
Security Enhancement of Secure USB Debugging in

Android System

Mingzhe Xu, Weiqing Sun, and Mansoor Alam

The University of Toledo, Toledo, Ohio 43606, USA

mingzhe.xu@rockets.utoledo.edu, {weiqing.sun, mansoor.alam2}@utoledo.edu

Abstract— The security of Android Debug Bridge (ADB) has

attracted much attention from researchers, because it has a high

privilege level and a low level of protection. Many attacks on

Android systems have taken advantage of the security holes of

ADB. Thus, in the updating patch of Android 4.2.2, a security

feature secure USB debugging was implemented so that only

trusted hosts can use ADB. Our research analyzes its protection

effects on ADB based attacks and found that the new feature

cannot provide sufficient protection when the host used to

connect with Android devices has been compromised. A

demonstration attack following this method is given along with

an improvement design of the security mechanism of USB

Debugging Mode. An implementation of this design and its

evaluation are also provided to demonstrate its effectiveness.

Keywords—Android Security; Android Debug Bridge; Secure

USB Debugging; Smart Phone Security.

I. INTRODUCTION

Debugging is an important procedure in software
development workflow. It is the process of detecting and fixing
errors in the software under development. During the
debugging process, much software information is traced by the
debugger, such as memory allocation, API usages and
subroutine calling stacks. Although so many details of the
software can be fetched, the debugging process itself is
generally not deemed as a dangerous process. That is because
in general systems, debugging functions always come with a
software development kit (SDK) for an integrated development
environment (IDE), which is provided by trustworthy third
parties or from the system’s designers. Thus, only selected
systems can run in the debugging mode to let applications be
debugged on them. Usually those systems for debugging are
restricted by extra security policies, and are not worthwhile to
hack into them for the lack of important data.

Android is an operating system (OS) designed for
mobile/portable devices [6]. In mobile devices, hardware
capability is highly limited, and Android is designed for
multitasking based on limited system resources. It is developed
based on a Linux kernel with multiple virtual machine
processes, called Dalvik, running to support its multitasking
feature. Because of this lower performance (compared with
non-portable computers), one important characteristic of
Android is that, most Android developers usually develop their
Applications (APPs) in an IDE running on regular computers,
and compile them and then send the APPs to the Android
environment for debugging [7].

To run and test the APP, the USB Debugging Mode must
be turned on in Android devices, which is disabled by default.
Once an Android device is connected to a computer with a
USB cable, the USB Debugging Mode can be enabled. This
mode can authorize the device to establish a connection
between an Android device and a computer using the Android
Debug Bridge (ADB) utility [1]. It also allows the computer-
end software (primarily SDKs and IDEs) to read the debugging
information of the tuned APP.

Fig. 1. Structure of Android Debug Bridge [12].

Android designers provided ADB to help developers easily
connect to the Android device from their development
machines to debug APPs. The structure of ADB is shown in
Figure 1. As a default component of Android, the ADB has
three parts that separately run on the host (desktop/laptop
computer) and the device (Android testbed). The ADB on the
device is a daemon process which receives commands from the
host, executes them and returns the results. The host part of
ADB is composed of the ADB server and a command line
client. The major functionality of the ADB server is to monitor
the connection between the host and the device. The command
line client is an interface for getting user commands and sends
them to the device via TCP/IP or USB connection [12]. This
paper will discuss the security of the ADB, with the primary
focus on the new security feature of ADB, secure USB
debugging, which was introduced in Android version 4.2.2 [3],
and allows only authorized hosts to use ADB. This feature will
undoubtedly enhance the security of ADB and the overall
Android system. However, a detailed analysis of the feature is
needed in order to understand its functionality, effects and
drawbacks. In this paper, we perform a thorough analysis.
Through the analysis, we identified a security issue that cannot
be fully addressed by this feature. Therefore, it is possible that
potential attacks can be launched by exploiting it. We

designed, implemented and evaluated such an attack. We also
propose a solution to improve the ADB security and fix the
problem.

The structure of the remainder of this paper is as follows.
Section II describes the background of our research, including
the overview of Android debugging function, and its security
issues. Section III explains the major security considerations
about Android debugging and introduces the secure USB
debugging feature developed in Android version 4.2.2. Then
we analyze this feature and discuss its security effects. The
security hole we have found is also described in Section III. In
Section IV, we use a simple intrusion to demonstrate the
attacks which can exploit this security hole. Then, in Section
V, the security enhancement is described along with the
evaluation. Finally, Section VI concludes our research and
presents the future work.

II. BACKGROUND

A. Privileges of USB Debugging Mode

In USB Debugging Mode, users are granted special
permissions to facilitate the actions required during the
debugging process. As source code must be modified
frequently, the APP is sent from computer’s IDE and installed
on the device. The debugging mode let users install/uninstall
APPs freely, without the restrictions applied to the normal
Android installations. Users are allowed to trace the APP’s
actions such as APIs called, memory allocated, and system
settings influenced. The activities of an APP can be tuned
manually in the USB Debugging Mode. Also, there are special
commands which can only be executed in this mode.

Basically, the realization of the above privileges depends
on ADB utilities and the communications through the USB
cable connection. All the debugging functionalities can only be
possible through the connection established between the ADB
server and the client. By using ADB, users can directly install
APPs to the connected device, and the Android system will
automatically give APPs all the permissions they need, without
any further security check. The debugging information is
collected by the Android system via the ADB connection. The
special utilities will be functional when they receive commands
issued from ADB. In addition, the ADB can act as a terminal
client to the Linux kernel on Android devices.

B. Sensitive Commands of ADB

ADB provides a wide range of functions for the interaction
between the host and the device. These functions are usually
executed by typing commands in a command-line interface on
the host. Some of the commands are security sensitive. For
usability reasons, a very high privilege level is given to ADB.
Once an Android device is connected with a host through
ADB, all commands can be directly executed without any
further authorization.

The ADB command “install” can enable users to install a
new package to the system. That means if an attacker
subverted a device through ADB, he/she can silently install
malicious APPs to it, and those dangerous APPs will then be
granted all the permissions they need from ADB. In addition,

the “push” and “pull” commands can transport files between
the host and the device. They can send files to and get files
from any directories on the device, either in the system storage
or the memory card.

Both Activity Manager (command: “am”) and Package
Manager (command: “pm”) are parts of the ADB shell
functionalities and their commands start with “adb shell”. By
using the activity manager, an ADB user can control all the
activities within the system, for example, initialize/stop an
activity, specify the activity’s action, and start/stop a
background process. Activity is the basic component of
Android APPs. All system actions, such as open/exit
applications and modify system settings, will be under the
user’s control if he/she is using the Activity Manager. Package
Manager manages application packages on the device. It can
enable users to perform a series of package management
operations, such as querying system information, listing
installed packages with filter functions, installing/uninstalling
packages, revoking/granting permissions to APPs and
creating/removing users.

In order to make the debugging process easier, a shell
functionality “screenrecord” is provided in the Android 4.4
update. Like Activity Manager and Package Manager, the
“screenrecord” command also needs to be executed in the
ADB shell environment. As the name indicates, it can record a
video of the Android device’s screen for up to three minutes.
The generated video file is in the mp4 format and will be
stored in a selected path specified by the user.

In addition, we found some ADB utilities that are not
included in the Google’s Android documentation website. One
critical function of them is the “tcpip” command. This utility
is used to restart the device’s ADB daemon to enable it to
listen for the TCP/IP requests on a specified port. By using
this function, a host can connect to a device’s ADB utility via
a TCP/IP network. Compared with the USB connection, it is
more flexible with less restriction.

C. ADB Security Issues

By taking advantage of ADB connections, users could
install APPs with any permission they want. Those permissions
are the basic access control components in Android. APPs with
all permissions are granted full access to the whole system. It
can read/write any file in the storage, control voice calls and
SMS messages, change system settings, and read all the
account information on the device. If the ADB feature is used
by a person who is not the owner of the device, it may result in
severe personal information leakage. Through the ADB
connections, users are also able to input commands to the
Linux kernel. Several methods are available for obtaining the
root user privilege. Users will take full control of the system if
the device is “rooted”, and some of the rooting methods are
completed by interacting with kernel through ADB.

With ADB, high privileged operations can be performed to
control the Android device. Therefore, it has become an
attractive attack vector. There have been a number of attacks
against Android systems by exploring ADB’s security hole. In
recent years, many security holes and potential problems
caused by ADB have been found.

DroidDream [5] first appeared in spring 2011, and the
attack can send malicious software to the Android system by
installing a rootkit to the device. This rootkit installation is
accomplished via a resource exhaustion attack on the ADB [9].
As the result, the DroidDream malware will gain root access to
the device and automatically download more malicious
software if the rootkit is installed. In [10], a number of remote
control functions were realized by using ADB features such as
installing and uninstalling applications, downloading and
uploading files, opening a shell console, and starting
applications. A framework for on-device privilege escalation
exploit execution on Android was discussed in [11]. This is an
ADB security hole that can let Android APPs escalate their
privileges and obtain root privilege of the system (Android
rooting). The privilege escalation process is accomplished via
ADB connections. This issue was found by two researchers
from Upper Austria University of Applied Sciences. Super
One-Click [9] is a desktop application running in the Windows
environment. It helps users to root their Android devices by
only “one click” on the computers. This rooting process also
takes advantage of ADB, which requires users to enable the
device’s USB debugging mode and establish USB connection
with the host [8]. Once the device was rooted, all the installed
software could gain super user privilege, even the malicious
ones. The research in [13] described two possible attack
methods using ADB. The first attack established an ADB
connection with root privilege by flashing the targeting
device’s memory to change the ADB daemon’s parameters.
The second method switched one Android system’s ADB
daemon into host mode, and then used its ADB utility to
connect to and control other Android targets.

III. SECURE USB DEBUGGING

The security on the USB debugging mode has not been
improved for years. The only enforcement provided by
designers before the new feature came out is in the updating
patch 4.2 [4]. It hides the USB mode enabling option from the
system setting menu. In order to make the option checkbox
visible, a user needs to touch seven times on the “Build
Number” section under the “About Phone/Tablet” menu in
system settings. The purpose of this design is to prevent users
from accidentally turning on the USB debugging mode.
However, it is hard to be deemed as a security improvement.

Thus, in the 4.2.2 update, designers introduced the new
security feature on ADB called “secure USB debugging”. In
this solution, only authorized hosts are allowed to use the USB
connection with the device. If a device is to be connected to an
unauthorized host, the host will not see files on the device and
cannot establish an ADB connection to the device. The
authorization process is completed by the device administrator
when a new host is connected for the first time. After
activating the device, a prompt dialog will ask the
administrative user to confirm the authorization. Once the
confirmation is made, the device will communicate normally
with this host. If the administrator chooses to always allow this
host, it will be added to the white list of the device and no
authorization will be required when subsequent connections
occur [3].

A. The Implementation of Secure USB Debugging

In the design of secure USB debugging [2], a 2048-bit RSA
encryption function is used to secure the authentication
process. The host’s private key and public key are generated
from its desktop ADB server utility. The host’s public key is
treated as the host identity. When the device is connected to a
host, the device sends a 20-byte random message to the host.
Then the host encrypts the message’s SHA1withRSA signature
using its private key and sends this encrypted signature back.
The device will decrypt this signature and compare it with the
signature calculated from its original message. If the
verification fails, the device will stay in the offline status and
cannot perform any action on the device. The verification
failure may be a result of no corresponding public key on the
device or the two signatures do not match. If the device does
not contain this host’s public key in its storage, the host will
send its public key to the device first. After receiving the public
key, a confirmation dialog shows on the device with the key’s
MD5 hash waiting for user actions. If the user selects “OK”,
then the device will use this key to decrypt the verification
message. If the “Always allow from this computer” checkbox
is checked, the device will save this key in its storage drive.

B. Potential Problems

This method provides a white list design for ADB
connection authorizations for the sake of better usability and
security. It does not require many user actions to authorize a
host; instead, just a simple click would suffice. This security
design helps to protect Android systems from malicious attacks
originated from ADB connections. All the unknown hosts are
not allowed to connect to the protected device. Some attacks
begin with establishing the ADB connection with the Android
system and then try to obtain administrator privileges by
sending and installing “rootkit” to the system via the ADB
connection. Now these attacks cannot work anymore because
they are not allowed to connect to the target Android devices.
The hosts that initiated the resource exhaustion attacks would
not be able to establish the ADB connections with target
devices. This kind of attacks is thwarted at the beginning.
Similarly, secure USB debugging could also provide good
protections in both the remote control [10] and privilege
escalation [11] attack scenarios.

However, sophisticated attacks might still be able to bypass
the above protection. Assume there is one piece of desktop
software which can help manage the Android system by
providing attractive auxiliary functionalities. This software
requires users to connect their devices to the computers using
the USB port, and it needs the user to enable the USB
debugging mode. But the software contains malicious code that
can take advantage of the ADB utility on the hosts and damage
the device through the ADB connection. Under this situation,
because the user enables USB debugging and authorizes the
host to establish the ADB connection, the attack can certainly
bypass the secure USB debugging protection. The only thing
the software needs to do in order to bypass secure USB
debugging is phishing. If a user decides to “trust” the phishing
software, the secure USB debugging policy will not be able to
provide any protection.

For another similar but more dangerous situation, if a
trusted host (in the white list of the device) is later hacked, the
secure USB debugging will be unable to protect USB
connected devices against the malicious operations from the
subverted host. The host is intruded and as the result the hacker
could obtain the file storing the private key. Then this private
key can be installed in other fake hosts to bypass secure USB
debugging. If a fake host wants to connect using keys stolen
from a trusted host, secure USB debugging will not block it as
it has an authenticated host key.

IV. DEMONSTRATION ATTACK

This Section describes an intrusion into an Android device
from a host which is on the device’s secure USB debugging
white list. We assume that there is a hacker who wants to
launch the initial attack to random targets. The goal of this
attack is to steal the private key and public key of the host, and
then configure the device’s ADB daemon to listen to the
TCP/IP connection. After that, the intruder will have the
ability to establish the ADB connection with the device
whenever he/she wants. The connection can be initiated either
from the hacked host or from other unknown hosts owned by
the intruder. Figure 2 demonstrates the process of the attack.

The attacker first developed a computer application, which
can provide some auxiliary functionality to help users to
manage their Android devices, such as installing new APPs,
transferring files between the SD card and the computer hard
drive, and managing multimedia files on the system. To
achieve those functionalities, the USB debugging mode must
be turned on when a device is plugged in a USB port on the
computer. This software also can run some hidden scripts in
the background without users’ knowledge.

Then some user downloaded and installed this “malicious”
software. When this user first runs this software, it will prompt
the user to enable its USB debugging mode. It also requests
the user to add the connected host to the white list. To take
advantage of features provided by the software, the user will
likely do what he/she was asked to do. Then the next step is
done by executing a short batch script in the background.

We developed the script which can find the files
containing the private and public keys, using variables to store
them and print them out. This script can be executed in MS-
Windows system. A few simple modifications can be done in
order to port the script to run under UNIX/Linux or other OS
environments. For the folder containing the key files, different
configurations may be applied in practice, including

$ANDROID_SDK_HOME/.android,
$ADB_VENDOR_KEYS,
C:\Windows\System32\config\systemprofile\.android, etc. [2]
Here we simplified the key files searching process and used
the default system setting.

Then the command (“adb tcpip 5555”) will be executed to
restart the ADB daemon on the device and set it to listen to
TCP/IP requests on port number 5555, which is the default
port for the ADB TCP/IP daemon. The attacker can change it
to any port by setting the number in the command. During the
restarting process, the USB connection will be reset once. In
most cases it would not be noticed or would be ignored by
being treated as an unstable connectivity issue.

After the above process, the hacked host is able to connect
to the device whenever they are in a same LAN. If the device
gets a WAN IP address, in case of connecting to a public WI-
FI, the attacker will be able to connect to the device remotely
using a fake trusted host with the stolen authenticated keys.
One major feature of the intrusion through ADB is its
invisibility [9]. Operations from the intrusion will go
unnoticed by the users on the target device for a long period of
time. Even when the user finally discovers the intrusion on the
host and blocks it, the attacker might still be able to intrude
the device remotely later.

Once the attacker takes control of ADB, he/she could do
more damages to the target. For example, the attacker can
install malicious software with all permissions for an Android
APP, using it to steal owner’s private information, get or
remove all files in storage, or delete installed applications.
Furthermore, the attacker is able to use ADB to generate a
backup file of the whole system, transfer it to local and fetch
all the information from the targeting device.

V. SECURITY ENHANCEMENT

The previous two Sections show that the secure USB
debugging design lack abilities in defending against attacks
from subverted trusted hosts. Thus, improvements to address
this security issue are needed. Here we design and implement
a new approach to enhance the USB debugging security.

A. Design and Implementation

In our approach, the security critical ADB operations will
be made visible to the Android system users to enhance the
security. As mentioned before, it is hard for the user to notice
once an attack through the USB debugging mode occurred.
However, this kind of attack is easy to be defeated by simply

Fig. 2. Process of the attack.

disabling the USB debugging mode. Thus, this approach
focuses on increasing the transparency of ADB operations, so
that users can monitor what is happening with the USB
debugging mode and take actions accordingly. Once an ADB
connection is established, the Android device will display
real-time messages about what the ADB connection is doing.
With this, users can see the list of ADB commands being
executed on their devices, including those commands that are
not issued by them if an attack via the ADB connection is in
progress. To minimize the possible user interruptions, the
prompt messages are only applied to a list of security sensitive
operations as summarized in Table I, so that the number of
prompt messages will not be too overwhelming for the users,
especially when a normal debugging operation is taking place.

TABLE I. MONITORED ADB OPERATIONS
Command Description

install <path-to-apk> Installs an Android application to the device.

pull <remote> <local> Gets a file from the device to local host.

push <local> <remote> Sends a file to the device.

shell Starts a remote shell in the connected device.

shell [shell command] Issues the shell command to the device.

shell am [command]
Issues the activity manager command to the

device.

shell pm [command]
Issues the package manager command to the

device.

For “shell [command]” operation, many commands can be
executed and some of them are frequently used in the normal
debugging process. Hence, we use a white-list method to filter
the shell commands to be displayed. Commands not on the
white list will be shown to the user when they are executed.
Table II shows the commands on the white list. These shell
commands are often used by Android debugging tools like the
Dalvik Debug Monitor Server (DDMS).

TABLE II. SHELL COMMANDS ON THE WHITE LIST
Command Description

shell echo Shows a string on terminal.

shell getprop Gets stored property settings of the system.

shell ls Lists the content of a directory.

To implement this design, we developed a new component
for the Android system called ADB Action Monitor. This
monitor module runs as a background process of the Android
system. It uses the log function of the ADB utility to trace the
ADB operations. The log function generates records about the
current ADB operation. This process keeps monitoring the log
output file of ADB. Every time the file is appended, ADB
Action Monitor will check the newly appended log entries and
capture the newly executed ADB operations. If they belong to
any of the to-be-monitored ADB operations, the ADB Action
Monitor will invoke an alert dialog window to inform users
the type and time of the security sensitive ADB operation.
Figure 3 shows a screenshot of the ADB Action Monitor,
which reported a potentially malicious APP installation.

This monitor module is designed to be a kernel-level
process based on Android Open Source Project source code. It
will be automatically started when the kernel starts. It has two
major advantages as a kernel-level process. First, ADB Action

Monitor can read the ADB tracing logs without acquiring
permissions like the application-layer programs. The monitor
process is started and owned by system user of the kernel, so
reading the low-level system log files, which are created by
system user as well, does not need any extra permission.
Second, different from the general Android APPs, kernel-level
processes cannot be controlled by the ADB daemon if root
permission is not granted. Most Android devices for normal
users are not rooted. Thus, the attackers are not able to disable
ADB Action Monitor by taking control of the ADB
connection. If the ADB attacker tries to root the device, the
monitor can warn the user before it can succeed. If the target
device is already rooted, a rooted Android system is under a
dangerous condition, discussing its security problems is
beyond the scope of this paper.

Fig. 3. ADB Action Monitor.

B. Evaluations

To evaluate the effectiveness of our approach, we tested
ADB Action Monitor in two different scenarios (debugging
scenario and attack scenario) and compared the results. We
used an Android simulator called Android Virtual Device
(AVD) to emulate two devices, a smart phone and a tablet,
which have the same Android build version 4.2.2 with the
ADB Action Monitor module activated. For the first scenario,
the two devices were used by developers for debugging usage.
In particular, we collected the testing data of three activity-
debugging processes. The developer first used the APP
manually on the device. Then he or she invoked specific
activities of the APP through ADB to check the debug data.

For the second scenario, we simulated three different
attacks on both devices. Attack 1 needs the target device to be
rooted so as to obtain higher privilege to steal sensitive data.
The root permission can also let the attacker install more
malicious programs to the target. Once the attack is initiated, it
will check the target first to see if it is rooted. If not, the attack
will try to root the device, and then continue next steps after
the rooting process is successful. Attack 2 tries to steal
business related privacy information from the devices. It
focuses on APPs including Social Networking Services (SNS),
online shopping, and web browsers. Attack 3 steals all kinds
of personal information, such as photos, contacts, working
documents, notes and dairies, which may be stored on mobile
devices.

Tables III and IV provide the evaluation results. The data
shows some major differences between the debugging and
attack scenarios. First, they have different message types. In
debugging processes, only “Install” and “Activity Manager”
messages are displayed, which indicates that debugging
processes primarily uses these two types of ADB operations
considered for security monitoring. Attacking processes are
more diverse than debugging, so their ADB operations vary
and many of them are security sensitive. Second, the average
number of messages displayed per minute (Msg/min) is
different for the two scenarios. This difference shows that
attacks to Android system trigger more warnings (messages)
than the debugging during the same period of time. Also, there
is an obvious difference in the maximum number of messages
per minute for the two scenarios, as indicated in Tables III and
IV.

TABLE III. ADB ACTION MONITOR EVALUATION (DEBUGGING)

Debugging on Device 1 (Smart Phone)

Time Message Types
Total

Msg

Average

Msg/min

Max

Msg/min

1 9m39s Install, Activity Manager 7 0.73 2

2 9m3s Install, Activity Manager 6 0.66 2

3 7m50s Install, Activity Manager 5 0.64 2

Debugging on Device 2 (Tablet)

Time Message Types
Total

Msg

Average

Msg/min

Max

Msg/min

1 9m30s Install, Activity Manager 7 0.74 2

2 8m59s Install, Activity Manager 6 0.67 2

3 7m49s Install, Activity Manager 5 0.64 2

TABLE IV. ADB ACTION MONITOR EVALUATION (ATTACK)
Attacks on Device 1 (Smart Phone)

Time Message Types
Total

Msg

Average

Msg/min

Max

Msg/min

1 6m41s
Shell Commands, File

Push/Pull, Package Manager
27 4.04 6

2 10m23s

Shell Commands, File Pull,

Package Manager, Activity

Manager

35 3.37 7

3 23m1s
Shell Commands, File Pull,

Activity Manager
81 3.52 7

Attacks on Device 2 (Tablet)

Time Message Types
Total

Msg

Average

Msg/min

Max

Msg/min

1 7m9s
Shell Commands, File

Push/Pull, Package Manager
29 4.06 7

2 10m59s

Shell Commands, File Pull,

Package Manager, Activity

Manager

33 3.01 6

3 21m11s
Shell Commands, File Pull,

Activity Manager
82 3.87 8

From the comparison, we can see that our ADB Action
Monitor is able to notify users ADB based attacks while
minimizing the number of warnings for normal debugging
processes. In most cases, if a warning message comes up and
the user is not using USB Debugging Mode, obviously the
user’s Android device is under attack. In addition, there is a
possibility that the attack happens when functions provided by
USB Debugging Mode are running, such as debugging. Under
this situation, if the number of warnings is larger than

expected or the characteristics of the warnings are not
expected, it is very possible that the system is being attacked.
By implementing this security enhancement for USB
Debugging Mode, Android users can be made aware of ADB
attacks and stop them easily to prevent further damages.

VI. CONCLUSION

In this paper, we analyzed the protection effectiveness of
secure USB debugging feature against ADB based attacks. We
found that the feature has increased ADB’s security but still
lack the capability in defending against the intrusions from
subverted trusted hosts. We implemented such an attack and
proposed a solution to enhance the security of USB Debugging
Mode. The evaluation of a prototype based on this solution
demonstrated that the approach is able to defeat attacks from
trusted hosts while not introducing a big burden for normal
debugging processes.

For the future work, we plan to perform a comprehensive
evaluation of our approach which will involve various Android
devices, ADB based attacks and debugging processes. Also,
we plan to enhance the functionality of ADB Action Monitor.
In particular, we will work on reducing the number of alerts
during debugging and automatically terminate a specific ADB
connection once the attack through that connection is detected.

REFERENCES

[1] (2013). Android Debug Bridge | Android Developers [Online].
Available: http://developer.android.com/tools/help/adb.html

[2] N. Elenkov. (2013). Secure USB debugging in Android 4.2.2 [Online].
Available: http://nelenkov.blogspot.com/2013/02/secure-usb-debugging-
in-android-422.html

[3] F. Chung. (2013). Security Enhancements in Jelly Bean [Online].
Available: http://android-developers.blogspot.jp/2013/02/security-
enhancements-in-jelly-bean.html

[4] (2013). Using Hardware Devices | Android Developers [Online].
Available: http://developer.android.com/tools/device.html

[5] R. Lemos. (2011). Open source vulnerabilities paint a target on Android
[Online]. Available:
http://www.informationweek.in/informationweek/news-
analysis/178446/source-vulnerabilities-paint-target-android

[6] (2013). Android, the world's most popular mobile platform [Online].
Available: http://developer.android.com/about/index.html

[7] (2013). Workflow Introduction | Android Developers [Online].
Available: http://developer.android.com/tools/workflow/index.html

[8] Rooting the Droid without rsd lite up to and including FRG83D,
http://androidforums.com/droid-all-thingsroot/171056-rooting-droid-
withoutrsd-lite-up-including-frg83d.html (2010)

[9] T. Vidas, D. Votipka, and N. Christin. “All your droid are belong to us:
a survey of current android attacks.” In Proceedings of the 5th USENIX
conference on Offensive technologies (WOOT'11), Berkeley, pp. 81-90,
August 2011.

[10] A.G. Villan, J. Jorba. “Remote control of mobile devices in Android
platform.” arXiv preprint arXiv:1310.5850 (2013).

[11] S. Höbarth, R. Mayrhofer. “A framework for on-device privilege
escalation exploit execution on Android.” Proceedings of IWSSI/SPMU,
San Francisco, 2011.

[12] T. Kobayashi, “ADB (Android Debug Bridge): How it works?” Android
Builders Summit, 2012.

[13] Z. Wang, and A. Stavrou. “Exploiting smart-phone usb connectivity for
fun and profit.” In Proceedings of the Annual Computer Security and
Applications Conference (ACSAC), 2010.

