Mitsuho Katoh

Mitsuho Katoh
University of the Ryukyus · Department of Agricultural Chemistry

About

7
Publications
1,777
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
28
Citations

Publications

Publications (7)
Article
Full-text available
Batesian mimicry is a striking example of Darwinian evolution, in which a mimetic species resembles toxic or unpalatable model species, thereby receiving protection from predators. In some species exhibiting Batesian mimicry, nonmimetic individuals coexist as polymorphism in the same population despite the benefits of mimicry. In a previous study,...
Article
Batesian mimicry, in which harmless organisms resemble unpalatable or harmful species, is a well‐studied adaptation for predation avoidance. The females of some Batesian mimic species comprise mimetic and nonmimetic individuals. Mimetic females of such polymorphic species clearly have a selective advantage due to decreased predation pressure, but t...
Article
Full-text available
Batesian mimicry is a well‐studied adaptation for predation avoidance, in which a mimetic species resembles an unpalatable model species. Batesian mimicry can be under positive selection because of the protection gained against predators, due to resemblance to unpalatable model species. However, in some mimetic species, nonmimetic individuals are p...
Article
Full-text available
Wing polymorphism of butterflies provides a good system in which to study adaptation. The Asian Batesian mimic butterfly Papilio polytes has unmelanized, putative mimetic red spots on its black hind wings. The size of those red spots is non-heritable but it is highly polymorphic, the adaptive significance of which is unknown. We hypothesized that u...
Article
Full-text available
Batesian mimicry, a phenomenon in which harmless organisms resemble harmful or unpalatable species, has been extensively studied in evolutionary biology. Model species may differ from population to population of a single mimetic species, so different predation pressures might have driven micro-evolution towards better mimicry among regions. However...

Network

Cited By