Mishal Rao

Mishal Rao
University of Pittsburgh | Pitt · Department of Ophthalmology

About

6
Publications
598
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
96
Citations
Citations since 2017
4 Research Items
93 Citations
2017201820192020202120222023051015202530
2017201820192020202120222023051015202530
2017201820192020202120222023051015202530
2017201820192020202120222023051015202530
Education
August 2019 - June 2024
University of Pittsburgh
Field of study
  • Ophthalmology
August 2014 - June 2018
University of Maryland, College Park
Field of study
  • Cell Biology and Genetics

Publications

Publications (6)
Article
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing ap...
Preprint
Full-text available
We determined replication patterns in cancer cells in which the controls that normally prevent excess replication were disrupted ("re-replicating cells"). Single-fiber analyses suggested that replication origins were activated at a higher frequency in re-replicating cells. However, nascent strand sequencing demonstrated that re-replicating cells ut...
Article
Full-text available
Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A...
Data
Supplementary Figures 1-7 and Supplementary Tables 1-4
Article
Full-text available
Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow r...

Network

Cited By