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Asymptotically Optimal Cascaded Coded
Distributed Computing via Combinatorial Designs

Minquan Cheng, Youlong Wu, and Xianxian Li

Abstract

Coded distributed computing (CDC) introduced by Li et al. can greatly reduce the communication load for MapReduce
computing systems. In the general cascaded CDC with K workers, N input files and Q Reduce functions, each input file will be
mapped by r workers and each Reduce function will be computed by s workers such that coding techniques can be applied to
achieve the maximum multicast gain. The main drawback of most existing CDC schemes is that they require the original data to
be split into a large number of input files that grows exponentially with K, which can significantly increase the coding complexity
and degrade system performance. In this paper, we first use a classic combinatorial structure t-design, for any integer t ≥ 2, to
develop a low-complexity and asymptotically optimal CDC with r = s. The main advantages of our scheme via t-design are
two-fold: 1) having much smaller N and Q than the existing schemes under the same parameters K, r and s; and 2) achieving
smaller communication loads compared with the state-of-the-art schemes. Remarkably, unlike the previous schemes that realize
on large operation fields, our scheme operates on the minimum binary field F2. Furthermore, we show that our construction
method can incorporate the other combinatorial structures that have a similar property to t-design. For instance, we use t-GDD
to obtain another asymptotically optimal CDC scheme over F2 that has different parameters from t-design. Finally, we show that
our construction method can also be used to construct CDC schemes with r 6= s that have small file number and Reduce function
number.

Index Terms

I. INTRODUCTION

Distributed computing systems have been widely applied to execute large-scale computing tasks, since they can greatly
speed up task execution by letting distributed computing nodes execute computation jobs in parallel and exploiting distributed
computing and storage resources. However, when exchanging a massive amount of data among the computing nodes, distributed
computing systems would suffer a severe communication bottleneck due to the limited communication resource and high
transmitted traffic load. For instance, in the TeraSort [1] and SelfJoin [2] applications running in Amazon EC 2 cluster, the
time cost of data exchange occupies 65% ∼ 70% of the overall job execution time [3].

Coded distributed computing (CDC), proposed by Li et al. in [4], is considered as a prominent approach to reduce the
communication load for distributed computing systems such as MapReduce [5] and Spark [6], by introducing repetitive
computations on the input data to create coding multicast opportunities. Consider a general (K, r, s,N,Q) MapReduce system
with K computing workers, N input data files with equal size and Q output values each of which is the function of the N
input data files. It consists of “Map”, “Shuffle” and “Reduce” phases. In the map phase, every input file will be exclusively
mapped by a distinct r-subset of workers to Q intermediate values (IVs). In the Shuffle phase, the workers generate coded
symbols from the local IVs, and multicast them to other workers such that all desired IVs can be recovered by the desired
nodes. In the Reduce phase, each output value will be exclusively reduced by a distinct s-subset of workers, based on the
locally computed and the recovered IVs. When s = 1, i.e., each output value is computed exactly once, the CDC scheme is
similar to the coded caching scheme for the D2D network [4], [7]. When s ≥ 1, it is called cascaded CDC as it can support
multi-round computation where the output values of the previous round serve as the input of the next round.

The CDC approach has attracted enormous attention, and many works have been conducted focusing on the scalability and
optimality of CDC in various settings. For instance, the linear dependency of IVs and the properties of map functions were
exploited to improve the computation-communication trade-off [8]. Saurav et al. described the MapReduce computations on
graphs and and leveraged the graph structure to create coded multicast opprotunies [9]. The resource allocation problem of
CDC has been investigated in [10], [11], in which optimal CDC schemes to minimize the total execution time were proposed.
The heterogeneous CDC with different storages and computation loads among nodes were considered in [12]–[17]. For more
works about CDC, please see a survey in [18].
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A. Research Motivation

For the cascaded case where each Reduce function is computed multiple times, the main idea of most existing CDC
schemes is to use some combinatorial structures to design the data placement and Reduce function assignment such that the
communication load is as small as possible by means of the Maximum separable (MDS) codes or randomly linear combination
method. For instance, the first and classic cascaded CDC scheme [4] uses all the r-subset and s-subset of [K] to design the
data placement and Reduce function assignment respectively where 1 ≤ r, s ≤ K. Then in the shuffle phase, for any subset
S ⊆ [K] with a cardinality |S| ∈ {max{r + 1, s}, . . . ,min{r + s,K}}, each node k ∈ S will use MDS codes to generate
and deliver linear combinations of IV segments based on its locally computed IVs. Each linear combination is decodable by
the exclusively desired nodes in S\{k}, i.e., achieving a multicast gain |S| − 1. The authors in [4] showed that their scheme
achieves the minimum communication load, but at the cost of requiring exponentially large numbers of both input files and
Reduce functions in terms of

(
K
r

)
and

(
K
s

)
, respectively. This leads to unexpected performance loss in practical implementations

when K is relatively large. For example, in the CodedTeraSort experiment sorting 12 GB data with K = 16 workers, r = 6,
and 100 Mbps network speed, each worker needs to generate all file indices and initialize

(
K
r+1

)
multicast groups to transfer

all IVs to the intended workers. The corresponding time cost will dominate the overall execution time [4].
To reduce the required numbers of both input files and Reduce functions, a hypercube scheme, where the data placement

and Reduce function assignment are generated by the hypercube structure was proposed in [19] for the case r = s. In their
scheme, the communications take place in multiple rounds with multicast gains equal to r, . . . ,min{2r − 1,K − 1}, in each
of which one worker generates linear combinations based on the local IVs and broadcasts them to the other workers. The
authors also showed that the communication load is asymptotically optimal. However, their scheme still requires exponentially
large numbers of both input files and Reduce functions in terms of (Kr )

r−1. The authors in [20] used a symmetric balanced
incomplete block design (SBIBD) to generate the data placement and Reduce function assignment to obtain an asymptotically
optimal scheme with K = N = Q. In their scheme, each coded symbol carries contents desired by r − 1 workers, i.e., the
multicast gain is r − 1.

The authors [21] used the placement delivery array (PDA) to generate cascaded CDC schemes. These schemes have
an operation field F2 and are one-shot delivery. It is worth noting that the PDA was originally proposed to reduce the
subpacketization of coded caching problem when each worker requests distinct contents, not able to characterize the worker
demands if some workers request the same content [22]–[34]. This leads to the PDA-based CDC schemes [21] failing to exploit
the common IVs desired by multiple workers, and thus incurring redundant communication load. We list all the above results
in Table I.

TABLE I: Existing cascaded CDC schemes

Parameters Number of
Nodes K

Computation
Load r

Replication
Factor s

Number of
Files N

Number of Reduce
Functions Q

Communication
Load Lcomm.

Operation
Field F2

[4]: K, r, s ∈ N+,
1 ≤ r, s ≤ K K r s

(K
r

) (K
s

) min{r+s,K}∑
l=max{r+1,s}(

l−r
l−1
·
(
K−r
K−l

)(
r
l−s

)
(
K
s

)
) No

[19]: K, r ∈ N+,
K is divisible by r K r r (K

r
)r−1 (K

r
)r−1

1
2
− 1

2
·
(
r
K

)r
+
(
1− r

K

)r · 1
4r−2

No

[20]: (K, r, λ) SBIBD,
K, r, λ ∈ N+,
2 ≤ λ ≤ r

K r r K K r
r−1
· K−r

K
No

[21]: K, r, s ∈ N+,
1 ≤ r, s ≤ K K r s (K

r
)r−1 K

gcd(K,s)
s
r−1

(1− r
K
) Yes

B. Contribution and Organization

In this paper, we first show that for the cascaded case with s = r, by delicately designing the data placement and Reduce
function assignment using a combinatorial structure t-design [35], for any positive integer t ≥ 2, we can construct a new class
of asymptotically optimal schemes, i.e., the scheme for Theorem 1 in Table II. For the special 2-design, our scheme achieves
a multicast gain r+ s− 2 = 2r− 2 that is just one less than the maximum multicast gain of the scheme proposed in [4] (See
Remark 5). Comparing Table I and Table II, our scheme has the following advantages.
• Compared with the scheme in [4], [19], our scheme has much smaller file number N and Reduce function number Q.

More surprisingly, in addition to smaller N,Q, our scheme achieves a less communication load than that of [19] when
K
r > 1 + (2r + 1)

1
r , and than that of [4] for some case (see Example 3).

• Compared with the scheme in [20], our scheme has a smaller communication load under the same parameters K, r = s,
file number N and Reduce function number Q when r ≤ K/2. Furthermore, SBIBD is the special structure of the
2-design which will be introduced in Section II-B. This implies that we can obtain new CDC schemes with more flexible
parameters compared with the scheme in [20].
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• Compared with the scheme in [21], our scheme has much smaller file number N and smaller communication load under
the same parameters K, r = s when r ≤ K/2.

In fact, by using other combinatorial structures having a similar property to the second property of t-design (see Definition
2), we can also construct other low-complexity and communication-efficient CDC schemes. For instance, we apply the
combinatorial structure t-GDD to design another CDC scheme that is asymptotically optimal over F2and has different parameters
from the t-design scheme for Theorem 1 (see Remark 1 in Subsection II-B). The results of t-GDD scheme for Theorem 2 are
listed in Table II.

Finally, we show that our constructing method can also be extended to the case r 6= s, which is the scheme for Theorem 3
in Table II. By comparison with the scheme in [21], our third scheme has a significant advantage on the file number.

TABLE II: New schemes where t, N , M , λ ∈ N+, 1 ≤ t ≤M ≤ N and M ≤M

Parameters Number of
Nodes K

Computation
Load r

Replication
Factor s

Number of
Files N

Number of Reduce
Functions Q

Communication
Load Lcomm.

Operation
Field F2

Theorem 1
λ
(
N
t

)
(
M
t

) KM
N

KM
N

N N N−1
2N

< 1
2

Yes

Theorem 2
λ
(
m
t

)
qt(

M
t

) KM
mq

λ
(
m−1
t−1

)
qt−1(

M−1
t−1

) mq mq 1
2
+ q−2

mq
Yes

Theorem 3
λ
(
N
t

)
(
M
t

) KM
N

λ(N−t+1)
M−t+1

N
( N
t−1

)
N−t+1
Nt

< 1
t

Yes

The rest of this paper is organized as follows. Section II describes the system model and some useful combinatorial structures.
Section III introduces our main results including two new schemes and their performance analyses. Section IV provides the
detailed construction of the two proposed cascaded CDC schemes. Section V provides an extension scheme for the case r 6= s.
Finally, we conclude the paper in Section VI.

C. Notations

In this paper, we use the following notations unless otherwise stated.
• Bold capital letters, bold lowercase letters, and calligraphic fonts will be used to denote arrays, vectors, and sets,

respectively.
• We assume that all the sets are in increasing order; for a set V , we let V(j) represent the j-th smallest element of V and

let V(J ) = {V(j)|j ∈ J }.
• | · | is used to represent the cardinality of a set or the length of a vector.
• For any positive integers a, b, t with a < b and t ≤ b, and any nonnegative set V , let [a, b] = {a, a+1, . . . , b}, especially

[1, b] be shorten by [b], and
(
[b]
t

)
= {V | V ⊆ [b], |V| = t}, i.e.,

(
[b]
t

)
is the collection of all t-sized subsets of [b]. We use

a|b to denote that b is divisible by a.

II. PREMILARIES

In this section, we formulate the cascaded coded distributed computing problem and introduce some combinatorial structures
that will be useful to our scheme design.

A. Cascaded Coded Distributed Computing System

In a coded distributed computing system, there are K distributed computing workers which will compute Q Reduce functions
by taking advantage of N input files each of equal size. Denote the worker set, N files, and Q functions by K = [K],
W = {w1, w2, . . . , wN}, and Q = {φ1, φ2, . . . , φQ}, respectively. For each function φq where q ∈ [Q], let Aq represent the
worker set each of which is arranged to compute the Reduce function

uq , φq(w1, w2, . . . , wN )

, hq(gq,1(w1), gq,2(w2), . . . , gq,N (wN )) ∈ F2E ,

for some integer E where for any q ∈ [Q] and n ∈ [N ], gq,n(·) is called Map function and hq(·) is called Reduce function.
The parameter vq,n , gq,n(wn) where q ∈ [Q] and n ∈ [N ] is called intermediate value (IV). We assume that each IV has
T bits, for some positive T . In order to support multiple-round computing where the reduced results of the previous round
are the inputs of the next round Map operation, each Reduce function is assumed to be computed by s ∈ [K] workers. As
illustrated in Fig. 1, a cascaded coded distributed computing consists of the following three phases.
• Map Phase. Each worker k ∈ K first stores M files, denoted by Zk. For each file wn, let Dn represent the worker set

each of which stores file wn. Then the files stored by worker k can be written as follows.

Zk = {wn | n ∈ [N ], k ∈ Dn}. (1)
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Map Functions Reduce Functions

Fig. 1: Illustration of a two-stage distributed computing framework. The overall computation is decomposed into computing a
set of Map and Reduce functions.

Using the stored files in (1) and Map functions {gq,n(·)}, worker k could compute the following IVs

Ik = {vq,n = gq,n(wn) | q ∈ [Q], n ∈ [N ], k ∈ Dn}.

• Shuffle Phase. According to the arranged computing tasks, i.e., worker k ∈ K is arranged to compute the following
Reduce functions

Qk = {φq(w1, w2, . . . , wN ) | q ∈ [Q], k ∈ Aq}. (2)

Since each worker can not store all the files, all the workers should exchange their locally computed IVs to ensure that
each worker could derive the IVs which are not locally computed by itself. Assume that worker k ∈ K sends a coded
message Xk with length lk generated by its locally computed IVs to the other workers.

• Reduce Phase. By receiving the coded signals X = {X1, X2, . . . , XK} and its locally computed IVs in Ik, worker k ∈ K
can compute each Reduce function in Qk.

Using the same definitions in [4], we also define the computation load as

r ,

∑K
k=1 |Zk|
N

, (3)

and the communication load as

Lcomm. ,

∑K
k=1 |Xk|
QNT

=

∑K
k=1 lk
QNT

. (4)

That is, r is the average number of workers that map each file and Lcomm. is the ratio of the amount of transmitted data
to QNT . When N/

(
K
r

)
∈ N, Q/

(
K
s

)
∈ N (or N → ∞, Q → ∞), Li et al. established the optimal trade-off between the

computation load and the communication load [4], which is given as follows.

Lemma 1 ( [4]). For any positive integers K, r and s with r, s ≤ K, there exists a cascaded CDC scheme achieving the
optimal communication load

L∗comm.(r, s) =

min{r+s,K}∑
l=max{r+1,s}

((
K−r
K−l

)(
r
l−s
)(

K
s

) · l − r
l − 1

)
, (5)

where r is the computation load and s is the number of workers that calculate each function. �

Despite the optimality of (5), the requirement N/
(
K
r

)
∈ N could lead to unexpected performance loss when N is sufficiently

large. For example, in the CodedTeraSort experiment sorting 12 GB data with K = 16 workers and 100 Mbps network speed,
each worker needs to generate all file indices and initialize

(
K
r+1

)
multicast groups to transfer all IVs to the intended workers.

The corresponding code generation time, namely code generation time, will increase exponentially with computation load r
as
(
K
r+1

)
, and dominate the overall execution time when r ≥ 6. Besides, the condition Q/

(
K
s

)
∈ N requires the number of

Reduce functions Q exponentially increasing with s, which may not hold for some computing tasks with small Q. To address
the issues above, we aim to design low-complexity and communication-efficient schemes that reduce the communication load
Lcomm. for any given r, while keeping small values of N and Q.
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B. Combinatorial Design Structures

Definition 1 ( [35], Design). A design is a pair (X ,B) such that the following properties are satisfied:
• X is a set of elements called points, and
• B is a collection of nonempty subsets of X called blocks.

�

A design is called r-regular if each point occurs in exactly r blocks. A r-regular design containing N points and K blocks
each of which has size M is denoted by r- regular (N,M,K) design. Clearly, we have KM = rN . In addition, a design is
called η-cross if the intersection of any two different blocks has exactly η points.

Definition 2. ( [35], t-design) Let N , K, M and t and λ be five positive integers. A t-(N,M,K, r, λ) design is a design
(X ,B) where X has N points and B has K blocks that satisfy
• |B| =M for any B ∈ B;
• every t-subset of X is contained in exactly λ blocks;
• every point occurs exactly in r blocks.

�

From Definition 2, we can obtain that the number of blocks and the occurrence number of each point in blocks of B are

K =
λ
(
N
t

)(
M
t

) , r =
KM

N
=
λ
(
N−1
t−1
)(

M−1
t−1

) , (6)

respectively. So any t-design is always regular and a t-(N,M,K, r, λ) design is also shorten as t-(N,M, λ) design in this
paper. A t-(N,M, λ)-design is also a t′-(N,M, λt′) where t′ ≤ t and

λt′ =
λ
(
N−t′
t−t′

)(
M−t′
t−t′

) . (7)

Definition 3 (Dual design). For any design (X ,B), we regard the blocks B as points and X as block set where B ∈ B is
contained by x ∈ X if and only if x ∈ B, then the obtained design (B,X ) is called the dual design of (X ,B). �

Clearly, a design is a dual design of its dual design. In addition, it is not difficult to obtain the following result.

Lemma 2 (Regular and cross design via t-design). The dual design of a t-(N,M,K, r, λ) design is a design where
• there are exactly K points each of which occurs in exactly M blocks;
• there are N blocks each of which has size r = λ

(
N−1
t−1
)
/
(
M−1
t−1

)
;

• any two distinct blocks intersect in exactly λ2 = λ
(
N−2
t−2
)
/
(
M−2
t−2

)
points.

�

So the dual design of any t-(N,M, λ) design is M -regular and λ2-cross. The 2-(N,M, λ) design is always called (N,M, λ)
balanced incomplete block design (in short BIBD). From (6) we can obtain that the number of blocks and the occurrence
number of each point are

K =
λN(N − 1)

M(M − 1)
, r =

KM

N
=
λN(N − 1)

M(M − 1)
·M · 1

N
=
λ(N − 1)

M − 1
(8)

respectively. A BIBD in which K = N (or, equivalently, r = M or λ(N − 1) = M(M − 1)) is called a symmetric BIBD
(SBIBD). It is worth noting that any SBIBD is regular and cross by the following well-known result.

Lemma 3 ( [36]). Suppose that (X ,B) is a (N,M, λ) SBIBD. Then |B ∩ B′| = λ holds for all distinct B, B′ ∈ B. �

Example 1. When N = 7 and M = 3, let us see the design (X ,B) where X = {1, 2, 3, 4, 5, 6, 7} and

B = {B1 = {1, 2, 4},B2 = {2, 3, 5},B3 = {3, 4, 6},B4 = {4, 5, 7},B5 = {5, 6, 1},B6 = {6, 7, 2},B7 = {7, 1, 3}}. (9)

By Definition 3 we have its dual design (B,X ) where

X = {1 = {B1,B5,B7}, 2 = {B1,B2,B6}, 3 = {B2,B3,B7}, 4 = {B1,B3,B4}, 5 = {B2,B4,B5},
6 = {B3,B5,B6}, 7 = {B4,B6,B7}}. (10)

We can easily to verify that the designs (X ,B) and (B,X ) are (7, 3, 1) SBIBDs. So the cardinality of any two blocks in B
of the design (X ,B) (and in X of the dual design (B,X )) is 1. �

Recently, P. Keevash in [37] and S. Glock et al., in [38] respectively proved the existence conjecture for t-design, i.e., the
following result.
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Lemma 4 (The existence conjecture for t-design [37], [38]). Given t, M and λ, there exists an integer N0(t,M, λ) such that
for any N > N0(t,M, λ), a t-(N,M, λ) design exists if and only if for any 0 ≤ i ≤ t− 1, the following condition holds

λ

(
N − i
t− i

)
≡ 0

(
mod

(
M − i
t− i

))
.

�

Next, we introduce another special design, i.e., group divisible design (GDD), which is also useful in our proposed scheme.

Definition 4. ( [35], t-GDD) Let M , t, q and m be positive integers with t ≤M ≤ m. A (m, q,M, λ) group divisible t-design
(t-(m, q,M, λ) GDD) is a triple (X ,G,B) where
• X is a set of mq points,
• G = {G1,G2, . . . ,Gm} is a partition of X into m subsets each of which has size q (called groups),
• B is a family of M -blocks of X such that every block intersects every group at most one point, and every t-subset of

points from t distinct groups belongs to exactly λ blocks.
�

We can obtain the number of blocks and the occurrence number of each point in B by Definition 4 as

K =
λ
(
m
t

)
qt(

M
t

) , r =
KM

N
=
KM

mq
=
λ
(
m−1
t−1
)
qt−1(

M−1
t−1

) , (11)

respectively. By the above introductions of t-design and t-GDD, we can obtain the following observations.

Remark 1. • By Definition 2 and Definition 4 we can see that the third property of t-GDD is similar to the second property
of t-design, i.e., every t-subset of points (for a special condition in t-GDD) occurs exactly in λ blocks.

• From (6) and (11), we can not obtain the same parameters K and r for the same point set, block size M , and the
parameters t and λ.

Similar to Lemma 2, the following result can be obtained.

Lemma 5 (Regular and almost cross design via t-GDD). The dual design of a t-(m, q,M, λ) GDD is a design where
• there are exactly K points each of which occurs in exactly M blocks;
• there are mq blocks each of which has size r = λ

(
m−1
t−1
)
qt−1/

(
M−1
t−1

)
;

• there are m
(
q
2

)
pairs of distinct blocks whose intersection is an empty set, i.e., the two different points in the same group

of the GDD;
• there are

(
mq
2

)
−m

(
q
2

)
pairs of distinct blocks whose intersection has exactly λ2 = λ

(
m−2
t−2
)
qt−2/

(
M−2
t−2

)
points, i.e., the

number of pairs containing the points included in the block of the GDD.
�

Example 2. When m =M = 3 and q = 2, let X = {1, 2, 3, 4, 5, 6}, groups

G = {G1 = {1, 2}, G2 = {3, 4}, G3 = {5, 6}}

and blocks

B = {B1 = {1, 3, 5},B2 = {1, 4, 6},B3 = {2, 4, 5},B4 = {2, 3, 6}}.

It is easy to check that the above design (X ,G,B) is a 2-(3, 2, 3, 1) GDD by Definition 4. By Definition 3 we have its dual
design (B,X ) where

X = {1 = {B1,B2}, 2 = {B3,B4}, 3 = {B1,B4}, 4 = {B2,B3}, 5 = {B1,B3}, 6 = {B2,B4}}. (12)

We can verify that the intersection of any two blocks from block sets X1 = {1, 2}, X2 = {3, 4} and X3 = {5, 6} is an empty
set, and the intersection of any two blocks from two of X1, X2 and X3 contains exactly one point. For instance the intersection
of blocks 1 and 2 is an empty set, and the intersection of blocks 1 and 4 is {B2}. �

There are many constructions and existences of the t-designs and t-GDDs, especially on the results of BIBDs. For the
detailed constructions, please see [35, Section II and IV].



7

III. MAIN RESULTS

In this section, we will first present the results of our two schemes based on t-design and t-GDD, respectively for the case
r = s, and then show that our new schemes are asymptotically optimal. Finally, we compare our schemes with that of the
state-of-art schemes, and show that ours have much smaller file number and Reduce function number than that of the schemes
in [4], [19], [21] and have smaller communication loads than that of the schemes in [20], [21].

Given a t-design (X ,B), by taking the block set B as worker set and the point set X to generate the data placement
and Reduce function assignment, and using the second property of t-design to generate the delivery strategy for the IVs, the
following Theorem can be obtained, whose detailed proof is given in Section IV-A.

Theorem 1 (Scheme via t-design). If there exists a t-(N,M,K, r, λ) design, we can obtain a cascaded CDC scheme with
K = λ

(
N
t

)
/
(
M
t

)
distributed computing workers, N files, N Reduce functions such that each Reduce function is computed by

s = λ
(
N−1
t−1
)
/
(
M−1
t−1

)
workers, the computation load r = λ

(
N−1
t−1
)
/
(
M−1
t−1

)
, and the communication load Lt-Design = N−1

2N . �

According to the proof of Theorem 1 in Subsection IV-A, we can see that the key point of designing the delivery strategy
is the second property of t-design. This implies that when a design has a similar property to the second property of t-design,
we can also obtain a new scheme based on such design. For instance, given a t-GDD (X ,G,B), by taking the block set B as
worker set and the point set X to generate the data placement and Reduce function assignment, and using the third property
of t-GDD to generate the delivery strategy for the IVs, the following Theorem can be obtained, whose proof is given in IV-B.

Theorem 2 (Scheme via t-GDD). If there exists a t-(m, q,M, λ) GDD, we can obtain a cascaded CDC scheme with K =
λ
(
m
t

)
qt/
(
M
t

)
distributed computing workers, mq files, mq Reduce functions such that each Reduce function is computed by

s = λ
(
m−1
t−1
)
qt−1/

(
M−1
t−1

)
workers, the computation load r = λ

(
m−1
t−1
)
qt−1/

(
M−1
t−1

)
, and the communication load Lt-GDD =

1
2 + q−2

mq . �

Remarkably, the communication loads in Theorem 1 and Theorem 2 are asymptotically optimal as stated in the following
Proposition, whose proof is included in Appendix A.

Proposition 1 (Asymptotic Optimality). Consider the cascaded CDC system described in Section II-A with computation load
r = s and N = Q.
• If K � r, K →∞, and N →∞, then the t-design scheme in Theorem 1 is optimal, i.e., Lt-Design = L∗comm. =

1
2 .

• Besides, if m→∞ and m� q, then the t-GDD scheme in Theorem 2 is optimal, i.e., Lt-GDD = L∗comm. =
1
2 .

�

Now we compare the communication loads in Theorem 1 and Theorem 2 with that of the state-of-art works in [19]–[21].
Firstly, by Lemma 4, we know that we can obtain arbitrary t-(N,M, λ) designs for any parameters t, N , M and λ when N

is large. Then by Theorem 1, we can obtain the cascaded CDC scheme with N files, Q = N Reduce functions, the computation
load r = λ

(
N−1
t−1
)
/
(
M−1
t−1

)
and the communication load Lcomm. =

N−1
2N for any parameters t, N , M and λ when N is large.

Secondly, by Definition 2 we know that SBIBD is a special 2-design with the point number equal to the block number, i.e.,
N = K. This implies that we can obtain the scheme with more flexible parameters compared with the scheme in [20].

Thirdly, it is well known that there are many existing results of 2-designs (i.e., BIBD) and 2-GDDs which are listed in [35,
Section II and IV]. Then by Theorem 1 and Theorem 2, the schemes listed in Table III can be obtained.

TABLE III: New schemes via (N,M, λ) BIBD and 2-(m, q,M, λ) GDD

Schemes Number of
Nodes K

Computation
Load r

Replication
Factor s

Number of
Files N

Number of Reduce
Functions Q

Communication
Load Lcomm.

Operation
Field F2

In Theorem 1 λN(N−1)
M(M−1)

λ(N−1)
M−1

λ(N−1)
M−1

N N N−1
2N

< 1
2

Yes

In Theorem 2 λm(m−1)q2

M(M−1)
λ(m−1)q
M−1

λ(m−1)q
M−1

mq mq 1
2
+ q−2

mq
Yes

For the t = 2-design scheme in Theorem 1, denote the corresponding number of files and the number of cached files as
N1 and M1, respectively. Then, we compare our scheme in Theorem 1 with the schemes in [19]–[21] when the parameters
K = λN1(N1−1)

M1(M1−1) , r = s = N1−1
M1−1 . Then the schemes in [19]–[21] can be obtained in Table IV. For any positive integers M1,

N1 and λ, it is not difficult to check that the following inequality always holds(
1− M1

N1

)λ(N1−1)
M1−1

· 1
2λ(N1−1)
M−1 − 1

−
(
M1

N1

)λ(N1−1)
M1−1

when

N1

M1
> 1 +

(
2λ(N1 − 1)

M1 − 1
+ 1

) M1−1

λ(N1−1)

, i.e.,
K

r
> 1 + (2r + 1)

1
r
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TABLE IV: Existing cascaded CDC schemes where the positive integers M1, N1 and λ satisfying 2 < M1 < N1,
M1(M1 − 1)|λN1(N1 − 1), (M1 − 1)|λ(N1 − 1) and M1|N1.

Schemes Number of
Nodes K

Computation
Load r

Replication
Factor s

Number of
Files N

Number of Reduce
Functions Q

Communication
Load Lcomm.

Operation
Field F2

[19]

λN1(N1−1)
M1(M1−1)

λ(N1−1)
M1−1

λ(N1−1)
M1−1

( N1
M1

)
λ(N1−1)
M1−1

−1
( N1
M1

)
λ(N1−1)
M1−1

−1

1
2
− 1

2
·
((

M1
N1

)λ(N1−1)
M1−1

+

(
1−M1

N1

)λ(N1−1)
M1−1 · 1

2λ(N1−1)
M1−1

−1

) No

[20] λN1(N1−1)
M1(M1−1)

λN1(N1−1)
M1(M1−1)

λ(N1−1)
M1−1

λ(N1−1)
M1−1

−1
·
(
1−M1

N1

)
> 1− M1

N1

No

[21] ( N1
M1

)
λ(N1−1)
M1−1

−1 N1
M1

Yes

where K = λN1(N1−1)
M1(M1−1) and r = λ(N1−1)

M1−1 . Clearly, when N1 is much larger than M1, the above inequality always holds. So
we have the following statements.

Remark 2. By Table III and Table IV, for the same parameters K, r = s our scheme in Theorem 1 has
• much smaller file number N and Reduce function number Q, and less communication load than that of the scheme in

[19];
• smaller file number N and Reduce function number Q, and less communication load than that of the scheme in [20];
• smaller file number N , some larger Reduce function number Q, and less communication load than that of the scheme in

[21];
�

Now let us consider comparisons between our scheme in Theorem 2 and schemes in [19]–[21] respectively when the
parameters K = λm(m−1)q2

M(M−1) and r = s = λ(m−1)q
M−1 . Then the schemes in [19]–[21] can be obtained in Table V. Similar to the

TABLE V: Existing cascaded CDC schemes

Schemes Number of
Nodes K

Computation
Load r

Replication
Factor s

Number of
Files N

Number of Reduce
Functions Q

Communication
Load Lcomm.

Operation
Field F2

[19]

λm(m−1)q2

M(M−1)

λ(m−1)q
M−1

λ(m−1)q
M−1

(mq
M

)
λ(m−1)q
M−1

−1
(mq
M

)
λ(m−1)q
M−1

−1

1
2
− 1

2
·
((

M
mq

)λ(m−1)q
M−1

+

(
1− M

mq

)λ(m−1)q
M−1 · 1

2λ(m−1)q
M−1

−1

) No

[20] λ(m−1)q
M−1

λ(m−1)q
M−1

λ(m−1)q
M−1

λ(m−1)q
M−1

−1
·
(
1− M

mq

)
> 1− M

mq

No

[21] (mq
M

)
λ(m−1)q
M−1

−1 mq
M

Yes

above comparisons the following statements can be obtained.

Remark 3. By Table III and Table V, for the same parameters K, r = s our scheme in Theorem 2 has
• much smaller file number N and Reduce function number Q than that of the scheme in [19] with the approximately same

communication load;
• has smaller file number N and Reduce function number, Q, and less communication load that that of the scheme in [20];
• smaller file number N and some larger Reduce function number Q and less communication load that that of the scheme

in [21];
�

Finally, let us take the well known existing
(
pm+1−1
p−1 , p

m−1
p−1 ,

pm−1−1
p−1

)
SBIBD and 2-(p, p, p, 1) GDD for any prime power

p and positive integer m ≥ 2 [35]. So the following schemes listed in Table VI can be obtained.

Remark 4. By Table VI the following statements hold.
• Our scheme for Theorem 2 (i.e., the fourth row of Table VI) has the communication load approximating the communication

load of the scheme in [19] while having much smaller file number and Reduce function number than that of the scheme
in [19], [21] when p is large, and has much smaller file number and less communication load than that of the scheme in
[21].

• For any positive integer m and any prime power p ≥ 3, i.e., with the same order of parameters K, N , Q, r = s, the
communication load of our scheme for Theorem 1 (i.e., the seventh row of Table VI) is much less than that of the scheme
in [20].

�
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TABLE VI: Cascaded CDC schemes via
(
pm+1−1
p−1 , p

m−1
p−1 ,

pm−1−1
p−1

)
SBIBD and 2-(p, p, p, 1) GDD with any prime power p.

Schemes Number of
Nodes K

Computation
Load r

Replication
Factor s

Number of
Files N

Number of Reduce
Functions Q

Communication
Load Lcomm.

Operation
Field F2

[19]
p2 p p

pp−1 pp−1

1
2
− 1

2
·
(

1
p

)p
+
(
1− 1

p

)p
· 1
4p−2

No

[21] p 1 Yes
Theorem 2 p2 p2 1

2
+ p−2

p2
Yes

Theorem 1
with m = p

p2 + p+ 1 p+ 1 p+ 1 p2 + p+ 1 p2 + p+ 1 1
2
− 1

2(p2+p+1)
Yes

[20]
pm+1−1
p−1

pm−1
p−1

pm−1−1
p−1

pm+1−1
p−1

pm+1−1
p−1

> p−1
p

No
Theorem 1 < 1

2
Yes

IV. NOVEL SCHEMES FOR THEOREM 1 AND THEOREM 2

In this section, we introduce how to use combinatorial design structures to construct CDC schemes to improve communication
efficiency with small numbers of Reduce functions and input files.

Before describing our schemes, we first recall (1) and (2) which mean that the storing files strategy and arranging Reduce
function strategy are determined by the subsets Dn (i.e., the worker set each of which stores file wn) and Aq (i.e., the worker
set each of which is arranged to compute the Reduce function φq(w1, w2, . . . , wN )). This implies that in order to design a
desired scheme, we only need to study

the Reduce function arranged set A = {A1,A2, . . . ,AQ} and (13a)
the file stored set D = {D1,D2, . . . ,DN}. (13b)

Thus, we can study the Reduce function arranged set A and the file stored set D defined in (13) to design cascaded CDC
schemes with the computation load and the communication load as small as possible. When we let the Reduce function arranged
set A equal to the file stored set B defined in (13), i.e., A = D, by using the classic combinatorial structure, we can obtain
two new cascaded coded distributed computing schemes based on t-design (see Definition 2) and t-GDD (see Definition 4),
respectively.

A. New CDC Scheme in Theorem 1 via t-design

Suppose that (X ,B) is a t-(N,M,K, r, λ) design where X = {x1, x2, . . . , xN} and B = {B1,B2, . . . ,BK}. By Lemma 2,
its dual design (B,X ) is M -regular and λ2-cross where there there are exactly K = λ

(
N
t

)
/
(
M
t

)
points each of which occurs

in exactly M blocks, there are N blocks each of which has size r = λ
(
N−1
t−1
)
/
(
M−1
t−1

)
, and any two distinct blocks intersect in

exactly λ2 = λ
(
N−2
t−2
)
/
(
M−2
t−2

)
points. Let X be the Reduce function arranged set A and the file stored set D defined in (13).

We will construct a cascaded CDC scheme with K workers K = B, N files W = {wx1
, wx2

, . . . , wxN } and N functions
Q = {φx1

, φx2
, . . . , φxN } where each worker stores M files and each Reduce function is computed by s = r workers.

In the map phase, let X be the Reduce function arranged set A. From (1) each worker B ∈ B stores the files ZB =
{wx | x ∈ B, x ∈ X}. Recall the dual design (B,X ) is M -regular, then we have |Zk| =M . So the computation load is

r =

∑K
i=1 |Zi|
N

=
KM

N
=
λM

(
N
t

)
N
(
M
t

) .
In the shuffle phase, from (2), each worker B ∈ B is arranged to compute the Reduce functions

QB = {uy = φy(wx1
, wx2

, . . . , wxN ) | y ∈ X , y ∈ B}.

Using the stored files and functions Q, worker B could compute the IVs IB = {vy,x = gy,x(wx) | x, y ∈ X , x ∈ B}. Then
for any x, y ∈ X and any block B ∈ B, the IV vy,x is required and is not locally computed by worker B if and only if y ∈ B
and x /∈ B, and the IV vy,x is locally computed by worker B if and only if x ∈ B. According to the above investigations, we
will design a delivery strategy for exchanging the IVs among the workers by means of the cross property of the dual design
(B,X ). Since (B,X ) is λ2 cross 1, let

{B1,1,B1,2, . . . ,B1,λ2} = x ∩ y, {B2,1,B2,2, . . . ,B2,s−λ2} = x \ y, {B3,1,B3,2, . . . ,B3,s−λ2} = y \ x.

Then each worker B1,i1 where i1 ∈ [λ2] can locally compute the IVs vy,x and vx,y since it stores the files wx and wy; each
worker B2,i2 where i2 ∈ [s − λ2] can locally compute the IV vy,x since it stores file wx and requires the IV vx,y from the

1This is derived by (7) which is determined by the second property of t-design.
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other workers since it does not store the files wy but is arranged to compute the Reduce function uy; and each worker B3,i3
where i3 ∈ [s − λ2] can locally compute the IV vx,y since it stores file wy and requires the IV vy,x from the other workers
since it does not store the files wx but is arranged to compute the Reduce function ux.

Based on the above investigations, we divide the IVs vy,x and vx,y into λ2 sub-IVs

vy,x = (v(1)y,x, v
(2)
y,x, . . . , v

(λ2)
y,x ), vx,y = (v(1)x,y, v

(2)
x,y, . . . , v

(λ2)
x,y ).

Each worker B1,i1 , for i1 ∈ [λ2], broadcasts the coded signal X(i1)
y,x = v

(i1)
y,x ⊕ v

(i1)
x,y to the workers B2,i2 , B3,i3 for all

i2, i3 ∈ [s− λ2]. Clearly, each worker B2,i2 and each B3,i3 can decode their required sub-IVs v(i1)x,y and v(i1)y,x respectively. So
there are exactly λ2 ·

(
N
2

)
sub-IVs transmitted. Recall that each IV has T bits. Then the communication load is

Lcomm. =
λ2 ·

(
N
2

)
· Tλ2

NQT
=
N(N − 1)

2N2
=
N − 1

2N
.

Thus, using t-design, we can obtain Theorem 1.

Remark 5 (Multicast gain). From the above introduction, each of the sub-IVs v(i1)y,x and v(i1)x,y where i1 ∈ [λ2] is required by
s− λ2 = r− λ2 workers who can not locally compute it themselves. So the coded signal v(i1)y,x ⊕ v(i1)x,y is useful for 2(r− λ2)
workers, i.e., the multicast gain is 2(r − λ2). So our scheme generated by a (N,M,K, r, 1) BIBD achieves a multicast gain
2(r − λ2) = 2r − 2 that is just one less than the maximum multicast gain of the scheme proposed in [4].

Finally, we use the (7, 3, 1) SBIBD in Example 1 to further explain our construction idea.

Example 3. When N = Q = K = 7, we have 7 files W = {w1, w2, . . . , w7} and 7 functions Q = {φ1, φ2, . . . , φ7}. We can
use the dual design of the (7, 3, 1) SBIBD (X ,B) in Example 1 to generate the following scheme. In the map phase, all the
workers store the following files respectively.

ZB1
= {w1, w2, w4}, ZB2

= {w2, w3, w5}, ZB3
= {w3, w4, w6}, ZB4

= {w4, w5, w7},
ZB5

= {w1, w5, w6}, ZB6
= {w2, w6, w7}, ZB7

= {w1, w3, w7}.

So the computation load is r = N−1
M−1 = 7−1

3−1 = 3.
Assume that the Reduce functions are arranged for workers as follows.

QB1
= {φ1, φ2, φ4}, QB2

= {φ2, φ3, φ5}, QB3
= {φ3, φ4, φ6}, QB4

= {φ4, φ5, φ7},
QB5

= {φ1, φ5, φ6}, QB6
= {φ2, φ6, φ7}, QB7

= {φ1, φ3, φ7}.

Here each Reduce function is computed by s = 3 workers.
Recall that all the workers can locally compute the following IVs.

IB1 = {vq,n | q ∈ [7], n ∈ {1, 2, 4}}, IB2 = {vq,n | q ∈ [7], n ∈ {2, 3, 5}},
IB3 = {vq,n | q ∈ [7], n ∈ {3, 4, 6}}, IB4 = {vq,n | q ∈ [7], n ∈ {4, 5, 7}},
IB5 = {vq,n | q ∈ [7], n ∈ {1, 5, 6}}, IB6 = {vq,n | q ∈ [7], n ∈ {2, 6, 7}},
IB7 = {vq,n | q ∈ [7], n ∈ {1, 3, 7}}.

Then the IVs required by the workers are listed in Table VII. In this case, all the workers can send the coded signals listed in

TABLE VII: Intermediate values {vq,n} required by workers in B.

Parameters worker set B
q, n B1 B2 B3 B4 B5 B6 B7
q 1, 2, 4 2, 3, 5 3, 4, 6 4, 5, 6 1, 5, 6 2, 6, 7 1, 3, 7
n 3, 5, 6, 7 1, 4, 6, 7 1, 2, 5, 7 1, 2, 3, 6 2, 3, 4, 7 1, 3, 4, 5 2, 4, 5, 6

Table VIII. For instance, worker B1 sends the coded signal v1,2 ⊕ v2,1. After receiving v1,2 ⊕ v2,1, worker B2 and worker B6

TABLE VIII: Coded signals sent by workers in B.

worker set B
B1 B2 B3 B4 B5 B6 B7

v1,2 ⊕ v2,1 v2,3 ⊕ v3,2 v3,4 ⊕ v4,3 v4,5 ⊕ v5,4 v1,5 ⊕ v5,1 v2,6 ⊕ v6,2 v1,3 ⊕ v3,1
v1,4 ⊕ v4,1 v2,5 ⊕ v5,2 v3,6 ⊕ v6,3 v4,7 ⊕ v7,4 v1,6 ⊕ v6,1 v2,7 ⊕ v7,2 v1,7 ⊕ v7,1
v2,4 ⊕ v4,2 v3,5 ⊕ v5,3 v4,6 ⊕ v6,4 v5,7 ⊕ v7,5 v5,6 ⊕ v6,5 v6,7 ⊕ v7,6 v3,7 ⊕ v7,3

can individually decode the requiring IV v2,1 with the locally computed IV v1,2; worker B5 and worker B7 can individually
decode the requiring IV v1,2 with its locally computed IV v2,1. Similarly, all the other workers can obtain their required IVs
respectively. Then the communication load is Lcomm. =

3×7
72 = 3

7 = N−1
2N . When K = 7, r = s = 3, we can obtain a cascaded
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CDC scheme in [4] with N = Q = 35, K = 7, r = s = 3 and communication load Lcomm. =
11
25 which is larger than the

communication load of ours2 and a scheme in [20] with N = Q = 7, K = 7, r = s = 3 and communication load Lcomm. =
6
7 .

Clearly, the scheme in [20] has the same communication load as our scheme. However when r ≤ K/2, the scheme in [20] has
a larger communication load than that of ours when the parameters K, N , Q and r = s are the same as ours. This statement
can be easily obtained since when t ≤ K/2 the communication load of the scheme in [20] is t

t−1 ·
K−t
K > 1/2 which is larger

than the communication load of ours. �

B. New CDC Scheme in Theorem 2 via t-GDD

Remark 6. By Footnote 1, we can see that the key point to design the delivery strategy is the second property of t-design.
This implies that if a combinatorial structure also has a similar property to the second property of t-design, we can also use
it to generate a cascaded CDC scheme by our constructing method, i.e., taking the blocks as workers, the point set as the
Reduce function arranged set A and the file stored set D respectively, and then according to the property which is similar
to the second property of t-design to design the delivery strategy. By the first statement of Remark 1, the third property of
t-GDD is similar to the second property of t-design, so in the following, we will take t-GDD to show our claim.

Suppose a triple (X ,G,B) is a t-(m, q,M, λ) GDD where X = {x1, x2, . . . , xmq} and B = {B1,B2, . . . ,BK}. Now let us
consider it dual design (B,X ) of (X ,G,B). By Lemma 5, its dual design (B,X ) is M -regular design where there are exactly
K points each of which occurs in exactly M blocks; there are mq blocks each of which has size r = λ

(
m−1
t−1
)
qt−1/

(
M−1
t−1

)
;

there are m
(
q
2

)
pairs of distinct blocks whose intersection is an empty set, i.e., the two different points in the same group of

the GDD; and there are
(
mq
2

)
−m

(
q
2

)
pairs of distinct blocks whose intersection has exactly λ2 = λ

(
m−2
t−2
)
qt−2/

(
M−2
t−2

)
points.

Here each point of X is regarded as a block of the dual design. Now using the above dual design (B,X ), in the following
we will construct a cascaded CDC scheme with K workers K = B, mq files W = {wx1

, wx2
, . . . , wxmq} and mq functions

Q = {φx1 , φx2 , . . . , φxmq} where each worker stores M files and each Reduce function is arranged to s = r workers to
compute.

In the map phase, from (1) each worker B ∈ B stores the files WB = {wx | x ∈ B, x ∈ X}. Recall the dual design (B,X )
is M -regular, then we have |Zk| =M . So the computation load is

r =

∑K
k=1 |Zk|
N

=
KM

N
=
λ
(
m−1
t−1
)
qt−1(

M−1
t−1

) .

In the shuffle phase, let X be the Reduce function arranged set A. From (2), each worker B ∈ B is arranged to compute
the Reduce functions QB = {uy = φy(wx1 , wx2 , . . . , wxN ) | y ∈ X , y ∈ B}. Using the stored files and functions Q, worker B
could compute the IVs IB = {vy,x = gy,x(wx) | x, y ∈ X , x ∈ B}. Then the delivery strategy is divided into two classes. The
first for the

(
mq
2

)
−m

(
q
2

)
pairs of distinct blocks whose intersection has exactly λ2 = λ

(
m−2
t−2
)
qt−2/

(
M−2
t−2

)
points. Then we also

apply the delivery strategy in the proof of Theorem 1. Similarly, we can also obtain that there are exactly λ2 ·
((
mq
2

)
−m

(
q
2

))
coded sub-IVs to be transmitted each of size T

λ2
, and the amount of the transmitted signal is

λ2 ·
((

mq

2

)
−m

(
q

2

))
· T
λ2

=

((
mq

2

)
−m

(
q

2

))
· T.

The second class is for the left mq2 IVs where there are mq IVs that can be computed by the workers themselves according
to their stored files, and there are mq(q−1) IVs that should be transmitted to the workers who require and do not compute by
themselves since they do not store the related files. Recall that each point occurs in exactly r = λ

(
m−1
t−1
)
qt−1/

(
M−1
t−1

)
blocks

of the GDD and any two points in the same group never occur in the same block. Let Gi = {xi,1, xi,2, . . . , xi,q} for each
i ∈ [m] where X =

⋃m
i=1 Gi. Then for each IV vx,x′ where x, x′ ∈ Gi with i ∈ [m], it is stored by workers each of which is

represented by the block containing x′, and required by the workers each of which is represented by the block containing x.
Denote all the block sets each of which contains x and x′ by

Bx = {Bx1 , Bx2 , . . . , Bxr } and Bx′ = {Bx
′

1 , Bx
′

2 , . . . , Bx
′

r },

respectively. Then we divide vx,x′ into r sub-IVs v(1)x,x′ , v
(2)
x,x′ , . . ., v

(r)
x,x′ . Then the worker Bx′h sends the sub-IV v

(h)
x,x′ to the

workers in Bx, for h ∈ [r]. Clearly, each worker in Bx can obtain the vx,x′ by receiving all the r sub-IVs from the workers in
Bx′ . So there are mq(q − 1)r sub-IVs transmitted in all. Recall that each IV has T bits. Then the amount of the transmitted
signal is mq(q − 1)r · 1r · T = mq(q − 1)T . From the above discussion, we achieve the communication load in Theorem 2.

Finally, let us use the 2-(3, 3, 3, 1) GDD in Example 2 to further explain our construction idea.

2It is well known that the communication load in [4] is minimum. Then phenomenon that our communication load is smaller than that of the scheme in
[4] is due to the fact that the file number and Reduce function numbers are larger than that of our scheme.
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Example 4. When N = Q = 6, K = 4, we have 6 files W = {w1, w2, . . . , w6} and 6 functions Q = {φ1, φ2, . . . , φ6}. We
can use the dual design of the 2-(3, 2, 3, 1) GDD (X ,G,B) in Example 2 to generate the following scheme. In the map phase,
all the workers store the following files respectively.

ZB1 = {w1, w3, w5}, ZB2 = {w1, w4, w6}, ZB3 = {w2, w4, w5}, ZB4 = {w2, w3, w6}.

So the computation load is r = bM
N = 4×3

6 = 2. Assume that u1 is arranged to the workers B1 and B2; u2 is arranged to the
workers B3 and B4; u3 is arranged to the workers B1 and B4; u4 is arranged to the workers B2 and B3; u5 is arranged to the
workers B1 and B3; u6 is arranged to the workers B2 and B4. Since all the workers can locally compute the following IVs.

IB1 = {vq,n | q ∈ [6], n ∈ {1, 3, 5}}, IB2 = {vq,n | q ∈ [6], n ∈ {1, 4, 6}},
IB3 = {vq,n | q ∈ [6], n ∈ {2, 4, 5}}, IB4 = {vq,n | q ∈ [6], n ∈ {2, 3, 6}},

then worker B1 needs the IVs {vq,n | q ∈ {1, 3, 5}, n ∈ {2, 4, 6}}; worker B2 needs the IVs {vq,n | q ∈ {1, 4, 6}, n ∈ {2, 3, 5}};
worker B3 needs the IVs {vq,n | q ∈ {2, 4, 5}, n ∈ {1, 3, 6}}; and worker B4 needs the IVs {vq,n | q ∈ {2, 3, 6}, n ∈ {1, 4, 5}}.
All the transmitted coded signals are listed in Table IX. Here

TABLE IX: Coded signals sent by workers in B.

worker set B
B1 B2 B3 B4

v1,3 + v3,1 v1,4 + v4,1 v2,4 + v4,2 v2,3 + v3,2
v1,5 + v5,1 v1,6 + v6,1 v2,5 + v5,2 v2,6 + v6,2
v3,5 + v5,3 v4,6 + v6,4 v4,5 + v5,4 v3,6 + v6,3

v
(1)
2,1 v

(2)
2,1 v

(1)
1,2 v

(2)
1,2

v
(1)
4,3 v

(1)
3,4 v

(2)
3,4 v

(2)
4,3

v
(1)
6,5 v

(1)
5,6 v

(2)
6,5 v

(2)
5,6

v1,2 = (v
(1)
1,2, v

(2)
1,2), v2,1 = (v

(1)
2,1, v

(2)
2,1), v3,4 = (v

(1)
3,4, v

(2)
3,4), v4,3 = (v

(1)
4,3, v

(2)
4,3), v5,6 = (v

(1)
5,6, v

(2)
5,6), v6,5 = (v

(1)
6,5, v

(2)
6,5).

We can check that all the workers can decode their required IVs. Then the communication load is Lcomm. =
3×4+3×4× 1

2

62 = 1
2 .

�

V. EXTENTIONS: CASE r 6= s

In this section we will show that our constructing method can be extended to the case r 6= s. Suppose that (X ,B) is a
t-(N,M,K, r, λ) design where X = {x1, x2, . . . , xN} and B = {B1,B2, . . . ,BK}. By Lemma 2, its dual design (B,X ) is
M -regular design where there are exactly K points each of which occurs in exactly M blocks, there are N blocks each of
which has size r = λ

(
N−1
t−1
)
/
(
M−1
t−1

)
. Here each point of X is regarded as a block of the dual design and X is regarded as the

file stored set. For instance and without loss of generality, let x1 = {B1,B2, . . . ,Br}. Then this implies that the file wx1
is

stored by workers in x1. Let A =
( X
t−1
)
= {A1,A2, . . . ,A( Nt−1)

} denote the Reduce function arranged set.
Now using the (X ,B) and its above dual design (B,X ), in the following we will construct a cascaded CDC scheme with

K workers K = B, N files W = {wx1
, wx2

, . . . , wxN } and Q =
(
N
t−1
)

functions Q = {φA1
, φA2

, . . . , φAQ} where each
worker stores M files and each Reduce function is assigned to s = λt−1 = λ(N−t+1)

M−t+1 workers to compute.
In the map phase, from (1) each worker B ∈ B stores the files ZB = {wx | x ∈ B, x ∈ X}. Recall the dual design (B,X )

is M -regular, then we have |Zk| =M . So the computation load is

r =

∑K
i=1 |Zi|
N

=
KM

N
=
λ
(
N−1
t−1
)(

M−1
t−1

) .
Using the stored files and functions Q, worker B could compute the IVs

IB =

{
vA,x = gA,x(wx)

∣∣∣ x ∈ X , x ∈ B,A ∈ ( X
t− 1

)}
.

In the shuffle phase, from (2), each worker B ∈ B is arranged to compute the Reduce functions

QB =
{
uA = φA(wx1 , wx2 , . . . , wxN )

∣∣∣ A ∈ A,A ⊆ B
}
.

Then for any x ∈ X , A ∈
( X
t−1
)

and any block B ∈ B, the IV vA,x is required and is not locally computed by worker B
if and only if A ⊆ B and x /∈ B, and the IV vA,x is locally computed by worker B if and only if x ∈ B. According to the
above investigations, we will design a delivery strategy for exchanging the IVs among the workers by means of the design
(X ,B). Recall that each t-subset C = {x1, x2, . . . , xt} occurs exactly λ blocks B1, B2, . . ., Bλ, i.e., C ⊆

⋂λ
j=1 Bj . Define
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Ai = C \ {xi} for each i ∈ [t]. We divide each IV vAi,x where i ∈ [t] into λ sub-IVs vAi,x = (v
(1)
Ai,x, v

(2)
Ai,x, . . . , v

(λ)
Ai,x). Each

worker Bj , for j ∈ [λ], broadcasts the coded signal X(j) = ⊕i∈[t]v
(j)
Ai,xi to the workers B satisfying xi 6∈ B and Ai ⊆ B for all

i ∈ [t]. From the above introduction, we can see that each worker B satisfying xi 6∈ B and Ai ⊆ B can decode their required
sub-IVs v(j)Ai,xi since xi′ ∈ B by the assumption that xi′ ∈ Ai for all i′ ∈ [t] \ {i}. So there are exactly λ ·

(
N
t

)
coded sub-IVs

transmitted. Recall that each IV has T bits. Thus, we achieve the communication load

Lcomm. =
λ ·
(
N
t

)
T/λ

N
(
N
t−1
)
T

=
N − t+ 1

Nt
.

We formally state this result in the following Theorem.

Theorem 3. If there exists a t-(N,M,K, r, λ) design, we can obtain a cascaded CDC scheme with K = λ
(
N
t

)
/
(
M
t

)
distributed

computing workers, N files,
(
N
t−1
)

Reduce functions such that each Reduce function is computed by s = λ(N−t+1)
M−t+1 workers,

the computation load r = λ
(
N−1
t−1
)
/(
(
M−1
t−1

)
), and the communication load Lcomm. =

N−t+1
Nt . �

Finally, let us take 3-(N1,M1, 1) design to introduce the performance of the scheme in Theorem 3. That is, by Theorem 3
the scheme in the second row of Table X is obtained. Since [19] only studied the schemes with r = s and recall that [20] also
mainly focused on the case with r = s, we only need to compare with the scheme in [21]. By Table I, we can obtain a scheme
in [21] with K = N1(N1−1)(N1−2)

M1(M1−1)(M1−2) distributed computing workers, N = (N1

M1
)

(N1−1)(N1−2)

(M1−1)(M1−2)
−1 files, Q = N1(N1−1)

M1(M1−1) Reduce

functions such that each Reduce function is computed by s = N1−2
M1−2 workers, the computation load r = (N1−1)(N1−2)

(M1−1)(M1−2) , and
the communication load

Lcomm. =
s

r − 1
·
(
1− r

K

)
=

N1−2
M1−2

(N1−1)(N1−2)
(M1−1)(M1−2) − 1

·

1−
(N1−1)(N1−2)
(M1−1)(M1−2)
N1(N1−1)(N1−2)
M1(M1−1)(M1−2)

 =
1

N1−1
M1−1 −

M1−2
N1−2

·
(
1− M1

N1

)

<
1

N1−1
M1−1 −

M1−1
N1−1

·
(
1− M1

N1

)
=
N1 − 1

N1
· M1 − 1

N1 +M1
.

From Table X, we can see that for the same parameters K, r and s, the scheme in Theorem 3 has a much smaller file number
N while increasing some communication load compared with the scheme in [21].

TABLE X: The schemes in [4], [19]–[21] and the scheme via 3-(N1,M1, 1) design in Theorem 3

Parameters Number of
Nodes K

Computation
Load r

Replication
Factor s

Number of
Files N

Number of Reduce
Functions Q

Communication
Load Lcomm.

Operation
Field F2

Theorem 3 N1(N1−1)(N1−2)
M1(M1−1)(M1−2)

(N1−1)(N1−2)
(M1−1)(M1−2)

N1−2
M1−2

N1
N1(N1−1)

2
N1−2
3N1

Yes

[21]
(
N1
M1

) (N1−1)(N1−2)
(M1−1)(M1−2)

−1 N1(N1−1)
M1(M1−1)

< N1−1
N1

· M1−1
N1+M1

Yes

Remark 7 (Other schemes by using the construction of Theorem 3). Similar to the proof of Theorem 3, we can also obtain a
scheme by regarding X as the stored file set and denoting A =

( X
t−1
)

the Reduce function arranged set based on a t-(m, q,M, λ)

GDD. In addition, we can also obtain the other two schemes by regarding the A =
( X
t−1
)

as the stored file set and denoting X
the Reduce function arranged set based on a t-(N,M, λ) design (X ,B) and t-(m, q,M, λ) GDD (X ,G,B), respectively. So
this implies that our constructing method can also be extended to other combinatorial structures that have a similar property
as the second property of t-design. �

VI. CONCLUSION

In this paper, different from the existing constructing methods based on MDS, linear combination, or PDA methods, we
constructed two classes of the cascaded CDC schemes with r = s via t-design and t-GDD. Remarkably, unlike the existing
construction methods which require a large operation field and an exponentially large number of input files, our schemes can
notably relax the requirement both on the number of input files and the number of Reduce functions, and simply operate on
the binary field while maintaining the asymptotic optimality. Moreover, for some values of K, r, and s, our schemes achieve
less communication load than the state-of-art schemes. Finally, our construction method can be used to construct new schemes
for the case r 6= s with small file number and Reduce function number.
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APPENDIX A
PROOF OF ASYMPTOTIC OPTIMALITY

From (5), the optimal load L∗comm.(r, s) can be written as

L∗comm.(r, s) =

min{r+s,K}∑
l=max{r+1,s}

(
l − r
l − 1

·
(
K−r
K−l

)(
r
l−s
)(

K
s

) )

≥ s

r + s− 1
·
(
K−r
K−l

)(
r
r

)(
K
s

) (14)

=
s

r + s− 1
· K − r

K
· K − r − 1

K − 1
· K − r − s+ 1

K − s+ 1

≥ s

r + s− 1
·
(
1− r

K − s+ 1

)s
≈ s

r + s− 1
· (1 + o(1)), when K � r, s and K →∞. (15)

When r = s, (15) can be written as follows.

L∗comm.(r, s) >
r

2r − 1
· (1 + o(1)) where K � r and K →∞.

Substituting r = λ
(
N−1
t−1
)
/
(
M−1
t−1

)
into the above formula, for any positive integers N , m and t with t ≤M < N , we have

L∗comm.(r, s) >
λ
(
N−1
t−1
)
/
(
M−1
t−1

)
2λ
(
N−1
t−1
)
/
(
M−1
t−1

)
− 1
· (1 + o(1)) (16)

≈ 1

2
, when N �M, t or N →∞. (17)

Now we consider the achievable communication loads in Theorem 1 and Theorem 2, respectively. By Theorem 1, we
have a cascaded CDC scheme with K = λ

(
N
t

)
/
(
M
t

)
distributed computing workers, N files, N Reduce functions such that

each Reduce function is computed by s = λ
(
N−1
t−1
)
/
(
M−1
t−1

)
workers, the computation load r = λ

(
N−1
t−1
)
/
(
M−1
t−1

)
, and the

communication load Lcomm. =
N−1
2N . Clearly, when N is larger, our communication load N−1

2N approximates 1
2 . Similarly, we

can also show that the cascaded CDC scheme in Theorem 2 has our communication load approximating 1
2 when m is large.

Together with (17), we obtain that our schemes for Theorem 1 and Theorem 2 are asymptotically optimal.
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