Miquel Barberà

Miquel Barberà
University of Valencia | UV · I2SysBio

Biochemistry

About

32
Publications
3,464
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
138
Citations
Education
September 2008 - September 2009
University of Valencia
Field of study
  • Molecular Biology
September 2002 - June 2008
University of Valencia
Field of study
  • Biochemistry

Publications

Publications (32)
Article
Aphids are paradigmatic photoperiodic animals often used to study the role of the circadian clock in the seasonal response. Previously, we described some elements of the circadian clock core (genes period and timeless) and output (melatonin, AANATs and PTTH) that could have a role in the regulation of the aphid seasonal response. More recently we i...
Article
Full-text available
Aphids were the first animals described as photoperiodic due to their seasonal switch from viviparous parthenogenesis to sexual reproduction (cyclical parthenogenesis) caused by the shortening of the photoperiod in autumn. This switch produces a single sexual generation of oviparous females and males that mate and lay diapausing cold-resistant eggs...
Article
Full-text available
Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors suc...
Article
Aphids were the first animals reported as photoperiodic as their life cycles are strongly determined by the photoperiod. During the favourable seasons (characterised by long days) aphid populations consist exclusively of viviparous parthenogenetic females (known as virginoparae). Shortening of the photoperiod in autumn is perceived by aphids as the...
Article
Aphids display life cycles largely determined by the photoperiod. During the warm long‐day seasons, most aphid species reproduce by viviparous parthenogenesis. The shortening of the photoperiod in autumn induces a switch to sexual reproduction. Males and sexual females mate to produce overwintering resistant eggs. In addition to this full life cycl...
Article
Organisms exhibit a wide range of seasonal responses as adaptions to predictable annual changes in their environment. These changes are originally caused by the effect of the Earth's cycles around the sun and its axial tilt. Examples of seasonal responses include floration, migration, reproduction and diapause. In temperate climate zones, the most...
Article
Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormon...
Article
Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperio...
Article
Most organisms exhibit some kind of rhythmicity in their behaviour and/or physiology as an adaptation to the cyclical movements of the Earth. In addition to circadian rhythms, many organisms have an annual rhythmicity in certain activities, such as reproduction, migration or induction of diapause. Current knowledge of the molecular basis controllin...

Network

Cited By
    • University of Natural Resources and Life Sciences Vienna
    • French National Institute for Agriculture, Food, and Environment (INRAE)
    • China Agricultural University
    • University of Barcelona
    • IRB Barcelona Institute for Research in Biomedicine and Barcelona Supercomputing Centre (BSC)

Projects

Project (1)
Project
Molecular analysis of Fordini species and associated ants. Environmental factors and molecular basis governing polyphenism in Paracletus cimiciformis