

Acycle: Time-series analysis software for paleoclimate research and education

Mingsong Li Linda Hinnov, Lee Kump

Penn Sate

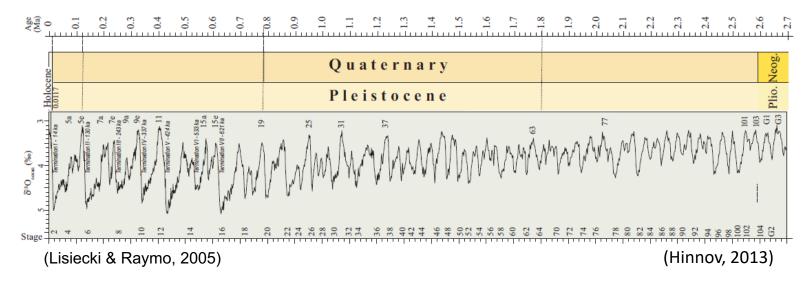
Sept. 6, 2019

OUTLINE

- **1. Introduction**
- 2. Getting Started
- 3. Acycle Graphic User Interface (GUI)
- 4. Case study: Carnian cyclostratigraphy

Time series analysis

- a statistical technique that deals with time series data.
- accounts for the fact that data points taken over time may have an internal structure (such as trend or periodicity) that should be accounted for.
 - Economic Forecasting
 - Sales Forecasting
 - Population Forecasting
 - Stock Market Analysis
 - Yield Projections


- STEM (Science, technology, engineering, and mathematics)
- •

Climate Time Series

Monthly average CO₂ at Mauna Loa Observatory, Hawaii

Global benthic marine δ^{18} O stack (global ice volume and temperature)

Computers and Geosciences 127 (2019) 12-22

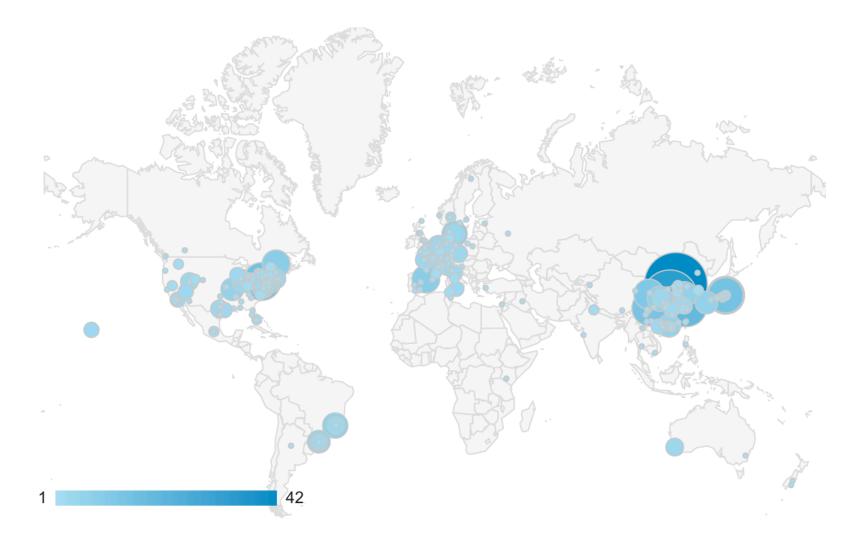
Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Acycle: Time-series analysis software for paleoclimate research and education

-


Mingsong Li^{a,*}, Linda Hinnov^b, Lee Kump^a

^a Department of Geosciences, The Pennsylvania State University, University Park, PA, 16802, USA
 ^b Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, VA, 22030, USA

Logo designed by Hewei Duan

Download this paper

Total: 1782 unique visitors

(Sept 2018 – Sept 2019) http://mingsongli.com/acycle Data source: https://analytics.google.com

What they say

"It is truly an amazing contribution to the geosciences community ... It opens up much needed access to these powerful tools for a wide audience in the sedimentary geology and paleoclimate community. ... A really marvellous job."

— Dr. J. Fred Read (Emeritus Professor, Virginia Tech)

"His *Acycle* software will become the standard tool for time-scale applications by all international workers."

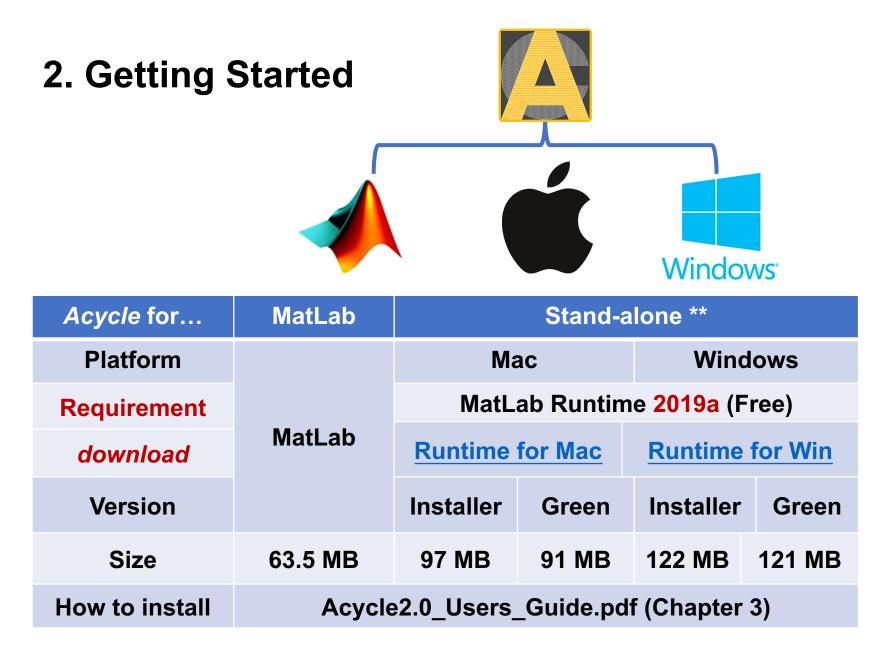
- Dr. James G. Ogg (Professor, Purdue University)

"Not only is this software powerful and effective, it is also simple to use and therefore benefits researchers and at all levels within the paleoclimatology community, from novices to experts."

— Dr. Paul E. Olsen (Professor, Columbia University)

2. Getting Started

- * Stand-alone versions of *Acycle* only needs Runtime, not MatLab
- * MatLab Runtime is not MATLAB!
- * MatLab Runtime is free!
 - **സ Download**


Dropbox | OneDrive | BaiduCloud | GitHub

□ 名称 ↑ ∨
old versions
Acycle2.0_Users_Guide.pdf
Acycle2.0-Mac-green.zip
Acycle2.0-Mac-Installer.zip
Acycle2.0-MatLab.zip
Acycle2.0-Win-green.exe.zip
Acycle2.0-Win-Installer.exe.zip
MatLabRuntime2019alsNeeded.txt

Read more

•Wiki: https://github.com/mingsongli/acycle/wiki

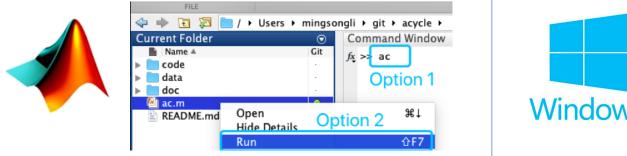
•or: <u>https://github.com/mingsongli/acycle/blob/master/doc/AC_Users_Guide.pdf</u>
•or: *Acycle* "Help" menu - "Manual",
•or: /doc/AC_Users_Guide.pdf

** Need to install the MatLab Runtime 2019a (!!!)

Fast installation:

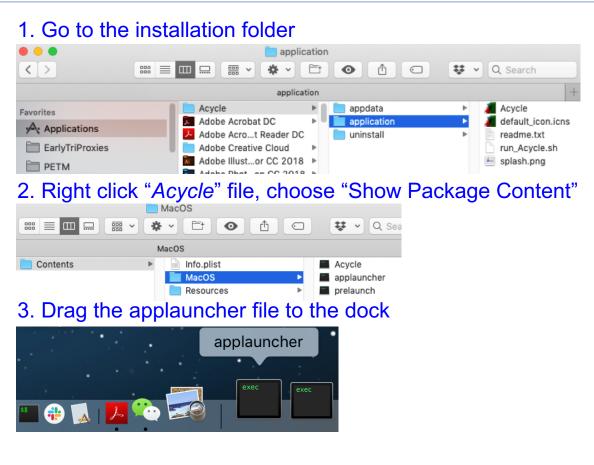
1. Install MatLab Runtime 2019a (free)

You don't need to install MatLab (heavy and expensive)! After the installation, you don't need to run runtime yourself If you have installed MatLab 2019a, this step can be skipped

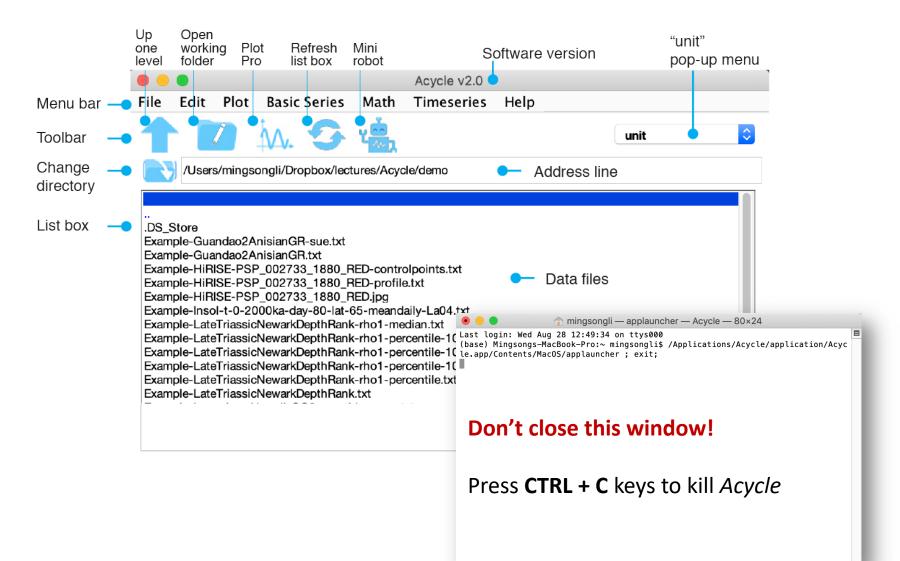

2. Download Acycle2.0 GREEN version

No installation is needed.

3. Follow the next slide to start up Acycle 2.0.


** Need to install the MatLab Runtime 2019a (!!!)

Startup



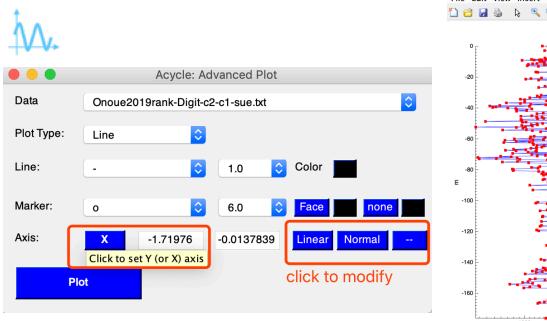
Acycle Graphic User Interface (GUI)

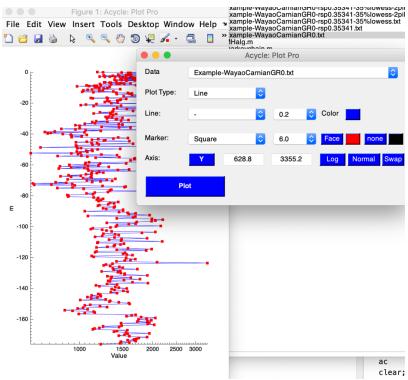
Data Requirement

comma-, table- or space-delimited text (.txt) comma-separated values files (.csv)

No header is permitted.

Most data files should contain two columns of series.

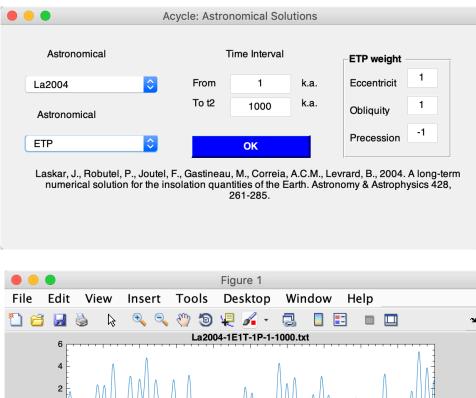

Acycle v0.3.		
Basic SeriesMathTimeserieInsolation#1Astronomical Solution#2LR04 Stack#4	s Help unit	depth or time value
Sine Wave White Noise Red Noise #3	20CO-log.txt 20CO.fig	Example-LaunaLoa-Hawaii-CO2-monthly-mean.txt <u>File</u> Edit Format View Help 1958.208 315.71
Examples t-c2-c1-sue-new-rsp0.001-wavelet.fig t-c2-c1-sue-new.txt t-c2-c1-sue-new.txt t-c2-c1-sue-rsp0.001-wavelet.fig	Mauna Loa CO2 monthly mean Insolation 0-2Ma 65N Jun22 La2004 0-2Ma ETP	1958.200 315.71 1958.292 317.45 1958.375 317.5 1958.542 315.86
t-c2-c1-sue-rsp0.001.txt t-c2-c1-sue.txt t-c2-c1.txt t.txt tNo.txt /-controlpoints.txt /-profile.txt /jpeg	Red Noise rho=0.7 2000 points PETM Svalbard logFe Late Triassic Newark Depth Rank Late Triassic Wayao gamma ray Middle Triassic Guandao2 GR	1958.625 314.93 1958.708 313.2 1958.875 313.33 1958.958 314.67 1959.042 315.62
hangepoint.txt ∋gModel.txt igepoint.txt	Image from Mars' HiRISE camera Image for Plot Digitizer	< Ln 4, Col 16 100% Windows (CRLF)

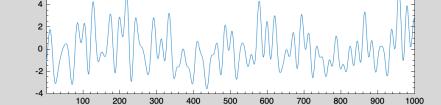

UTF-8

×

File Edit Plot B	asic Series Math Timeseries	Help
Cdit Diet Desis Caria		Plot Basic Series Math
File Edit Plot Basic Series New Folder New Text File %N		Plot 第D Plot Pro 第P Plot Standardized
Save *.AC.fig Open Working Directory		Plot Standardized + 2 Plot Swap Axis
Extract Data	Basic Series Math Timeseries	Stairs
Edit Plot Basic	 Insolation #1 Astronomical Solution #2 	Sampling Rate Data Distribution
Refresh #R	Signal/Noise Generator #3	Ecoco Plot
Rename	LR04 Stack #4	
Cut Copy	Examples ••••••••••••••••••••••••••••••••••••	Mauna Loa CO2 monthly mean Insolation 0-2Ma 65N Jun22 La2004 0-2Ma ETP
Paste	Help	Red Noise rho=0.7 2000 points
Delete	Read Me Manual Find Updates Copyright	PETM Svalbard logFe Late Triassic Newark Depth Rank Late Triassic Wayao gamma ray Middle Triassic Guandao2 GR
	Contact	Image from Mars' HiRISE camera Image for Plot Digitizer

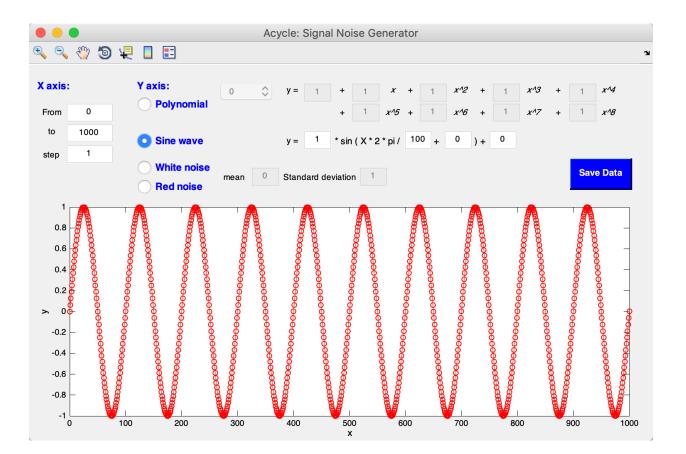
Plot Pro

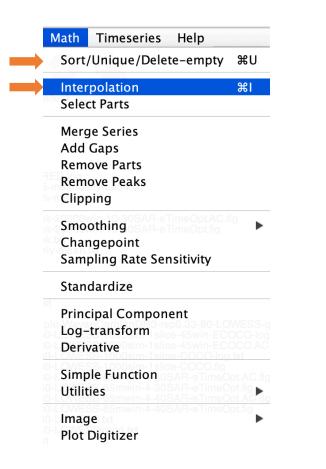



Insolation

Acycle: Insolation	
Insolation Type Astronomical Solution Daily Mean	
Time Scale Choose the starting and final time: from 1 step 1	
to 1000 time unit kyr 🗘	
Insolation parameters	Figure 1
Solar constant 1365 W/m^2 O Mean daily Max daily	File Edit View Insert Tools Desktop Window Help
Starting day 80 or date March ᅌ 21 ᅌ	🎦 😂 😼 💊 🔍 🤍 🧐 🐙 🖌 - 🔜 🔲 📰 💷 🗳
Ending day 266 or date Septem \$ 23 \$	Insol-t-1-1000ka-day-80-lat-65-meandaily-La04
Latitude from 65 degree (N>0, S<0)	
ОК	160 100 200 300 400 500 600 700 800 900 1000 Time (ka)

Based on the MatLab code **inso.m** by Jonathan Levine (2001), UC Berkeley. modified by Peter Huybers (Harvard) modified by Mingsong Li (Penn State, 2018)

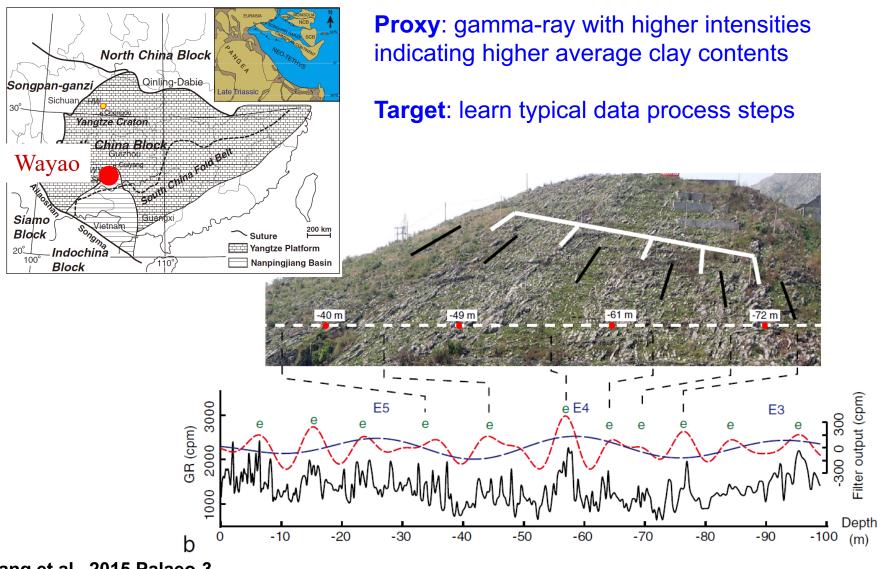

Astronomical Solution



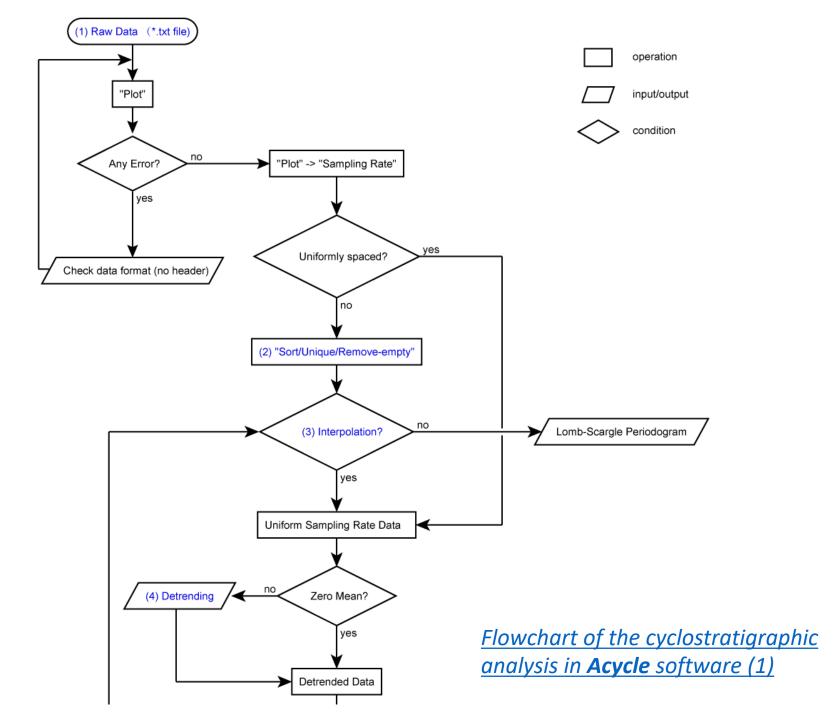
Time (kyr)

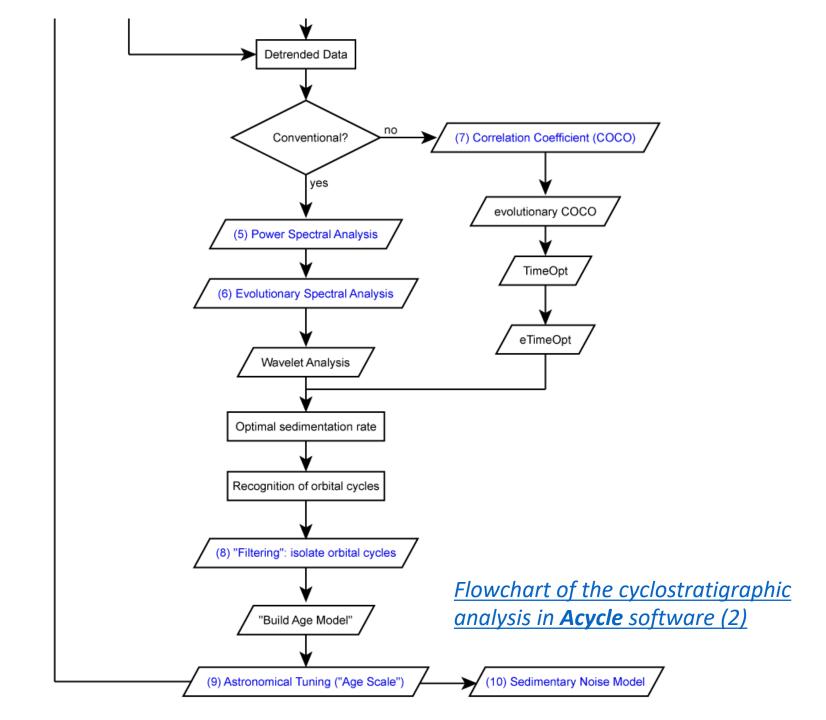
Signal/Noise Generator

Math


Time series

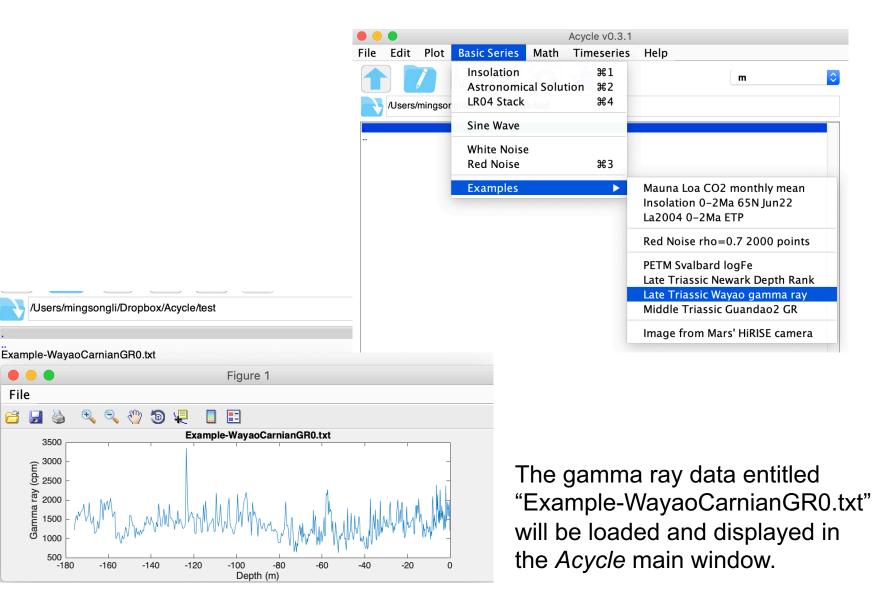
Detrending Pre-whitening	ипіт ЖТ
Spectral Analysis	ЖS
 Evolutionary Spectral Analysi Wavelet transform 	s %E
Filtering	ЖF
Amplitude Modulation Build Age Model	
Age Scale	
Sed. Rate to Age Model	
Power Decomposition Analys	is
Sedimentary Noise Model	
 Correlation Coefficient Evolutionary Correlation Coe Track Sedimentation Rates 	fficient


Case studies:

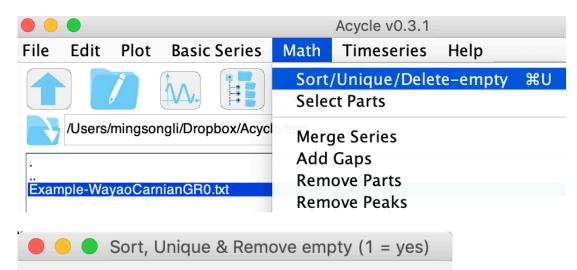

- 1. Insolation
- 2. Laskar 2004 astronomical solution
- 3. Carnian cyclostratigraphy (~235 Ma, Triassic)

Carnian cyclostratigraphy (~235 Ma, Triassic)

Zhang et al., 2015 Palaeo-3



Step 1. Load Data


H

File

a

Step 2. Data Preparation (optional)

Sort data in ascending order?

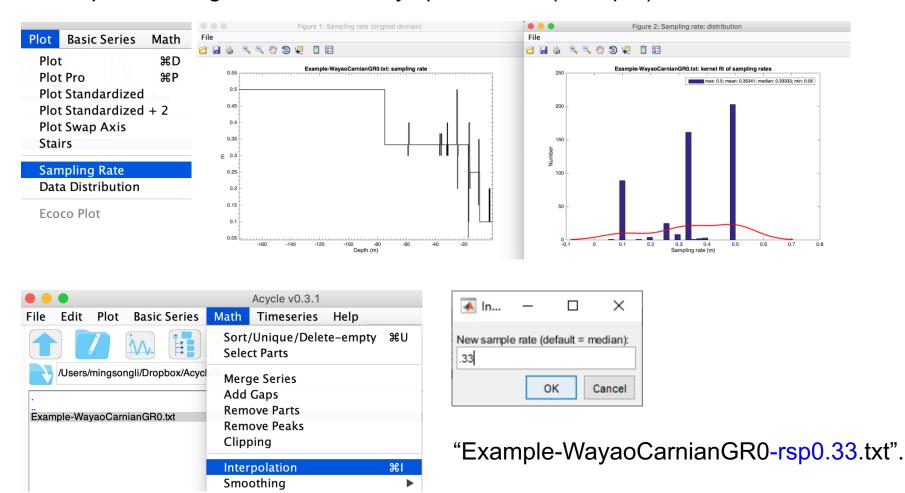
Unique values in data?

I

Remove empty row?

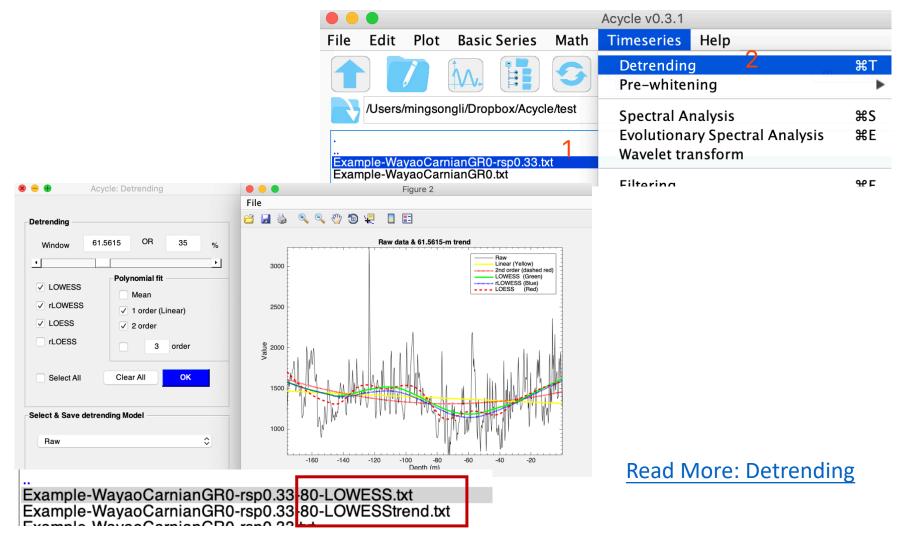
I

Apply to ALL

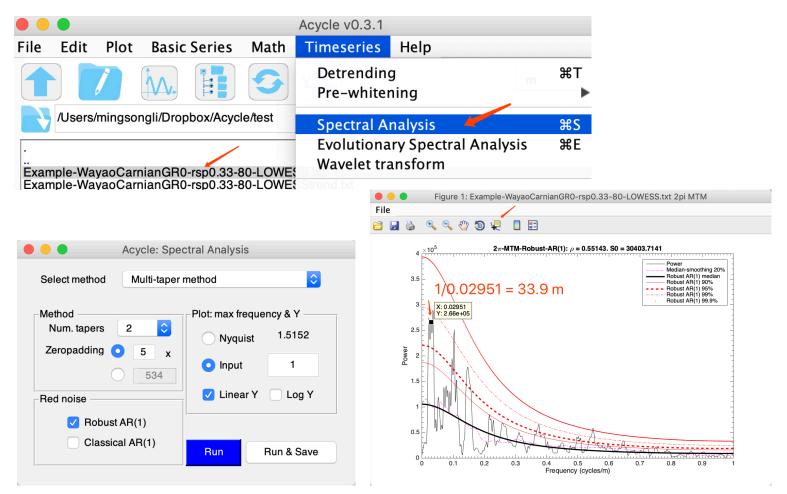

O

OK
Cancel

Users can sort data in ascending order. Two or more values for the same time (or depth) may be averaged with the "Unique" function.

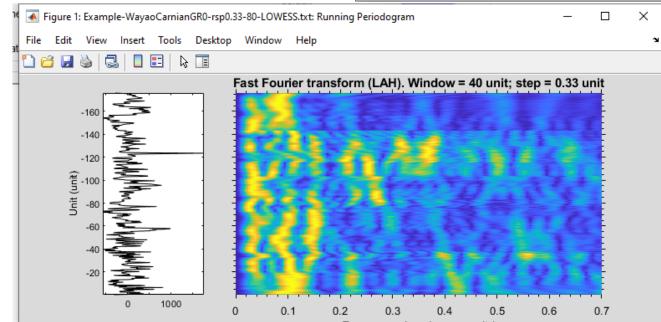

Step 3. Interpolation

Stratigraphic depth or time series are typically irregularly spaced due to uncertain timescales or difficulty in data collection. This necessitates interpolation to generate uniformly spaced time (or depth) series.

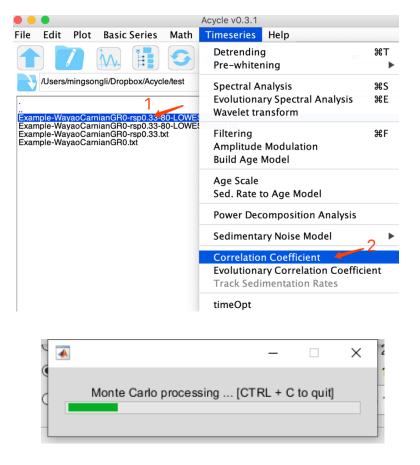

Step 4. Detrending

Detrending is a critical step for power spectral analysis to ensure that data variability oscillates about a zero mean, and to avoid power leakage from very low-frequency components into higher frequencies of the spectrum.

Step 5. Power spectral analysis


Power spectral analysis evaluates the distribution of time series variance (power) as a function of frequency. The primary use of power spectral analysis is for the recognition of periodic or quasi-periodic components in a data series

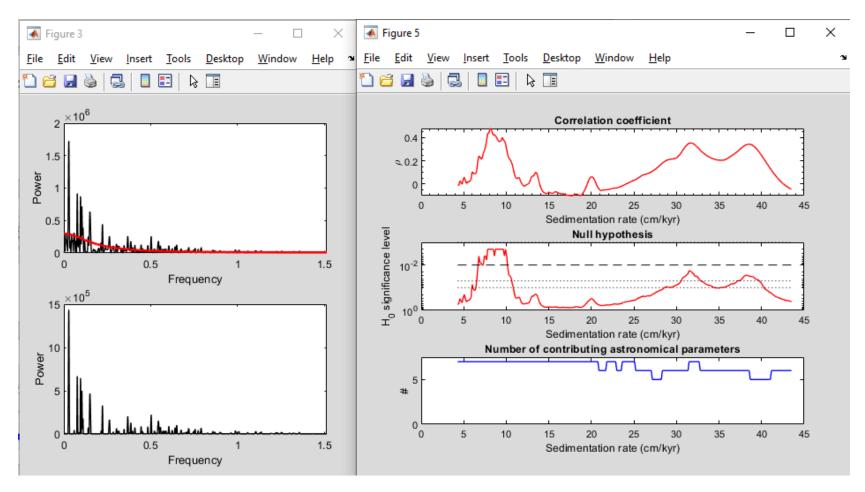
Read More: Spectral Analysis


Step 6. Evolutionary power spectral analysis

承 Acycle: Evolutionary Spectral Ar	nalysis			-		×
Select method	Fast Fourier transform	(LAH)			~	
Input for Evolutive FFT						
Plot: Maximum Freque	ency	Step	Slidi	ng Window		
Freq. min.	0	0.33	Tips	40	ו ר	
⊖ Use Nyquist	1.5152		L			
. ● Use Input	.7	unit	Unit	Tips		
✓ Plot series	🗹 Normalize each	window	Colormap			
2pi MTM + red	Flip Y-axis		default	~		
Plot-dimension	Log(frequency)		derault		ок	
● 2D ○ 3D	Log(power)		Grid #			
Rotation	✓ x padding	zero ~				

Read More

To estimate the optimal sedimentation rate.

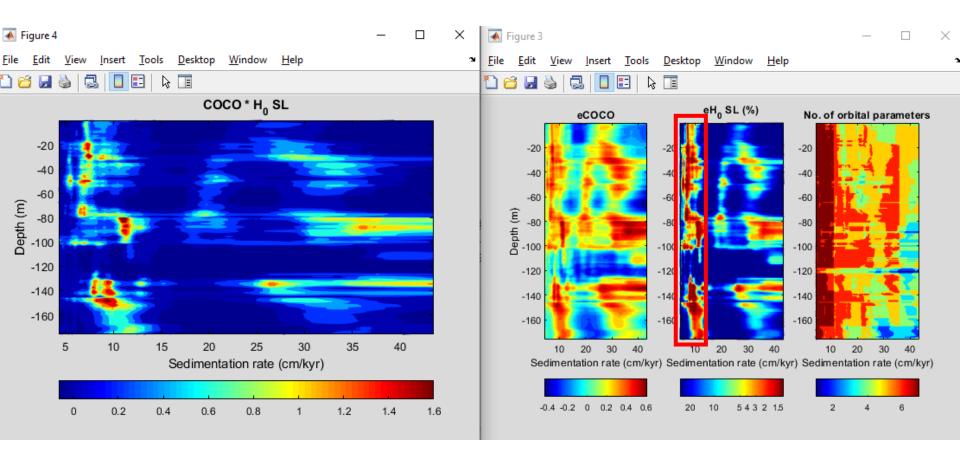


Read More: COCO/eCOCO

Similar tool: <u>TimeOpt</u> / <u>eTimeOpt</u>

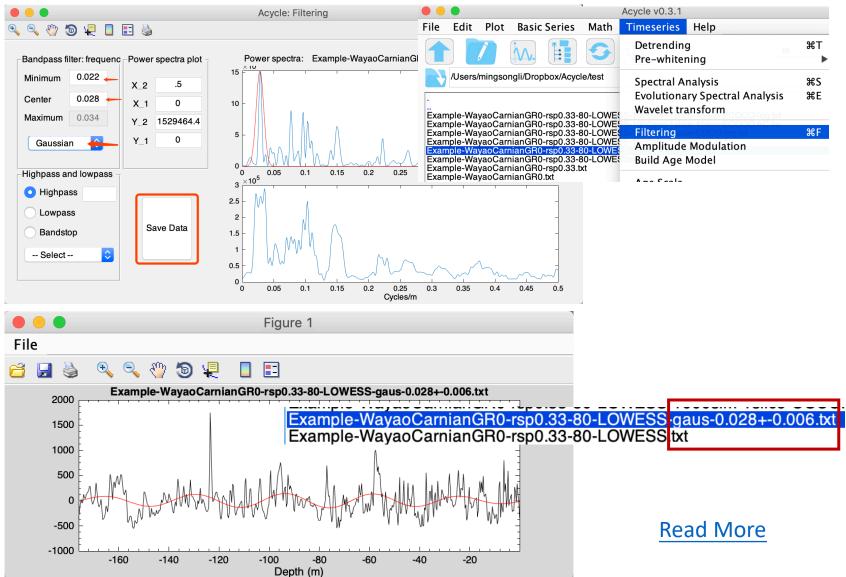
Acycle: (Evolutionary) Correlation Coef	cient / (e)COCO		-		>
Select Method					
• COCO •	000				
Data Data Example-WayaoC ☑ 0 padding 5000	arnianGR0-rsp0.33-80-LOWESS				
Periodogram of Data					
Show period.	ium 1.5152 Number 1	ove red noise	e model		
Frequ		AR1 (f-fred)		~	
Test sedimentation rate					
Minimum 4.29	maximum 43.5111 step 0.1307	74 cm/kyr			
Target: Astronomical cycles	230 Ma Max frequency	y 0.08	1/kyr		
 Berger89 solution 	413.0 123.0 95.0 45.7 36.0 21.3 17.8				
Iaskar04 Solution	405.0 125.0 95.0 33.4 21.0 19.9 17.4				
○ User-defined period	405 125 95 41 22.43 23.75 19.18				
Correlation method					
⊖ Spearman	Pearson				
Monte Carlo 500 times			Он	c	

You will have the following figure and a log file saving all settings.


It tells the most likely sedimentation rate is ~9 cm/kyr, with a null hypothesis (no orbital forcing) significance level of <1% All seven orbital parameters are used in the estimation.

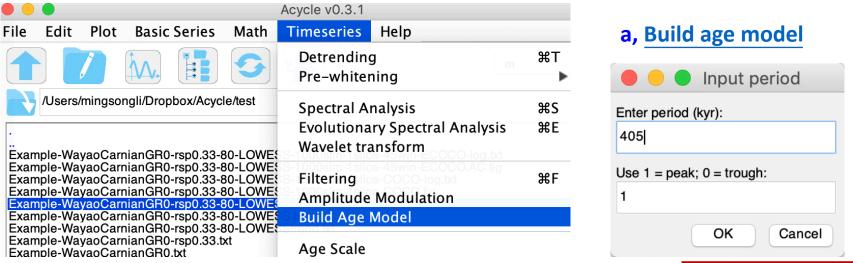
eCOCO analysis to track variable sedimentation rate

cycle: (Evolutionary) Correl	ation Coeffi	cient / (e)COCO							×
Select Method									
\odot coco	● eC	000							
Data									
Data Example-	WayaoCa	arnianGR0-rsr	0.33-80	LOWESS	6	-			
☑ 0 padding	5000	Ø 0 padd	ing edge	zero		∽ 🗹 Flip De	pth (y axis))	
Periodogram of Data	I								
Show period.	Maxim	1.515	o Nur	nber 1	Remove	red noise	model		
M Show period.	Freque	ency	ofs	lices	classic AR	1 (f-fred)		~	
Test sedimentation	rate								_
rest seamentation i			10.54			o 199 // 11 11			
	.29	maximum	43.51	111 s	step 0.13074	cm/kyr			
	d. rates: 4	.290, 4.421, 4	.551,,	43.511 cn	n/kyr				
301 test sec	l cycles	290, 4.421, 4	.551,, Ma		n/kyr ax frequency	0.08	1/kyr		
301 test sec	l cycles -	· ·	Ма	Ма	ax frequency	0.08	1/kyr		
301 test sed Target: Astronomica Middle age of data	l cycles -	230	Ma 95.0 45.7	Ma 36.0 21.3	ax frequency	0.08	1/kyr		
301 test sec Target: Astronomica Middle age of data O Berger89 solution	l cycles -	230	Ma 95.0 45.7 95.0 33.4	Ma 7 36.0 21.3 1 21.0 19.9	ax frequency 17.8 17.4	0.08	1/kyr		
301 test sec Target: Astronomica Middle age of data O Berger89 solution © Laskar04 Solution	l cycles -	230 413.0 123.0 § 405.0 125.0 §	Ma 95.0 45.7 95.0 33.4	Ma 7 36.0 21.3 1 21.0 19.9	ax frequency 17.8 17.4	0.08	1/kyr		
301 test sec Target: Astronomica Middle age of data O Berger89 solution (a) Laskar04 Solution O User-defined perior	l cycles -	230 413.0 123.0 9 405.0 125.0 9 405 125 95 4	Ma 95.0 45.7 95.0 33.4	Ma 7 36.0 21.3 1 21.0 19.9 23.75 19.1	ax frequency 17.8 17.4	0.08	1/kyr		
301 test sed 301 test sed Target: Astronomica Middle age of data O Berger89 solution © Laskar04 Solution O User-defined period Correlation method	l cycles -	230 413.0 123.0 9 405.0 125.0 9 405 125 95 4	Ma 95.0 45.7 95.0 33.4 11 22.43	Ma 7 36.0 21.3 1 21.0 19.9 23.75 19.1	17.8 17.4 8		1/kyr		
301 test sec 301 test sec Target: Astronomica Middle age of data O Berger89 solution (a) Laskar04 Solution O User-defined period Correlation method O Spearman	l cycles -	230 413.0 123.0 9 405.0 125.0 9 405 125 95 4	Ma 95.0 45.7 95.0 33.4 11 22.43	Ma 7 36.0 21.3 1 21.0 19.9 23.75 19.1	ax frequency 17.8 17.4		1/kyr		
301 test sed 301 test sed Target: Astronomica Middle age of data O Berger89 solution © Laskar04 Solution O User-defined period Correlation method O Spearman Monte Carlo	I cycles -	230 413.0 123.0 § 405.0 125.0 § 405 125 95 4 © F	Ma 95.0 45.7 95.0 33.4 11 22.43	Ma 7 36.0 21.3 1 21.0 19.9 23.75 19.1	17.8 17.4 8	plot			


Similar tool: <u>eTimeOpt</u>

eCOCO analysis to track variable sedimentation rate

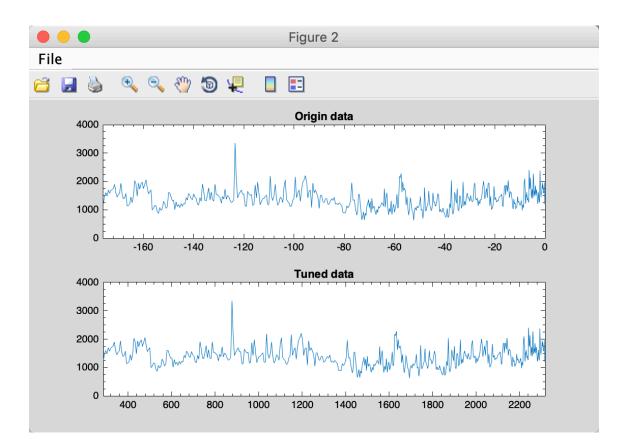
Step 8. Filtering


Filters are also essential tools to aid in the isolation of specific frequency components in the paleoclimate data series.

Step 9. Age model and tuning

transform original data (usually in the depth domain) to tuned data (usually in the time domain) when an age model file is available

Select "Example-WayaoCarnianGR0-rsp0.33-80-LOWESS-gaus-0.028+-0.006.txt"


Example-WayaoCarnianGR0-rsp0.33-80-LOWESS-gaus-0.028+-0.006 agemod-405-max.txt

	Acycle: Age Scale
/Users/mingsongli/Dropbox/Acycle/test VianGR0-rsp0.33-80-LOWESS-1000sim-1slice-45win-ECOCO-log.txt iianGR0-rsp0.33-80-LOWESS-1000sim-1slice-45win-ECOCO.4C.fig iianGR0-rsp0.33-80-LOWESS-1000sim-1slice-COCO.fig iianGR0-rsp0.33-80-LOWESS-gaus-0.028+-0.006-agemod-405-fnax.bxt iianGR0-rsp0.33-80-LOWESS-gaus-0.028+-0.006.bxt iianGR0-rsp0.33-80-LOWESS-gaus-0.028+-0.006.bxt iianGR0-rsp0.33-80-LOWESS.txt iianGR0-rsp0.33-80-LOWESS.txt iianGR0-rsp0.33-80-LOWESS.txt iianGR0-rsp0.33.bt iianGR0-rsp0.33.bt	Age Model Example-WayaoCarnianGR0-rsp0.33-80-LOWESS-gaus-0.028+-0.(Series Example-WayaoCarnianGR0.txt
	ок 5

b, Age Scale

Tuned data:

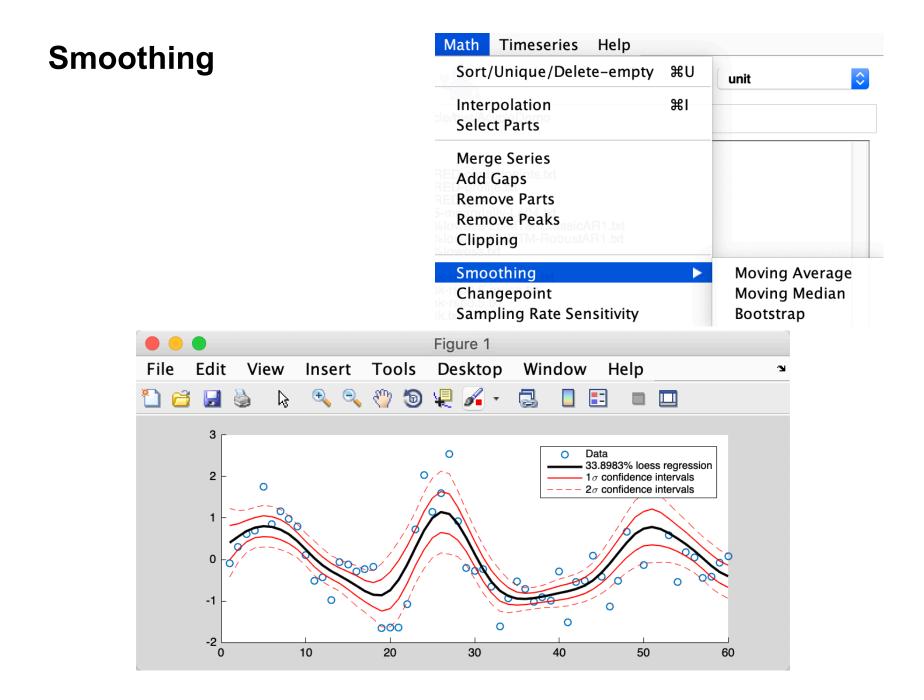
"Example-WayaoCarnianGR0-TD-Example-WayaoCarnianGR0-rsp0.33-80-LOWESS-gaus-0.028+-0.006-agemod-405-max.txt"



lini robot						Асус
	File	Edit	Plot	Basic Series	s Math	Time
Mini-Robot			1	M. 5	۲ <u>ش</u>	
Prepare Data			. /	on all (Dread bour ()		,
Remove NaN Remove Empty Sort V	Unique	er	s/mings	songli/Dropbox/le	ectures/Acyo	cie/demo
Interpolation						
Ves mean						
Detrending						
✓ Yes lowess ♀ Window size: 35	%					
Spectral Analysis						
✓ Yes Multi-taper ✓ Frequency 1.4148 ✓ red r	noise					
Evolutionary spectral Wavelet						
✓ Yes Sliding window 61.6 ✓ Yes Period from 0.706	to 176					
Settings						
Pause 0.5 second 🗸 Save data						

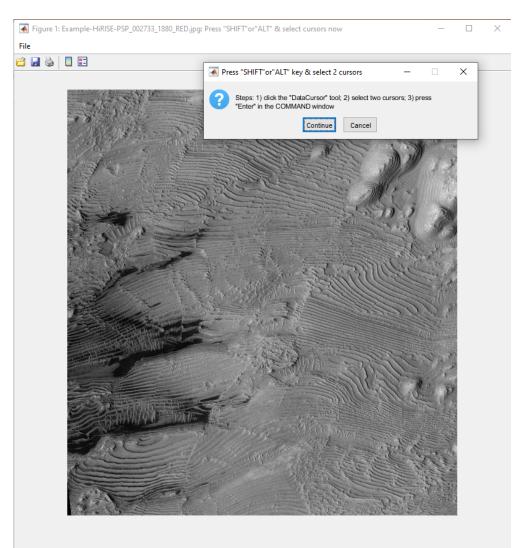
Other useful tools

Sedimentary noise model


Lag-1 autocorrelation coefficient (*ρ1*) dynamic noise after orbital tuning (DYNOT) model

Li, et al., 2018 Nature Communications

Ancient ocean


Credit: Hewei Duan

- 1. Select an image file
- 2. Select "Show Image"
- 3. (Optional) Transfer an RGB image to Grayscale image: Select "RGB to Grayscale"

Math	Acycle v1.3 Timeseries	Help		
Sort	/Unique/Delet	te-empty	жU	unit
	polation ct Parts		жı	
Add Rem	ge Series Gaps ove Parts ove Peaks ping			
Char	othing ngepoint pling Rate Ser	sitivity	Þ	
Stan	dardize			
Log-	cipal Compone transform vative	ent		
Simp Utilit	le Function ies		►	
Imag Plot	je Digitizer		•	Show Image RGB to Grayscale
	5			Image Profile

'Image' Tool

4: Image Profile5: Press ALT key, select 2 cursors6. Press "Enter" in the terminal window

Step 6 mingsongli — applauncher — Acycle • matlab_helper — 80×24 Select 1 data HiRISE-PSP_002733_1880_RED.browse-prof2pt.txt >> Processing clipping:mergedseries.txt HiRISE-PSP 002733 1880 RED.browse-profile.txt 2019-08-30 14:52:58.487 Acycle[26367:2665410] WARNING: NSWindow drag regions sho uld only be invalidated on the Main Thread! This will throw an exception in the HiRISE-PSP_002733_1880_RED.browse.jpg future. Called from (0 AppKit 0x00007fff31521607 - [NSWindow(NS Window_Theme) _postWindowNeedsToResetDragMarginsUnlessPostingDisabled] + 378 1 AppKit 0x00007fff3151e9f7 -[NSWindow __i nitContent:styleMask:backing:defer:contentView:] + 1479 2 AppKit 0x00007fff3151e42a - [NSWindow in itWithContentRect:styleMask:backing:defer:] + 45 0x00000012c06afae Java_jogamp_r 3 libnativewindow_macosx.jnilib ativewindow_macosx_OSXUtil_CreateNSWindow0 + 382 0x0000001199ce758 0x0 + 4724680 4 ??? 536) >> See main window for amplitude modulation >> Large dataset, wait ... >> AC main window: see trend and detrended data See main window for amplitude modulation >> >> Large dataset, wait ... AC main window: see trend and detrended data >> Figure 2 Select 1 data Press "Enter" File >> Y]: [978 600] Э H [R,G,B]: [123 123 123] Example-HiRISE-PSP_02733_880_ED-profile.txt 180 160 140 001 120 100 08 08 [X,Y]: [886 830] [R,G,B]: [139 139 139] 100 60 40 20 0 50 100 150 200 250 Pixels

Plot Digitizer

	Acycle: Plot Dig	tizer			
X axis Start Point -200 ³ C Linear End Point 1400 ³ Logarithmic	Y axis Start Point 0 3 End Point 120 3	 Linear Logarith 		1 Recalibrate axis 4 Digitize	Undo 6 Grid Line
Now Digitize the point, press RightButton to	stop			Auto-digitize	Save Data 5
2.4 y-axis max Exam	ple-PlotDigitizer.jpg				
80			Da No.	taExtractTab	Y
		1	1	76.9231	1.9835
		2	2	144.6154	3.4711
60		3	3	280.0000	4.7107
		4	4	581.5385	5.9504
40		5	5	440.0000	6.9421
		6	6	187.6923	7.9339
		7	7	236.9231	15.1240
20 -	+	8	8	815.3846	19.5868
	•	9	9	446.1538	24.0496
3 y-axix		10	10	1.0308e+03	51.0744
2.1 x-axis min	2.2 x-axis max 800 1000 1200 1400				

Acknowledgement

Linda Hinnov Lee Kump

Astronomical solution: Jacques Laskar, Richard Zeebe Changepoint: Eric Ruggieri Insolation: Jonathan Levine, Peter Huybers Padding: Nicolas R. Thibault Spectral Moments: Matthias Sinnesael TimeOpt/eTimeOpt: Steve Meyers Wavelet: Christopher Torrence, Gilbert Compo

Feng Cheng, Anne-Christine Da Silva, Hewei Duan, Yanan Fang, Marco Franceschi, Daniel R. Franco, Xiaoni Hu, Dorothée Husson, Arsenio Muñoz Jiménez, Dongyang Liu, James Ogg, Paul Olsen, J. Fred Read, Chen Shen, Chuanyue Wang, Mathieu Martinez, Meng Wang, Xu Yao, Qiyan Zhang, Yang (Wendy) Zhang, Christian Zeeden

Make it a better software for your own research. ANY feedback is highly appreciated!!!

Email: <u>mul450@psu.edu;</u> <u>limingsonglms@gmail.com</u> <u>https://github.com/mingsongli/acycle/issues</u>

Please cite:

Li, M., Hinnov, L., Kump, L. (2019) *Acycle*: Time-series analysis software for paleoclimate research and education. Computers & Geosciences 127, 12-22.

and other relevant publications.

Thank you!