
Mirjana PavlovicÉcole Polytechnique Fédérale de Lausanne | EPFL
Mirjana Pavlovic
About
8
Publications
290
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
40
Citations
Citations since 2017
Introduction
Skills and Expertise
Publications
Publications (8)
Nowadays, massive amounts of point cloud data can be collected thanks to advances in data acquisition and processing technologies such as dense image matching and airborne LiDAR scanning. With the increase in volume and precision, point cloud data offers a useful source of information for natural-resource management, urban planning, self-driving ca...
Nowadays, massive amounts of point cloud data can be collected thanks to advances in data acquisition and processing technologies like dense image matching and airborne LiDAR (Light Detection and Ranging) scanning. With the increase in volume and precision, point cloud data offers a useful source of information for natural resource management, urba...
Advances in data acquisition---through more powerful supercomputers for simulation or sensors with better resolution---help scientists tremendously to understand natural phenomena. At the same time, however, it leaves them with a plethora of data and the challenge of analysing it. Ingesting all the data in a database or indexing it for an efficient...
Spatial joins are becoming increasingly ubiquitous in many applications, particularly in the scientific domain. While several approaches have been proposed for joining spatial datasets, each of them has a strength for a particular type of density ratio among the joined datasets. More generally, no single proposed method can efficiently join two spa...
Many scientific and geographical applications rely on the efficient execution of spatial joins. Past research has produced several efficient spatial join approaches and while each of them can join two datasets, the problem of efficiently joining two datasets with contrasting density, i.e., with the same spatial extent but with a wildly different nu...
Scientists in all disciplines increasingly rely on simulations to develop a better understanding of the subject they are studying. For example the neuroscientists we collaborate with in the Blue Brain project have started to simulate the brain on a supercomputer. The level of detail of their models is unprecedented as they model details on the subc...
Researchers in several scientific disciplines are struggling to cope with the masses of data resulting from either increasingly precise instruments or from simulation runs on ever more powerful supercomputers. Efficiently managing this deluge of data has become key to understand the phenomena they are studying. Scientists in the simulation sciences...