ t | ξ ∈ {1, 2}) = F̂ (t). But

P (Y ≤ t | ξ ∈ {1, 2}) =
P ([Y ≤ t] ∧ [ξ ∈ {1, 2}])

P (ξ ∈ {1, 2})

=
P ([Y ≤ t] ∧ [ξ = 1]) + P ([Y ≤ t] ∧ [ξ = 2])

q1 + q2

=
P (Y ≤ t | ξ = 1)P (ξ = 1) + P (Y ≤ t | ξ = 2)P (ξ = 2)

q1 + q2

=
q1

q1 + q2

F̂ 1 (t) +
q2

q1 + q2

F̂ 2 (t) = F̂ (t) .
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