Mitsuhiro Aida

Mitsuhiro Aida
  • PhD
  • Professor at Kumamoto University

About

92
Publications
22,408
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,665
Citations
Current institution
Kumamoto University
Current position
  • Professor

Publications

Publications (92)
Article
Full-text available
The shoot meristem is a group of self-perpetuating cells that ultimately gives rise to the aerial parts of plants. The Arabidopsis thaliana SHOOT MERISTEMLESS (STM) gene, which encodes a knotted1-like homeobox transcription factor, is required for shoot meristem formation and maintenance, and loss-of-function mutations in the gene result in complet...
Article
The establishment of organ boundaries is a fundamental process for proper morphogenesis in multicellular organisms. In plants, the shoot meristem repetitively forms organ primordia from its periphery, and boundary cells are generated between them to separate their cellular fates. The genes CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, which encode plant-s...
Article
Full-text available
Carpel margin meristems (CMMs), a pair of meristematic tissues present along the margins of two fused carpel primordia of Arabidopsis thaliana, are essential for the formation of ovules and the septum, two major internal structures of the gynoecium. Although a number of regulatory factors involved in shoot meristem activity are known to be required...
Preprint
Full-text available
During gynoecium development in Arabidopsis thaliana, two carpel primordia are initiated with their margins fused together, forming a hollow tube. The fused carpel margins, or carpel boundaries, generate ovules, septa, and repla, which are essential structures for successful reproduction and seed dispersal. The boundary-specific CUP-SHAPED COTYLEDO...
Article
Full-text available
The shoot meristem, a stem-cell-containing tissue initiated during plant embryogenesis, is responsible for continuous shoot organ production in postembryonic development. Although key regulatory factors including KNOX genes are responsible for stem cell maintenance in the shoot meristem, how the onset of such factors is regulated during embryogenes...
Article
The appearance of the flower marks a key event in the evolutionary history of plants. Among the four types of floral organs, the gynoecium represents the major adaptive advantage of the flower. The gynoecium is an enclosing structure that protects and facilitates the fertilisation of the ovules, which then mature as seeds. Upon fertilisation, in ma...
Article
Full-text available
During de novo plant organ regeneration, auxin induction mediates the formation of a pluripotent cell mass called callus, which regenerates shoots upon cytokinin induction. However, molecular mechanisms underlying transdifferentiation remain unknown. Here, we showed that the loss of HDA19, a histone deacetylase (HDAC) family gene, suppresses shoot...
Article
In many flowering plants, petals initiate in alternate positions from first whorl sepals, suggesting possible signaling between sepal boundaries and petal initiation sites. PETAL LOSS (PTL) and RABBIT EARS (RBE) regulate petal initiation in Arabidopsis thaliana, and their transcripts are expressed in sepal boundary and petal initiation sites, respe...
Article
During embryogenesis of eudicots, the apical region of the embryo develops two cotyledon primordia and the shoot meristem. In Arabidopsis thaliana, this process is dependent on the functionally redundant activities of the CUP-SHAPED COTYLEDON (CUC) transcription factors, namely CUC1, CUC2, and CUC3, as well as the phytohormone auxin. However, the r...
Article
Full-text available
Parasitic root-knot nematodes transform the host’s vascular cells into permanent feeding giant cells (GCs) to withdraw nutrients from the host plants. GCs are multinucleated metabolically active cells with distinctive cell wall structures; however, the genetic regulation of GC formation is largely unknown. In this study, the functions of the Arabid...
Article
Full-text available
The development of above-ground lateral organs is initiated at the peripheral zone of the shoot apical meristem (SAM). The coordination of cell fate determination and the maintenance of stem cells are achieved through a complex regulatory network comprised of transcription factors. Two AP2/ERF transcription factor family genes, ESR1/DRN and ESR2/DR...
Article
The shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2, is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmental...
Article
During gynoecium development in Arabidopsis thaliana, two carpel primordia are initiated with their margins fused together, forming a hollow tube. The fused carpel margins, or carpel boundaries, generate ovules, septa, and repla, which are essential structures for successful reproduction and seed dispersal. The boundary-specific CUP-SHAPED COTYLEDO...
Preprint
Full-text available
The shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2 , is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmenta...
Article
Full-text available
Among the major phytohormones, the cytokinin exhibits unique features for its ability to positively affect the developmental status of plastids. Even early on in its research, cytokinins were known to promote plastid differentiation and to reduce the loss of chlorophyll in detached leaves. Since the discovery of the components of cytokinin percepti...
Article
Full-text available
Tissue clearing methods combined with confocal microscopy have been widely used for studying developmental biology. In plants, ClearSee is a reliable clearing method that is applicable to a wide range of tissues and is suitable for gene expression analysis using fluorescent reporters, but its application to the Arabidopsis thaliana embryo, a model...
Preprint
Tissue clearing methods combined with confocal microscopy have been widely used for studying developmental biology. In plants, ClearSee is a reliable clearing method that is applicable to a wide range of tissues and is suitable for gene expression analysis using fluorescent reporters, but its application to the Arabidopsis thaliana embryo, a model...
Article
Full-text available
Acquisition of pluripotency by somatic cells is a striking process that enables multicellular organisms to regenerate organs. This process includes silencing of genes to erase original tissue memory and priming of additional cell type specification genes, which are then poised for activation by external signal inputs. Here, through analysis of geno...
Article
Full-text available
The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is critical for shoot apical meristem (SAM) function, yet the components and structure of the STM gene regulatory network (GRN) are largely unknown. Here we show that transcriptional regulators are overrepresented amongst STM-regulated genes, and using these as GRN components...
Article
Volatile terpenes are ones of the characteristic aromas of Japanese pepper (Zanthoxylum piperitum). It has been hypothesized that the specialized epithelial cells surrounding the secretory cavities of Japanese pepper fruits and leaves are responsible for the synthesis of monoterpenes and sesquiterpenes, which are generally produced by terpene synth...
Article
Full-text available
Secreted peptides mediate intercellular communication [1, 2]. Several secreted peptides in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family regulate morphogenesis of tissues, such as stomata and inflorescences in plants [3-15]. The biological functions of other EPFL family members remain unknown. Here, we show that the EPFL2 gene is required for...
Article
Full-text available
It has recently been noted that micrographs in Fig 4 contain inconsistent background signals. The corrected figure is shown here with different images from the same experiment in panels A and B, which were derived from the same dataset underlying Fig 4 in the original paper. The source data for the new figure 4 can be found online.
Article
Clearing techniques eliminate factors that interfere with microscopic observation, including light scattering and absorption by pigments and cytoplasmic components. The techniques allow fluorescence-based detailed analyses of materials and characterization of the three-dimensional structure of organs. We describe a simple and rapid clearing and ima...
Data
Summary of the number of replicates for each mechanical test. DOI: http://dx.doi.org/10.7554/eLife.07811.031
Article
Full-text available
The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic...
Article
Full-text available
The evolution of plant reproductive strategies has led to a remarkable diversity of structures, especially within the flower, a structure characteristic of the angiosperms. In flowering plants, sexual reproduction depends notably on the development of the gynoecium that produces and protects the ovules. In Arabidopsis thaliana, ovule initiation is...
Article
The arrangement of flowers in inflorescence shoots of Arabidopsis thaliana represents a regular spiral Fibonacci phyllotaxis. However, in the cuc2 cuc3 double mutant, flower pedicels are fused to the inflorescence stem, and phyllotaxis is aberrant in the mature shoot regions. This study examined the causes of this altered development, and in partic...
Article
Full-text available
Cell-to-cell communication is a fundamental mechanism for coordinating developmental and physiological events in multicellular organisms. Heterotrimeric G proteins are key molecules that transmit extracellular signals; similarly, CLAVATA signaling is a crucial regulator in plant development. Here, we show that Arabidopsis thaliana Gβ mutants exhibi...
Article
Upon hormonal signaling, ovules develop as lateral organs from the placenta. Ovule numbers ultimately determine the number of seeds that can develop and thereby contribute to the final seed yield in crop plants. We demonstrate here that CUP-SHAPED COTYLEDON 1 (CUC1), CUC2 and AINTEGUMENTA (ANT) have additive effects on ovule primordia formation. We...
Article
Full-text available
A characteristic feature of flowering plants is the fusion of carpels, which results in the formation of an enclosed gynoecium. In Arabidopsis thaliana, the gynoecium is formed by the fusion of two carpels along their margins, which also act as a meristematic site for the formation of internal structures such as ovules, the septum and transmitting...
Article
The release of genetically modified plants into the environment can only occur after permission is obtained from the relevant regulatory authorities. This permission will only be obtained after extensive risk assessment shows comparable risk of impact to the environment and biodiversity as compared to non-transgenic host plants. Two transgenic rose...
Article
Full-text available
In higher plants, shoot organs such as leaves, branches, and flowers are generated from the shoot apical meristem (SAM), a small group of undifferentiated cells located at the tip of the shoot. The SAM maintains its pluripotency and simultaneously produces lateral organs at its periphery. The SAM arises during embryogenesis and its positioning requ...
Article
Two mutations in Arabidopsis thaliana, auxin response factor6 (arf6) and arf8, concomitantly delayed the elongation of floral organs and subsequently delayed the opening of flower buds. This phenotype is shared with the jasmonic acid (JA)-deficient mutant dad1, and, indeed, the JA level of arf6 arf8 flower buds was decreased. Among JA biosynthetic...
Article
Full-text available
At the onset of flowering, the Arabidopsis thaliana primary inflorescence meristem starts to produce flower meristems on its flank. Determination of floral fate is associated with changes in the growth pattern and expression of meristem identity genes and suppression of a subtending leaf called a bract. Here, we show a role in floral fate determina...
Article
Adventitious organogenesis in plant tissue culture involves de novo formation of apical meristems and should therefore provide important information about the fundamentals of meristem gene networks. We identified novel factors required for neoformation of the shoot apical meristem (SAM) through an analysis of shoot regeneration in root initiation d...
Article
Full-text available
Seed morphogenesis consists of embryogenesis and the development of maternal tissues such as the inner and outer integuments, both of which give rise to seed coats. We show that expression of chimeric repressors derived from NAC-REGULATED SEED MORPHOLOGY1 and -2 (NARS1 and NARS2, also known as NAC2 and NAM, respectively) caused aberrant seed shapes...
Article
Possible links between plant defense responses and morphogenesis have been postulated, but their molecular nature remains unknown. Here, we introduce the Arabidopsis semi-dominant mutant uni-1D with morphological defects. UNI encodes a coiled-coil nucleotide-binding leucine-rich-repeat protein that belongs to the disease resistance (R) protein fami...
Article
Full-text available
Organ primordia develop from founder cells into organs due to coordinated patterns of cell division. How patterned cell division is regulated during organ formation, however, is not well understood. Here, we show that the PUCHI gene, which encodes a putative APETALA2/ethylene-responsive element binding protein transcription factor, is required for...
Article
Full-text available
Overall shoot architecture in higher plants is highly dependent on the activity of embryonic and axillary shoot meristems, which are produced from the basal adaxial boundaries of cotyledons and leaves, respectively. In Arabidopsis thaliana, redundant functions of the CUP-SHAPED COTYLEDON genes CUC1, CUC2, and CUC3 regulate embryonic shoot meristem...
Article
Full-text available
CUP-SHAPED COTYLEDON1 (CUC1), CUC2, and CUC3 define the boundary domain around organs in the Arabidopsis thaliana meristem. CUC1 and CUC2 transcripts are targeted by a microRNA (miRNA), miR164, encoded by MIR164A, B, and C. We show that each MIR164 is transcribed to generate a large population of primary miRNAs of variable size with a locally conse...
Article
Full-text available
The CUP-SHAPED COTYLEDON (CUC) genes CUC1, CUC2 and CUC3 act redundantly to control cotyledon separation in Arabidopsis. In order to identify novel regulators of this process, we have performed a phenotypical enhancer screen using a null allele of cuc2, cuc2-1. We identified three nonsense alleles of AtBRM, an Arabidopsis SWI/SNF chromatin remodeli...
Article
Formation of lateral organ primordia from the shoot apical meristem creates boundaries that separate the primordium from surrounding tissue. Morphological and gene expression studies indicate the presence of a distinct set of cells that define the boundaries in the plant shoot apex. Cells at the boundary usually display reduced growth activity that...
Article
The initiation of plant lateral organs from the shoot meristem is associated with the formation of boundaries that separate the primordia from surrounding tissue. A distinctive set of cells is present along the boundary, and these 'boundary cells' display characteristic patterns of cell division, morphology and gene expression. A certain class of t...
Article
Full-text available
Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-spe...
Article
In higher plants, although several genes involved in shoot apical meristem (SAM) formation and organ separation have been isolated, the molecular mechanisms by which they function are largely unknown. CUP-SHAPED COTYLEDON (CUC) 1 and CUC2 are examples of two such genes that encode the NAC domain proteins. This study investigated the molecular basis...
Article
A small organizing center, the quiescent center (QC), maintains stem cells in the Arabidopsis root and defines the stem cell niche. The phytohormone auxin influences the position of this niche by an unknown mechanism. Here, we identify the PLETHORA1 (PLT1) and PLT2 genes encoding AP2 class putative transcription factors, which are essential for QC...
Article
In dicotyledonous plants, two cotyledons are formed at bilaterally symmetric positions in the apical region of the embryo. Single mutations in the PIN-FORMED1 (PIN1) and PINOID (PID) genes, which mediate auxin-dependent organ formation, moderately disrupt the symmetric patterning of cotyledons. We report that the pin1 pid double mutant displays a s...
Chapter
A basic body plan consisting of two axes, apical-basal and radial (central-peripheral), is established during the embryogenesis of higher plants. The embryo forms the shoot and root meristems, which are essential for postembryonic development, at the opposite ends of the apical-basal axis. Recently, a molecular genetic approach using the model plan...
Article
In dicotyledonous plants, the apical region of the embryo shifts from radial to bilateral symmetry as the two cotyledon primordia develop on opposite sides of the shoot meristem. To further elucidate the mechanisms regulating this patterning process, we analyzed functions of two Arabidopsis genes, PIN-FORMED1 (PIN1) and MONOPTEROS (MP), encoding a...
Article
Full-text available
Here we report a novel Arabidopsis dwarf mutant, fackel-J79, whose adult morphology resembles that of brassinosteroid-deficient mutants but also displays distorted embryos, supernumerary cotyledons, multiple shoot meristems, and stunted roots. We cloned the FACKEL gene and found that it encodes a protein with sequence similarity to both the human s...
Article
Full-text available
When mutations in CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 are combined, severe defects involving fusion of sepals and of stamens occur in Arabidopsis flowers. In addition, septa of gynoecia do not fuse along the length of the ovaries and many ovules have their growth arrested. CUC2 is expressed at the tips of septal primordia during gynoecium develop...
Article
Full-text available
The tobacco gene, NTH1, encodes a polypeptide of 326 amino acids and is a member of the class1 KN1-type family of homeobox genes. Expression of NTH1 has mainly been observed in vegetative and reproductive shoot apices, not observed in roots or expanded leaves. Over-expression of NTH1 in transgenic plants caused abnormal leaf morphology, consisting...
Article
Full-text available
The shoot apical meristem and cotyledons of higher plants are established during embryogenesis in the apex. Redundant CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 as well as SHOOT MERISTEMLESS (STM) of Arabidopsis are required for shoot apical meristem formation and cotyledon separation. To elucidate how the apical region of the embryo is established, we...
Article
Full-text available
Several lines of evidence indicate that the adaxial leaf domain possesses a unique competence to form shoot apical meristems. Factors required for this competence are expected to cause a defect in shoot apical meristem formation when inactivated and to be expressed or active preferentially in the adaxial leaf domain. PINHEAD, a member of a family o...
Article
Full-text available
Mutations in CUC1 and CUC2 (for CUP-SHAPED COTYLEDON), which are newly identified genes of Arabidopsis, caused defects in the separation of cotyledons (embryonic organs), sepals, and stamens (floral organs) as well as in the formation of shoot apical meristems. These defects were most apparent in the double mutant. Phenotypes of the mutants suggest...

Network

Cited By