
Mini P Sajan- PhD
- University of South Florida
Mini P Sajan
- PhD
- University of South Florida
About
108
Publications
7,702
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,637
Citations
Introduction
Current institution
Publications
Publications (108)
Βackground
β-Amyloid precursor protein-cleaving enzyme-1 (BACE1) initiates the production of Aβ-peptides that form Aβ-plaque in Alzheimer’s disease.
Methods
Reportedly, acute insulin treatment in normal mice, and hyperinsulinemia in high-fat-fed (HFF) obese/diabetic mice, increase BACE1 activity and levels of Aβ-peptides and phospho- -thr-231-tau...
Diet‐induced obesity, the metabolic syndrome, type 2 diabetes (DIO/MetS/T2DM), and their adverse sequelae have reached pandemic levels. In mice, DIO/MetS/T2DM initiation involves diet‐dependent increases in lipids that activate hepatic atypical PKC (aPKC) and thereby increase lipogenic enzymes and proinflammatory cytokines. These or other hepatic a...
ABSTRACT Alzheimer’s disease (AD) is commonly, not always, associated with insulin-resistant, hyperinsulinemic, and obesity/type-2-diabetic (O/T2D) states. Partial deficiencies of brain insulin receptor (IR) indeed occur in both O/T2D-AD and human AD, but these deficiencies can be bypassed by hyperinsulinemia, which activates atypical protein kinas...
Alzheimer disease (AD) is thought to be caused by build-up of neurotoxic plaques containing Aβ peptides cleaved from amyloid precursor protein by β-secretase, compounded by increases in phospho-tau-containing neuronal “tangles.” Late-onset AD is commonly associated with insulin-resistant states, and our findings suggest that hyperinsulinemia therei...
Type 2 diabetes is characterized by insulin resistance, hyperinsulinemia and hepatic overproduction of glucose and lipids. Insulin increases lipogenic enzyme expression by activating Akt and aPKC which activate SREBP-1c; this pathway is hyperactivated in insulin-resistant states. Insulin suppresses gluconeogenic enzyme expression by Akt-dependent p...
Hyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aβ1-40/42 and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aβ1-40/42, β-secretase activity was increased in insulin-resistant mice and monkeys. In insulin-resistant mice, inhibition of hepat...
Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that CNS action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mi...
ELife digest
How are long-term memories stored in the brain? The formation of memories is believed to depend on the strengthening of connections between neurons. During learning, neurons produce an enzyme called PKMzeta (or PKMζ), which is thought to be responsible for maintaining the newly strengthened connections. Inhibitors of PKMzeta, such as a...
Increased coexistence of Alzheimer's disease (AD) and type 2 diabetes (T2D) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat-fed mice, ob/ob mice, mice with genetically-impaired muscle glucose transport, and mon...
Information on insulin resistance in human liver is limited. In mouse diet-induced obesity (DIO), hepatic insulin resistance initially involves: lipid+insulin-induced activation of atypical protein kinase C (aPKC); elevated Akt activity/activation but selective impairment of compartmentalized Akt-dependent FoxO1 phosphorylation; and increases in gl...
Pathogenesis of insulin resistance in leptin-deficient ob/ob mice is obscure. In another form of diet-dependent obesity, high-fat-fed (HFF) mice, hepatic insulin resistance involves ceramide-induced activation of atypical PKC (aPKC), which selectively impairs Akt-dependent FoxO1 phosphorylation on scaffolding protein, WD40/ProF, thereby increases g...
Introduction:
The prevalence of obesity, the metabolic syndrome and type 2 diabetes mellitus have reached pandemic levels. Present therapies do not directly target the key factor responsible for the insulin resistance that underlies the development of these syndromes.
Areas covered:
This review focuses on hepatic atypical PKC (aPKC) as a key tar...
Atypical PKC (aPKC) isoforms are activated by the phosphatidylinositol 3-kinase product phosphatidylinositol 3,4,5-(PO4)3 (PIP3). How PIP3 activates aPKC is unknown. Although Akt activation involves PIP3 binding to basic residues in the Akt pleckstrin homology domain, aPKCs lack this domain. Here we examined the role of basic
arginine residues comm...
This review focuses on how insulin signals to metabolic processes in health, why this signaling is frequently deranged in Western/Westernized societies, how these derangements lead to, or abet development of, insulin-resistant states of obesity, the metabolic syndrome and type 2 diabetes mellitus, and what our options are for restoring insulin sign...
Tissue-specific knockout (KO) of atypical protein kinase C (aPKC), PKC-λ, yields contrasting phenotypes, depending on the tissue. Thus, whereas muscle KO of PKC-λ impairs glucose transport and causes glucose intolerance, insulin resistance and liver-dependent lipid abnormalities, liver KO and adipocyte KO of PKC-λ increase insulin sensitivity throu...
Initiating mechanisms that impair gluconeogenic enzymes and spare lipogenic enzymes in diet-induced obesity (DIO) are obscure. Here, we examined insulin signaling to Akt and atypical PKC (aPKC) in liver and muscle, and hepatic enzyme expression in mice consuming a moderate high-fat (HF) diet. In HF mice, resting/basal and insulin-stimulated Akt and...
Tissue-specific knockout (KO) of atypical protein kinase C-λ (PKC-λ) impairs insulin-stimulated glucose transport in muscle (M) and lipid synthesis in liver (L), thereby producing insulin resistance in MλKO mice and insulin-hypersensitivity in LλKO mice. Here, we generated mice with KO of PKC-λ in adipocytes, i.e., AλKO mice. In isolated adipocytes...
Atypical protein kinase C (aPKC) levels and activity are elevated in hepatocytes of individuals with type 2 diabetes and cause excessive increases in the levels of lipogenic and gluconeogenic enzymes; aPKC inhibitors largely correct these aberrations. Metformin improves hepatic gluconeogenesis by activating 5'-AMP-activated protein kinase (AMPK). H...
To review the aberrations of insulin signaling to atypical protein kinase C (aPKC) in muscle and liver that generate cardiovascular risk factors, including obesity, hypertriglyceridemia, hypercholesterolemia, insulin resistance and glucose intolerance in type 2 diabetes mellitus (T2DM), and obesity-associated metabolic syndrome (MetSyn).
aPKC and A...
We examined the role of protein kinase C-ι (PKC-ι) in mediating alterations in the abundance of enzymes in hepatocytes of type 2 diabetic humans that contribute importantly to the development of lipid and carbohydrate abnormalities in type 2 diabetes.
We examined (1) insulin signalling in isolated hepatocytes of non-diabetic and type 2 diabetic hum...
Excessive activity of hepatic atypical protein kinase (aPKC) is proposed to play a critical role in mediating lipid and carbohydrate abnormalities in obesity, the metabolic syndrome, and type 2 diabetes mellitus. In previous studies of rodent models of obesity and type 2 diabetes mellitus, adenoviral-mediated expression of kinase-inactive aPKC rapi...
Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activi...
Protein Kinase C-iota (PKC-ι), an atypical protein kinase C isoform manifests its potential as an oncogene by targeting various aspects of cancer cells such as growth, invasion and survival. PKC-ι confers resistance to drug-induced apoptosis in cancer cells. The acquisition of drug resistance is a major obstacle to good prognosis in neuroblastoma....
Obesity, the metabolic syndrome, and aging share several pathogenic features in both humans and non-human primates, including insulin resistance and inflammation. Since muscle and liver are considered key integrators of metabolism, we sought to determine in biopsies from lean and obese aging rhesus monkeys the nature of defects in insulin activatio...
The class I(A) phosphatidylinsositol 3-kinases (PI3Ks) form a critical node in the insulin metabolic pathway; however, the precise roles of the different isoforms of this enzyme remain elusive. Using tissue-specific gene inactivation, we demonstrate that p110alpha catalytic subunit of PI3K is a key mediator of insulin metabolic actions in the liver...
The slow-twitch soleus, but not fast-twitch muscle, of old vs. adult rats has previously been demonstrated to become insulin resistant for in vivo glucose uptake. We probed cellular mechanisms for the age effect by assessing whether insulin resistance for glucose uptake was an intrinsic characteristic of the muscle ex vivo and by analyzing key insu...
Atypical protein kinase C (aPKC) isoforms mediate insulin effects on glucose transport in muscle and adipose tissues and lipid synthesis in liver and support other metabolic processes, expression of enzymes needed for islet insulin secretion and hepatic glucose production/release, CNS appetite suppression, and inflammatory responses. In muscle, sel...
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required...
By activating the Toll-like receptor 4-nuclear factor-kappaB signal transduction pathway, the bacterial endotoxin lipopolysaccharide (LPS) induces anorexia, weight loss, fever, and other components of the sickness response. By comparison, the hormones leptin and insulin cause anorexia without sickness via a central mechanism involving the phosphati...
Recent evidence suggests that obesity is associated with hypo-adiponectinmia and chronic inflammation. Adiponectin regulates fat storage, energy expenditure, and inflammation. We propose that high fat diet induces steatohepatitis, reduces serum adiponectin, and liver adiponectin receptors.
A 4-week-old C57BL male mice were fed high fat diet (n = 8)...
We used a Cre-loxP approach to generate mice with varied expression of hepatic Irs1 and Irs2 to establish the contribution of each protein to
hepatic nutrient homeostasis. While nutrient-sensitive transcripts were expressed nearly normally in liver lacking Irs2 (LKO2
mice), these transcripts were significantly dysregulated in liver lacking Irs1 (LK...
Previous findings in rodents used as a model of diabetes suggest that insulin activation of atypical protein kinase C (aPKC) is impaired in muscle, but, unexpectedly, conserved in liver, despite impaired hepatic protein kinase B (PKB/Akt) activation. Moreover, aPKC at least partly regulates two major transactivators: (1) hepatic sterol receptor bin...
Obesity is frequently associated with systemic insulin resistance, glucose intolerance, and hyperlipidemia. Impaired insulin action in muscle and paradoxical diet/insulin-dependent overproduction of hepatic lipids are important components of obesity, but their pathogenesis and inter-relationships between muscle and liver are uncertain. We studied t...
Insulin-stimulated glucose transport in muscle is impaired in type 2 diabetes, presumably reflecting reduced activation of atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). As previously shown, reductions in aPKC activation are seen at sub-maximal and maximal insulin stimulation, reductions in PKB activation are best seen at sub-maxi...
Glutathione transferase (GST), a cytosolic enzyme responsible for conjugation of glutathione (GSH) with electrophiles, was found to be inhibited by hemoglobin (Hb). The IC50 values of 14 and 45 nu M for Hb were estimated using the affinity purified human term placental and rat hepatic GSTs, respectively. A very simple, rapid, and highly reproducibl...
Insulin resistance and type 2 diabetes are frequently accompanied by lipid accumulation in skeletal muscle. However, it is unknown whether primary lipid deposition in skeletal muscle is sufficient to cause insulin resistance or whether the type of muscle fiber, oxidative or glycolytic fiber, is an important determinant of lipid-mediated insulin res...
Obesity, the metabolic syndrome, and type 2 diabetes mellitus (T2DM) are major global health problems. Insulin resistance is frequently present in these disorders, but the causes and effects of such resistance are unknown. Here, we generated mice with muscle-specific knockout of the major murine atypical PKC (aPKC), PKC-λ, a postulated mediator for...
Obesity, the metabolic syndrome, and type 2 diabetes mellitus (T2DM) are major global health problems. Insulin resistance is frequently present in these disorders, but the causes and effects of such resistance are unknown. Here, we generated mice with muscle-specific knockout of the major murine atypical PKC (aPKC), PKC-lambda, a postulated mediato...
We investigated if acute endurance-type exercise interacts with insulin-stimulated activation of atypical protein kinase C (aPKC) and insulin signalling to peptide chain elongation in human skeletal muscle. Four hours after acute one-legged exercise, insulin-induced glucose uptake was approximately 80% higher (N = 12, P < 0.05) in previously exerci...
Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, i...
Insulin-stimulated glucose transport in muscle is impaired in obesity and type 2 diabetes, but alterations in levels of relevant signalling factors, i.e. atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt), are still uncertain. Clamp studies using maximal insulin concentrations have revealed defects in activation of aPKC, but not PKB, i...
The role of atypical protein kinase C (aPKC) in insulin-stimulated glucose transport in myocytes and adipocytes is controversial. Whereas studies involving the use of adenovirally mediated expression of kinase-inactive aPKC in L6 myocytes and 3T3/L1 and human adipocytes, and data from knock-out of aPKC in adipocytes derived from mouse embryonic ste...
Although the class I(A) phosphoinositide 3-kinase (PI3K) pathway is central to the metabolic actions of insulin, its mechanism of action is not well understood. To identify the role of the PI3K pathway in insulin regulation of hepatic function, we ablated the expression of both major regulatory subunits of PI3K by crossing mice lacking Pik3r1 in li...
FoxO transcription factors are important targets of insulin action. To better understand the role of FoxO proteins in the
liver, we created transgenic mice expressing constitutively active FoxO1 in the liver using the α1-antitrypsin promoter. Fasting
glucose levels are increased, and glucose tolerance is impaired in transgenic (TGN) versus wild typ...
Metformin is widely used for treating type 2 diabetes mellitus, but its actions are poorly understood. In addition to diminishing hepatic glucose output, metformin, in muscle, activates 5'-AMP-activated protein kinase (AMPK), which alone increases glucose uptake and glycolysis, diminishes lipid synthesis, and increases oxidation of fatty acids. Mor...
5'AMP-activated protein kinase (AMPK) and insulin stimulate glucose transport in heart and muscle. AMPK acts in an additive manner with insulin to increase glucose uptake, thereby suggesting that AMPK activation may be a useful strategy for ameliorating glucose uptake, especially in cases of insulin resistance. In order to characterise interactions...
Glucose transport into muscle is the initial process in glucose clearance and is uniformly defective in insulin-resistant conditions of obesity, metabolic syndrome, and Type II diabetes mellitus. Insulin regulates glucose transport by activating insulin receptor substrate-1 (IRS-1)-dependent phosphatidylinositol 3-kinase (PI3K) which, via increases...
Germline NF1, c-RET, SDH, and VHL mutations cause familial pheochromocytoma. Pheochromocytomas derive from sympathetic neuronal precursor cells. Many of these cells undergo c-Jun-dependent apoptosis during normal development as NGF becomes limiting. NF1 encodes a GAP for the NGF receptor TrkA, and NF1 mutations promote survival after NGF withdrawal...
It now seems clear that aPKC (atypical protein kinase C) isoforms are required for insulin-stimulated glucose transport in muscle and adipocytes. Moreover, there are marked defects in the activation of aPKCs under a variety of insulin-resistant conditions in humans, monkeys and rodents. In humans, defects in aPKC in muscle are seen in Type II diabe...
Cbl is phosphorylated by the insulin receptor and reportedly functions within the flotillin/CAP/Cbl/Crk/C3G/TC10 complex during insulin-stimulated glucose transport in 3T3/L1 adipocytes. Cbl, via pYXXM motifs at tyrosine-371 and tyrosine-731, also activates phosphatidylinositol (PI) 3-kinase, which is required to activate atypical protein kinase C...
Phosphatidylinositol 3-kinase (PI3K)-dependent activation of atypical protein kinase C (aPKC) is required for insulin-stimulated glucose transport. Although insulin receptor substrate-1 (IRS-1) and IRS-2, among other factors, activate PI3K, there is little information on the relative roles of IRS-1and IRS-2 during aPKC activation by insulin action...
Atypical protein kinase C (aPKC) and extracellular signal-regulated kinase (ERK) are emerging as important signalling molecules in the regulation of metabolism and gene expression in skeletal muscle. Exercise is known to increase activity of aPKC and ERK in skeletal muscle but the effect of exercise intensity hereon has not been studied. Furthermor...
Insulin receptor substrates (IRSs) 1 and 2 are postulated to control the activation of phosphatidylinositol 3-kinase (PI3K)-dependent signaling factors, namely, atypical protein kinase C (aPKC) and protein kinase B (PKB)/Akt, which mediate metabolic effects of insulin. However, it is uncertain whether aPKC and PKB are activated together or differen...
Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increase...
Mice that lack acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in mammalian triglyceride synthesis, have decreased adiposity and increased insulin sensitivity. Here we show that insulin-stimulated glucose transport is increased in the skeletal muscle and white adipose tissue (WAT) of chow-fed DGAT1-deficient mice. This increase in g...
Insulin resistance in type 2 diabetes is characterized by defects in muscle glucose uptake and hepatic overproduction of both glucose and lipids. These hepatic defects are perplexing because insulin normally suppresses glucose production and increases lipid synthesis in the liver. To understand the mechanisms for these seemingly paradoxical defects...
Insulin resistance in type 2 diabetes is characterized by defects in muscle glucose uptake and hepatic overproduction of both
glucose and lipids. These hepatic defects are perplexing because insulin normally suppresses glucose production and increases
lipid synthesis in the liver. To understand the mechanisms for these seemingly paradoxical defects...
Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-...
Insulin resistance occurs frequently in metabolic syndrome components, obesity, and the polycystic ovary syndrome, and is partly due to impaired glucose transport into skeletal muscle, but underlying mechanisms are uncertain. Atypical protein kinase C and protein kinase B, operating downstream of phosphatidylinositol 3-kinase, mediate insulin effec...
The thiazolidinedione (TZD), rosiglitazone, has previously been found to tyrosine-phosphorylate Cbl and activate Cbl-dependent phosphatidylinositol (PI) 3-kinase and atypical protein kinase Cs (aPKCs) while stimulating glucose transport in 3T3/L1 adipocytes. Presently, the role of Cbl in rosiglitazone action was further assessed in both 3T3/L1 and...
Exercise training may modulate protein content and enzyme activities in skeletal muscle. However, it is not known whether atypical protein kinase C (aPKC) is affected by training. Thus, we investigated aPKC, extracellular-regulated protein kinase 1/2 (ERK 1/2), and P38 mitogen-activated protein kinase (P38 MAPK) activities and expression in skeleta...
Insulin resistance in type 2 diabetes is partly due to impaired glucose transport in skeletal muscle. Atypical protein kinase C (aPKC) and protein kinase B (PKB), operating downstream of phosphatidylinositol (PI) 3-kinase and its lipid product, PI-3,4,5-(PO(4))(3) (PIP(3)), apparently mediate insulin effects on glucose transport. We examined these...
Unlabelled:
Insulin-stimulated glucose transport in skeletal muscle is thought to be effected at least partly through atypical protein kinase C isoforms (aPKCs) operating downstream of phosphatidylinositol (PI) 3-kinase and 3-phosphoinositide-dependent protein kinase-1 (PDK-1). However, relatively little is known about the activation of aPKCs in p...
Rhesus monkeys frequently develop obesity and insulin resistance followed by type 2 diabetes when allowed free access to chow. This insulin resistance is partly due to defective glucose transport into skeletal muscle. In this study, we examined signaling factors required for insulin-stimulated glucose transport in muscle biopsies taken during eugly...
Exercise increases glucose transport in muscle by activating 5'-AMP-activated protein kinase (AMPK), but subsequent events are unclear. Presently, we examined the possibility that AMPK increases glucose transport through atypical protein kinase Cs (aPKCs) by activating proline-rich tyrosine kinase-2 (PYK2), ERK pathway components, and phospholipase...
The thiazolidenedione, rosiglitazone, increases basal and/or insulin-stimulated glucose transport in various cell types by diverse but uncertain mechanisms that may involve insulin receptor substrate (IRS)-1-dependent PI3K. Presently, in 3T3/L1 adipocytes, rosiglitazone induced sizable increases in basal glucose transport that were: dependent on PI...
Insulin stimulates glucose transport and certain other metabolic processes by activating atypical PKC isoforms (lambda, zeta, iota) and protein kinase B (PKB) through increases in D3-polyphosphoinositides derived from the action of PI3K. The role of diacylglycerol-sensitive PKC isoforms is less clear as they have been suggested to be both activated...
Sorbitol, "osmotic stress", stimulates GLUT4 glucose transporter translocation to the plasma membrane and glucose transport by a phosphatidylinositol (PI) 3-kinase-independent mechanism that reportedly involves non-receptor proline-rich tyrosine kinase-2 (PYK2) but subsequent events are obscure. In the present study, we found that extracellular sig...
Insulin stimulates glucose transport and certain other metabolic processes by activating atypical PKC isoforms (, , ) and protein kinase B (PKB) through increases in D3-polyphosphoinositides derived from the action of PI3K. The role of diacyl- glycerol-sensitive PKC isoforms is less clear as they have been suggested to be both activated by insulin...
Insulin-stimulated glucose transport is impaired in the early phases of type 2 diabetes mellitus. Studies in rodent cells suggest that atypical PKC (aPKC) isoforms (zeta, lamda, and iota) and PKB, and their upstream activators, PI3K and 3-phosphoinositide-dependent protein kinase-1 (PDK-1), play important roles in insulin-stimulated glucose transpo...
Insulin controls glucose uptake by translocating GLUT4 and other glucose transporters to the plasma membrane in muscle and
adipose tissues by a mechanism that appears to require protein kinase C (PKC)-ζ/λ operating downstream of phosphatidylinositol
3-kinase. In diabetes mellitus, insulin-stimulated glucose uptake is diminished, but with hyperglyce...
Insulin controls glucose uptake by translocating GLUT4 and other glucose transporters to the plasma membrane in muscle and
adipose tissues by a mechanism that appears to require protein kinase C (PKC)-ζ/λ operating downstream of phosphatidylinositol
3-kinase. In diabetes mellitus, insulin-stimulated glucose uptake is diminished, but with hyperglyce...
Atypical protein kinases C (PKCs), zeta and lambda, and protein kinase B (PKB) are thought to function downstream of phosphatidylinositol 3-kinase (PI 3-kinase) and regulate glucose transport during insulin action in skeletal muscle and adipocytes. Insulin-stimulated glucose transport is defective in type II diabetes mellitus, and this defect is am...
Activation of protein kinase C-zeta (PKC-zeta) by insulin requires phosphatidylinositol (PI) 3-kinase-dependent increases in phosphatidylinositol-3,4,5-(PO(4))(3) (PIP(3)) and phosphorylation of activation loop and autophosphorylation sites, but actual mechanisms are uncertain. Presently, we examined: (a) acute effects of insulin on threonine (T)-4...
Activation of protein kinase C-zeta (PKC-zeta) by insulin requires phosphatidylinositol (PI) 3-kinase-dependent increases in phosphatidylinositol-3,4,5-(PO4)(3) (PIP3) and phosphorylation of activation loop and autophosphorylation sites, but actual mechanisms are uncertain. Presently, we examined: (a) acute effects of insulin on threonine (T)-410 l...
Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose
and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dep...
We used adenoviral gene transfer methods to evaluate the role of atypical protein kinase Cs (PKCs) during insulin stimulation of glucose transport in L6 myotubes. Expression of wild-type PKC-lambda potentiated maximal and half-maximal effects of insulin on 2-deoxyglucose uptake, but did not alter basal uptake. Expression of constitutively active PK...
We used adenoviral gene transfer methods to evaluate the role of atypical protein kinase Cs (PKCs) during insulin stimulation of glu- cose transport in L6 myotubes. Expression of wild-type PKC-l po- tentiated maximal and half-maximal effects of insulin on 2-deoxy- glucose uptake, but did not alter basal uptake. Expression of constitutively active P...
We evaluated effects of the thiazolidinedione, rosiglitazone, on insulin-induced activation of protein kinase C (PKC)-zeta/lambda and glucose transport in adipocytes of Goto-Kakizaki (GK)-diabetic and nondiabetic rats. Insulin effects on PKC-zeta/lambda and 2-deoxyglucose uptake were diminished by approximately 50% in GK adipocytes, as compared wit...
Five structurally related nitrobenzenes (1,2-dinitrobenzene, 1,3-dinitrobenzene, 1,4-dinitrobenzene, 1,3,5-trinitrobenzene, and picric acid) and Meisenheimer complex [1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate] were evaluated as possible inhibitors of affinity purified mammalian glutathione transferases (GSTs) isolated from human liver or hu...
In this study, we examined the ability of human term placental lipoxygenase (HTPLO) to catalyze glutathione (GSH) conjugate formation from ethacrynic acid (EA) in the presence of linoleic acid (LA) and GSH. HTPLO purified by affinity chromatography was used in all the experiments. The results indicate that the process of EA-SG is enzymatic in natur...
The mechanisms used by insulin to activate the multifunctional intracellular effectors, extracellular signal-regulated kinases
1 and 2 (ERK1/2), are only partly understood and appear to vary in different cell types. Presently, in rat adipocytes, we
found that insulin-induced activation of ERK was blocked (a) by chemical inhibitors of both phosphati...
Previous studies have suggested that 1) atypical protein kinase C (PKC) isoforms are required for insulin stimulation of glucose transport, and 2) 3-phosphoinositide-dependent protein kinase-1 (PDK-1) is required for activation of atypical PKCs. Presently, we evaluated the role of PDK-1, both in the activation of PKC-zeta, and the translocation of...
In rat adipocytes, insulin provoked rapid increases in (a) endogenous immunoprecipitable combined protein kinase C (PKC)-ζ/λ activity in plasma membranes and microsomes and (b) immunoreactive PKC-ζ and PKC-λ in GLUT4 vesicles. Activity and autophosphorylation of immunoprecipitable epitope-tagged
PKC-ζ and PKC-λ were also increased by insulinin situ...
In this study, we examined the ability of soybean lipoxygenase to mediate the N-demethylation of imipramine and related drugs in the presence of hydrogen peroxide. Formaldehyde generation resulting from the N-demethylation of imipramine, a prototype drug, was found to depend on incubation time, and the concentration of the enzyme, imipramine, and h...
Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, is known to provoke insulin-like effects on GLUT4 translocation and glucose transport, but the underlying mechanism is obscure. Presently, we found in both rat adipocytes and 3T3/L1 adipocytes that okadaic acid provoked partial insulin-like increases in glucose transport, which were inhib...