Mingliang Zhang

Mingliang Zhang
  • PhD
  • PostDoc Position at University of Pennsylvania

About

23
Publications
4,274
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
779
Citations
Introduction
Skills and Expertise
Current institution
University of Pennsylvania
Current position
  • PostDoc Position

Publications

Publications (23)
Article
Nanofabrication has limited most optical metamaterials to 2D or, often with multiple patterning steps, simple 3D meta-atoms that typically have limited built-in tunability. Here, with a one-step scalable patterning process, we exploit the chemical addressability and structural adaptability of colloidal Au nanocrystal assemblies to transform 2D nano...
Article
The synthesis of colloidal III-V quantum dots (QDs), particularly of the arsenides and antimonides, has been limited by the lack of stable and available group V precursors. In this work, we exploit accessible InCl3- and pnictogen chloride-oleylamine as precursors to synthesize III-V QDs. Through coreduction reactions of the precursors, we achieve s...
Article
We program the optical properties of colloidal Au nanocrystal (NC) assemblies via an unconventional ligand hybridization (LH) strategy to precisely engineer interparticle interactions and design materials with optical properties difficult or impossible to achieve in bulk form. Long-chain hydrocarbon ligands used in NC synthesis are partially exchan...
Article
Full-text available
We report a large-area fabrication method to prepare chiral substrates patterned with arrays of multilayer, three-dimensional nanostructures using a combination of nanoimprint lithography and glancing angle deposition. Several structures are successfully fabricated using this method, including L-shaped, twisted arc and tri-layer twisted Au nanorod...
Article
Optical metasurfaces promise a new generation of ultrathin, lightweight, miniaturized optical components with unprecedented capabilities to manipulate light compared to conventional, bulk optics. The emergence of reconfigurable metasurfaces further integrates dynamic tunability with optical functionalities. Here, we report a structurally-reconfigur...
Article
Planar nanocrystal/bulk heterostructures are transformed into 3D architectures by taking advantage of the different chemical and mechanical properties of nanocrystal and bulk thin films. Nanocrystal/bulk heterostructures are fabricated via bottom‐up assembly and top‐down fabrication. The nanocrystals are capped by long ligands introduced in their s...
Article
Plasmonic nanostructures provide excellent platforms for colorimetric sensors in chemical, biological, and environmental applications. In contrast to the existing library of plasmonic sensors, we report an angle-independent optical sensor that is designed for monitoring soil moisture and operating on rough surfaces. The optical moisture sensor is c...
Article
Doping, as a central strategy to control free carrier type and concentration in semiconductor materials, suffers from low efficiency at the nanoscale, especially in systems having high permittivity (ϵ) and large Bohr radii, such as lead chalcogenide nanocrystals (NCs) and nanowires (NWs). Here, we study dielectric confinement effects on the doping...
Article
Next-generation ‘smart’ nanoparticle systems should be precisely engineered in size, shape and composition to introduce multiple functionalities, unattainable from a single material1-3. Bottom-up chemical methods are prized for the synthesis of crystalline nanoparticles, i.e. nanocrystals, with size- and shape-dependent physical properties4-6, but...
Article
Fabrication of high-density plasmonic dimers on a large (wafer) scale is crucial for applications in surface-enhanced spectroscopy, bio- and molecular sensing, and optoelectronics. Here, we present an experimental approach based on nanoimprint lithography and shadow evaporation that allows for the fabrication of high-density, large-scale homo- (Au–...
Article
We report a low-cost, large-area fabrication process using solution-based nanoimprinting and compact ligand exchange of colloidal Au nanocrystals to define anisotropic, subwavelength, plasmonic nanoinclusions for optical metasurfaces. Rod-shaped, Au nanocrystal-based nano-antennas possess strong, localized, plasmonic resonances able to control pola...
Article
A double exposure technique has been used to fabricate nanoimprint stamps for making monodisperse nanorods with controllable lengths. The nanorod length is defined by a normal photolithography projection process whereas the nanorod width is defined by an edge-lithography process using a soft polydimethylsiloxane (PDMS) contact mask. Taking advantag...
Article
Full-text available
Synthetic antiferromagnetic (SAF) nanoparticles are layer-structured particles with high single-particle magnetic moments. In order to covalently bind these nanoparticles to cells, they were coated with a silica shell followed by conjugation with streptavidin. The silica coating generates both SAF@SiO 2 core–shell nano-particles and silica core-fre...
Article
Full-text available
The development of sustainable, robust and energy efficient water purification technology is still challenging. Although use of nanoparticles is promising, methods are needed for their efficient recovery post treatment. Here we address this issue by fabrication of magnetically ultraresponsive 'nanoscavengers', nanoparticles containing synthetic ant...
Article
A two-tiered Ag nanoparticle containing a cavity at the center of each nanoparticle is generated by two simple steps of nano-imprinting and metal vacuum deposition. It enables sub-zeptomole detection of organic molecules and five orders of the dynamic sensing range.
Article
We demonstrate top-down synthesis of monodisperse plasmonic nanoparticles designed to contain internal Raman hot spots. Our Raman-active nanoparticles are fabricated using nanoimprint lithography and thin-film deposition and are composed of novel internal structures with sublithographic dimensions: a disk-shaped Ag core, a Petri-dish-shaped SiO(2)...
Article
Full-text available
A simple and universal pathway to produce free multilayer synthetic nanoparticles is developed based on lithography, vapor phase deposition and a tri-layer resist lift-off and release process. The fabrication method presented in this work is ideal for production of a broad range of nanoparticles, either free in solution or still attached to an inta...
Article
Full-text available
Synthetic antiferromagnetic nanoparticles (SAFNPs) have been successfully coated with two different kinds of silanes, 3-aminopropyltrimethoxysilane and 2-[methoxy(polyethyleneoxy)propyl]trimethoxysilane. The morphology of SAF particles is characterized by scanning electron microscopy and magnetic properties by alternating gradient magnetometry. The...
Article
Full-text available
The depinning field of a domain wall in a permalloy nanostructure can be used to detect the presence of a magnetic particle. In this device the displacement of the domain wall in a sweeping magnetic field produces a variation of the voltage drop across a corner due to the anisotropic magnetoresistance effect and hence an electrical signal. In this...
Article
Full-text available
We present a device concept based on controlled micromagnetic configurations in a corner-shaped permalloy nanostructure terminated with two circular disks, specifically designed for the capture and detection of a small number of magnetic beads in suspension. A transverse head-to-head domain wall (TDW) placed at the corner of the structure plays the...
Article
Full-text available
We developed a new process for laser-printing a thin-film magnetic-polymer composite microstructural material directly onto planar silicon substrates and characterized its magnetic and mechanical properties. Using this technique we fabricated cantilever beams 100-2000 mum long, 100-500 mum wide, and 6-8 mum thick. An external magnet was used to dem...

Network

Cited By