Minho Moon

Minho Moon
College of Medicine, Konyang University · Department of Biochemistry

Ph.D.

About

98
Publications
33,207
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,699
Citations
Additional affiliations
March 2015 - present
College of Medicine, Konyang University
Position
  • Professor (Assistant)
July 2014 - February 2015
Harvard Medical School
Position
  • Instructor
July 2012 - June 2014
Harvard Medical School
Position
  • PostDoc Position
Education
March 2006 - August 2009
Department of Pharmacology, College of Medicine, Kyung Hee University
Field of study
  • Neuroendocrinology, Neuropharmacology
March 2004 - February 2006
Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University
Field of study
  • Neuroscience
March 2000 - February 2004
Department of Biology, Kyung Hee University
Field of study
  • Biology

Publications

Publications (98)
Article
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural pla...
Article
Full-text available
Aster koraiensis Nakai (AK) leaf reportedly ameliorates health problems, such as diabetes. However, the effects of AK on cognitive dysfunction or memory impairment remain unclear. This study investigated whether AK leaf extract could attenuate cognitive impairment. We found that AK extract reduced the production of nitric oxide (NO), tumour necrosi...
Article
Full-text available
Amyloid-β (Aβ) deposition and Aβ-induced neurodegeneration appear in the retina and retinorecipient areas in the early stages of Alzheimer’s disease (AD). Although these Aβ-related changes in the retina cause damage to the visual functions, no studies have yet revealed the alterations in the visual pathways of AD. Therefore, we investigated the alt...
Article
A prominent characteristic of Alzheimer's disease (AD) is the deposition of both amyloid-β (Aβ) peptide and tau protein in the brain. Aβ and tau not only induce toxicity through self-aggregation but also induce more potent toxicity through the synergistic action of Aβ and tau. In particular, neurotoxic aggregates of Aβ and tau directly affect sever...
Article
Full-text available
Background The most common type of dementia, Alzheimer's disease (AD), is marked by the formation of extracellular amyloid beta (Aβ) plaques. The impairments of axons and synapses appear in the process of Aβ plaques formation, and this damage could cause neurodegeneration. We previously reported that non-saponin fraction with rich polysaccharide (N...
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by irreversible cognitive declines. Senile plaques formed by amyloid-β (Aβ) peptides and neurofibrillary tangles, consisting of hyperphosphorylated tau protein accumulation, are prominent neuropathological features of AD. Impairment of adult neurogenesis is also a well-kn...
Preprint
Full-text available
Synaptic and network disruption is correlated with cognitive decline and loss of sensation in Alzheimer's disease (AD). Surprisingly, amyloid-β (Aβ) deposition and Aβ-induced neurodegeneration appear in the retina at the early-stage of AD. Although these Aβ-related changes in the retina could cause damage to the visual functions, no studies have ye...
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate...
Article
Full-text available
Non-pharmacological intervention, which includes a broad range of approaches, may be an alternative treatment for Alzheimer’s disease (AD). Multimodal non-pharmacological intervention alleviates cognitive dysfunction and the impairment of activities of daily living (ADL) in AD patients. However, it is still unclear which combination of non-pharmaco...
Article
Full-text available
(1) Background: Although Platycodon grandiflorum saponins exhibit many beneficial biological effects in various diseases and conditions, how they protect nerve cells against neurodegenerative diseases and Alzheimer’s disease (AD) pathology is unknown. We investigated whether P. grandiflorum crude saponin (PGS) protects neurons from neurodegeneratio...
Article
Full-text available
Alzheimer’s disease (AD) is the most serious age-related neurodegenerative disease and causes destructive and irreversible cognitive decline. Failures in the development of therapeutics targeting amyloid-β (Aβ) and tau, principal proteins inducing pathology in AD, suggest a paradigm shift towards the development of new therapeutic targets. The gram...
Article
Full-text available
Alzheimer’s disease (AD) is an irreversible neurodegenerative brain disorder with aggregation of amyloid-beta (Aβ) and tau as the pathological hallmarks. AD is the most common form of dementia and is characterized by a progressive decline of cognition. The failure of pharmacological approaches to treat AD has resulted in an increased focus on non-p...
Article
Full-text available
Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by irreversible cognitive dysfunction. Amyloid beta (Aβ) peptide is an important pathological factor that triggers the progression of AD through accumulation and aggregation, which leads to AD-related pathologies that consequently affect cognitive functions. Interesti...
Article
Biological aging provokes morbidity and several functional declines, causing older adults more susceptible to a variety of diseases than younger adults. In particular, aging is a major risk factor contributing to non-communicable diseases, such as neurodegenerative disorders. Alzheimer's disease (AD) is an aging-related neurodegenerative disease th...
Article
Hypoxia has been suggested to induce epithelial-mesenchymal transition (EMT) in various cancer types via the transcription factor hypoxia-inducible factor-1 alpha (HIF-1α). Here, we demonstrated that TOPK upregulates EMT and the invasion of H460 nonsmall-cell lung cancer cells through the induction of the HIF-1α/Snail axis and hypoxic signaling. Th...
Article
Full-text available
Although the major causative factors of Alzheimer's disease (AD) are the accumulation of amyloid β and hyperphosphorylated tau, AD can also be caused by metabolic dysfunction. The major clinical symptom of AD is cognitive dysfunction. However, AD is also accompanied by various secondary symptoms such as depression, sleep-wake disturbances, and abno...
Article
Full-text available
Tau, a microtubule-associated protein expressed in mature neurons, interacts with tubulin to promote the assembly and stabilization of microtubules. However, abnormally hyperphosphorylated tau dissociates from microtubules and self-aggregates. Tau aggregates, including paired helical filaments and neurofibrillary tangles, promote neuronal dysfuncti...
Article
Full-text available
Alzheimer’s disease (AD) is the most common type of dementia. AD involves major pathologies such as amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. During the progression of AD, microglia can be polarized from anti-inflammatory M2 to pro-inflammatory M1 phenotype. The activation of triggering receptor expressed on myeloid cells 2 (...
Article
Full-text available
It has been reported that damage to the mitochondria affects the progression of Alzheimer’s disease (AD), and that mitochondrial dysfunction is improved by omega-3. However, no animal or cell model studies have confirmed whether omega-3 inhibits AD pathology related to mitochondria deficits. In this study, we aimed to (1) identify mitigating effect...
Article
Full-text available
Alzheimer’s disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-β (Aβ) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of no...
Article
Full-text available
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In...
Article
Omega-3 polyunsaturated fatty acids (PUFA) are critical for optimal brain health and are involved in psychiatric and neurological ailments. Here, we report the effects of higher endogenous omega-3 PUFA on memory impairment in the hippocampus by studying mice with transgenic expression of the fat-1 gene that converts omega-6 to omega-3 PUFA. We perf...
Article
Full-text available
Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell...
Article
Full-text available
As the number of older adults increases, the prevalence of dementias, such as Alzheimer’s dementia (AD), vascular dementia, dementia with Lewy bodies, and frontotemporal dementias, also increases. Despite research into pharmacological approaches for treating diverse diseases, there is still no cure. Recently, novel non-pharmacological interventions...
Article
Full-text available
It is widely known that the degeneration of neural circuits is prominent in the brains of Alzheimer’s disease (AD) patients. The reciprocal connectivity of the medial septum (MS) and hippocampus, which constitutes the septo-hippocampo-septal (SHS) loop, is known to be associated with learning and memory. Despite the importance of the reciprocal pro...
Article
Ghrelin, which has many important physiological roles, such as stimulating food intake, regulating energy homeostasis, and releasing insulin, has recently been studied for its roles in a diverse range of neurological disorders. Despite the several functions of ghrelin in the central nervous system, whether it works as a therapeutic agent for neurol...
Article
Full-text available
Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aβ) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red g...
Article
The aggregation and accumulation of amyloid beta (Aβ) peptide is believed to be the primary cause of Alzheimer's disease (AD) pathogenesis. Vitamin D-binding protein (DBP) can attenuate Aβ aggregation and accumulation. A biocompatible polymer poly (D,L-lactic acid-co-glycolic acid) (PLGA) can be loaded with therapeutic agents and control the rate o...
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disease, which is accompanied by memory loss and cognitive dysfunction. Although a number of trials to treat AD are in progress, there are no drugs available that inhibit the progression of AD. As the aggregation of amyloid-β (Aβ) peptides in the brain is considered to be the major pathology of AD, in...
Article
Full-text available
The orphan nuclear receptor Nurr1 (also known as NR4A2) is critical for the development and maintenance of midbrain dopaminergic neurons, and is associated with Parkinson's disease. However, an association between Nurr1 and Alzheimer's disease (AD)‐related pathology has not previously been reported. Here, we provide evidence that Nurr1 is expressed...
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline and neurodegeneration in the hippocampus. Despite the pathological importance of the hippocampal degeneration in AD, little topographical evidence exists of impaired hippocampal connectivity in patients with AD. To investigate the anatomical connections of t...
Article
One of the pathological hallmarks of Alzheimer's disease (AD) is the abnormal aggregation of amyloid beta (Aβ) peptides. Uncaria rhynchophylla (UR), one of the Uncaria species, has long been used to treat neurodegenerative disease. In particular, it has been reported that UR inhibits aggregation of Aβ in vitro. However, little is known about the hi...
Article
Full-text available
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits, neuroinflammation, and neuronal death. The primary pathogenic cause is believed to be the accumulation of pathogenic amyloid beta (Aβ) assemblies in the brain. Ghrelin, which is a peptide hormone predominantly secreted from the stomach, is an e...
Article
Full-text available
Alzheimer's disease (AD), which is the most major cause of dementia, is a progressive neurodegenerative disease that affects cognitive functions. Even though the prevalence of AD is continuously increasing, few drugs including cholinesterase inhibitors and N-methyl D-aspartate-receptor antagonists were approved to treat AD. Because the clinical tri...
Article
Full-text available
Progressive cognitive declines are the main clinical symptoms of Alzheimer’s disease (AD). Cognitive impairment in AD is directly correlated with amyloid beta (Aβ)-mediated synaptic deficits. It is known that upregulation of neurogranin (Ng), a postsynaptic protein, contributes to the enhancement of synaptic plasticity and cognitive function. By co...
Article
Full-text available
Platycodon grandiflorus (Jacq.) A.DC. (PG) has long been used as an ingredient of foods and is known to have beneficial effects on cognitive functions as well. The present study examined the effect of each PG extract (PGE) from root, aerial part, and seeds on cognitive functions in mice. Changes in spatial learning and memory using a Y-maze test, a...
Article
Full-text available
The methodology of learning and teaching a foreign language is evolving. Better educational methods using research-based knowledge of the language centers of the brain, especially in relation to memory, are essential for both language learners and educators. One of the brain’s main language centers, Broca’s area, functions differently with native a...
Article
Full-text available
Despite the effects of CD4+ T cell dysfunction on cognitive and behavioral impairment are well established, the effects of Th2 cytokines on the adult hippocampal neurogenesis and cognitive function in restricted CD4+ T cell receptor (TCR) repertoire model have not been fully elucidate. We found that mice with restricted CD4+ repertoire TCR showed d...
Article
Mulberry fruit, which has been long used in traditional oriental medicine, was reported to ameliorate motor dysfunction and dopaminergic neuronal degeneration via antioxidant and antiapoptotic effects in an animal model of Parkinson's disease (PD). More than 95% of PD patients exhibit nonmotor problems such as olfactory dysfunction and gastrointest...
Article
Full-text available
The nuclear receptor related-1 (Nurr1) protein plays an important role in both the development of neural precursor cells (NPCs) and cognitive functions. Despite its relevance, the effects of Nurr1 on adult hippocampal neurogenesis have not been thoroughly investigated. Here we used RT-PCR, western blot, and immunocytochemistry to show that adult hi...
Article
Full-text available
Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with r...
Article
Full-text available
Significance: Alzheimer's disease (AD) leads to cognitive dysfunctions without methods for cure or prevention. Here we demonstrated that transplantation of protein-induced pluripotent stem cells (iPSCs) reduced plaque deposition and restored memory impairment in 5XFAD mice, an AD animal model. Also, the stem cell niche of these mice promotes diffe...
Article
It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy....
Article
Full-text available
The evidence of strong pathological associations between type 2 diabetes and Alzheimer's disease (AD) has increased in recent years. Contrary to suggestions that anti-diabetes drugs may have potential for treating AD, we demonstrate here that the insulin sensitizing anti-diabetes drug metformin (Glucophage®) increased the generation of amyloid-β (A...
Article
Full-text available
The progressive aggregation of amyloid-β protein (Aβ) into senile plaques is a major pathological factor of Alzheimer's disease (AD) and is believed to result in memory impairment. We aimed to investigate the effect of an optimized combination of ginger and peony root (OCGP), a standardized herbal mixture of ginger and peony root, on Aβ accumulatio...
Article
Full-text available
Intracellular amyloid beta (Aβ) has been implicated in neuronal cell death in Alzheimer's disease (AD). Intracellular Aβ also contributes to tight junction breakdown of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). Although Aβ is predominantly secreted from neuronal cells, the mechanism of Aβ transport into RPE remains...
Article
Full-text available
The nuclear receptor subfamily 4 (NR4A) is composed of 3 related proteins sharing a DNA binding domain (DBD) and a ligand-binding domain (LBD). The nuclear receptor related 1 protein (Nurr1 or NR4A2) plays a key role in the maintenance of the dopaminergic system. Dopamine dysfunctions associated with the Nurr1 gene include Parkinson’s disease, schi...
Article
Full-text available
Background: Heat stress induces many pathophysiological responses and has a profound impact on brain structure. It has been demonstrated that exposure to high temperature induces cognitive impairment in experimental animals and humans. Although the effects of heat stress have long been studied, the mechanisms by which heat stress affects brain stru...
Article
Full-text available
Background Patients with Alzheimer’s disease (AD) frequently experience disruption of their circadian rhythms, but whether and how circadian clock molecules are perturbed by AD remains unknown. AD is an age-related neurological disorder and amyloid-β (Aβ) is one of major causative molecules in the pathogenesis of AD. Results In this study, we inves...
Article
Full-text available
Alzheimer's disease is the most prevalent neurodegenerative disorder, characterized by neurofibrillary tangles, senile plaques, and neuron loss. Amyloid-β peptides (Aβ) are generated from amyloid-β precursor protein by consecutive catalysis by β- and γ-secretases. Diversely modified forms of Aβ have been discovered, including pyroglutamate Aβ (N3pE...
Article
The functional roles of the orphan nuclear receptor, Nurr1, have been extensively studied and well established in the development and survival of midbrain dopamine neurons. As Nurr1 and other NR 4A members are widely expressed in the brain in overlapping and distinct manners, it has been an open question whether Nurr1 has important function(s) in o...