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Abstract

In this paper, we introduce a sophisticated path loss model incorporating both line-of-sight (LoS)

and non-line-of-sight (NLoS) transmissions to study theirperformance impact in small cell networks

(SCNs). Analytical results are obtained on the coverage probability and the area spectral efficiency

(ASE) for two user association strategies (UASs) assuming both a general path loss model and two

special cases of path loss models recommended by the 3GPP standards. The performance impact of

LoS and NLoS transmissions in SCNs in terms of the coverage probability and the ASE is shown

to be significant both quantitatively and qualitatively, compared with previous work that does not

differentiate LoS and NLoS transmissions. Particularly, our analysis demonstrates when the density

of small cells is larger than a threshold, the network coverage probability will decrease as small cells

become denser, which in turn makes the ASE suffer from a slow growth or even a notabledecrease.

For practical regime of small cell density, the performanceresults derived from our analysis are

distinctively different from previous results, and show that small cell density matters. Therefore, our

results shed new insights on the design and deployment of future SCNs.
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I. INTRODUCTION

Driven by a new generation of wireless user equipment (UE) and the proliferation of bandwidth-

intensive applications, mobile data traffic and network load are increasing in an exponential manner,

and are straining current cellular networks to a breaking point [1]. In this context, small cell networks

(SCNs), comprising of remote radio heads, metrocells, picocells, femtocells and/or relay nodes, can

achieve a high spatial spectrum reuse by creating a large number of small cells through network

densification, which in turn can significantly enhance network capacity through exploiting cell splitting

gains [2]. Due to this fact, the SCN is considered as one of the most promising approaches to rapidly

increase network capacity and meet the ever-increasing capacity demands. Indeed, SCNs have attracted

much momentum in the wireless communications industry and research community [2], and have also

gained the attention of standardization bodies such as the 3rd Generation Partnership Project (3GPP)

in the design of Long Term Evolution (LTE) networks [3].

In order to deploy SCNs in a cost-effective manner, vendors and operators need foremost a deep

theoretical understanding of the implications that small cells bring about. Being aware of the need

for such knowledge, the wireless industry and research community have been working relentlessly

on the modeling and the analysis of the SCN deployments. However, up to know, most studies on

SCNs have considered only simplistic path loss models that do not differentiate Line-of-Sight (LoS)

and Non-Line-of-Sight (NLoS) transmissions [4-9].

It is well known that LoS transmission may occur when the distance between a transmitter

and a receiver is small, and NLoS transmission is common in office environments and in central

business districts. Furthermore, when the distance between a transmitter and a receiver decreases, the

probability that an LoS path exists between them increases,thereby causing a transition from NLoS

transmission to LoS transmission with a higher probability. In this light, it is of interest to study the

performance impact of LoS and NLoS transmissions in SCNs, particularly dense SCNs.

Before delving deeper into the analytical study, we first implement some simulations to gain some

intuitive understanding about the potential performance impact of LoS and NLoS transmissions in

SCNs. Fig.1(a)and Fig.1(b) respectively illustrate the downlink coverage probability for SCNs with

8 small cells per macrocell and 32 small cells per macrocell,in which LoS and NLoS transmissions

are not differentiated1. Specifically, a log-normal path loss model with a single path loss exponent

1The results are obtained via system-level simulations [12], and the simulation methodology and scenario are generally
3GPP-compliant. Note that in order to show the individual impact of LoS and NLoS transmissions on system performance,
we make the following assumptions to simplify the 3GPP scenario: i) no shadow fading is considered, and ii) no requirement
of the minimum distance between adjacent base stations is adopted. Other simulation assumptions are the same as those
in [13]. Also note that the macrocells are dummy ones in the considered 3GPP SCNs.
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(a) Distribution of the coverage probability with a simplistic
path loss model that does not differentiate LoS and NLoS
transmissions (8 small cells per macrocell). The average
coverage probability is 0.52.

(b) Distribution of the coverage probability with a simplistic
path loss model that does not differentiate LoS and NLoS
transmissions (32 small cells per macrocell). The average
coverage probability is 0.51.

Figure 1. Distribution of the coverage probability with a simplistic path loss model that does not differentiate LoS and
NLoS transmissions. Here, the simplistic path loss model assumes a single path loss exponent. The coverage probabilityis
defined as the probability that the corresponding signal-to-interference-plus-noise-ratio (SINR) is larger than 1. The gray-
scale shading indicates the values of the coverage probabilities and higher probabilities are represented by brightershading.
Visually speaking, the sizes of the bright areas (high coverage probabilities) and the dark areas (low coverage probabilities)
are approximately the same in both figures, indicating a similar performance of the average coverage probability.

is assumed. Comparing the simulation results in Fig.1(a) and Fig.1(b), it is easy to see that when

the density of small cells increases, the performance of SCNs, measured by the downlink coverage

probability, changes very little. This observation is in line with the conclusion in [4-9]. The intuition

behind this phenomenon is that the increase in interferencepower caused by the increase in the

small cell density will be almost exactly offset by the increase in signal power due to the reduced

transmission distance between a UE and its associated nearest base station (BS). As a result, increasing

the number of small cell BSs has little impact on the coverageprobability.

However, if we run new simulations under exactly the same settings except that we adopt a path

loss model incorporating both LoS and NLoS transmissions [13], it is interesting to observe that the

conclusion that increasing the small cell BS density has little impact on the DL coverage probability

no longer holds! Particularly, as shown in Fig.2(a) and Fig. 2(b), assuming a path loss model

incorporating both LoS and NoLS transmissions, the DL coverage probability considerably decreases

from 0.35 (shown by Fig.2(a)) to 0.24 (shown by Fig.2(b)) when the number of small cell BSs

increases from 8 to 32. This observation suggests that results on network performance obtained

by assuming a simplistic path loss model that does not differentiate LoS and NLoS transmissions,

may not necessarily hold when a path loss model incorporating both LoS and NLoS transmissions

is considered. Therefore, LoS and NLoS transmissions that surely both occur in realistic cellular

network deploymenst have a significant impact on the networkperformance.
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(a) Distribution of the coverage probability with a sophis-
ticated path loss model incorporating both LoS and NLoS
transmissions (8 small cells per macrocell). The average
coverage probability is 0.35.

(b) Distribution of the coverage probability with a sophis-
ticated path loss model incorporating both LoS and NLoS
transmissions (32 small cells per macrocell). The average
coverage probability is 0.24.

Figure 2. Distribution of the coverage probability with a sophisticated path loss model incorporating both LoS and NLoS
transmissions. Here, the sophisticated path loss model is 3GPP-compliant. Visually speaking, the size of the dark areas (low
coverage probabilities) in Fig.2(b) seems to be significantly larger than that in Fig.2(a).

This simulation-based observation motivates us to furtherinvestigate the performance impact of

LoS and NLoS transmissions analytically in SCNs to gain better understanding on its implications

on the design and deployment of future SCNs. The main contributions of this paper are as follows:

• Analytical results are obtained on the coverage probability and the ASE under two user asso-

ciation strategies (UASs) using a general path loss model incorporating both LoS and NLoS

transmissions.

• Using the above results, closed-form expressions for the coverage probability and the ASE for

the two UASs are further obtained for a special case, which considers the path loss model

recommended by the 3GPP standards.

• Our theoretical analysis reveals an important finding, i.e., the network coverage probability will

initially increase with the increase of the small cell density, but when the density of small cells

is larger than a threshold, the network coverage probability will decrease as small cells become

denser, which in turn makes the ASE suffer from a slow growth or even a notabledecrease. The

ASE will grow almost linearly as the small cell density increases above another larger threshold.

These results are not only quantitatively but also qualitatively different from previous study results

with a simplistic path loss model that does not differentiate LoS and NLoS transmissions. Thus,

our study sheds valuable insights on the design and deployment of future SCNs.

The remainder of this paper is structured as follows. Section II provides a brief review on stochastic

geometry and summarizes the closest related work to our work. SectionIII describes the system model.

SectionIV presents our main analytical results on the coverage probability and the ASE, followed
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by their application in a 3GPP special case addressed in Section V. The derived results are validated

using simulations in SectionVI , with discussions shedding some new light on the performance of

SCNs. Finally, the conclusions are drawn in SectionVII .

II. RELATED WORK

In stochastic geometry, small cell BS positions are typically modeled as a Homogeneous Poisson

point process (HPPP) on the plane, and closed-form coverageprobability expressions can be found

for some scenarios in single-tier cellular networks [4-7] and multi-tier cellular networks [8-9]. The

major conclusion in [4-9] is that neither the number of smallcells or the number of cell tiers changes

the coverage probability in interference-limited full-loaded cellular networks. However, these works

consider a simplistic path loss model that does not differentiate LoS and NLoS transmissions. In

contrast, in this paper, we consider a sophisticated path loss model incorporating both LoS and NLoS

transmissions to study their performance impact in SCNs.

The closest related works to the one in this paper are [10] and [11]. In [10], the authors assumed a

multi-slope piece-wise path loss function. Specifically, assuming that the distance between a BS and

a UE is denoted byr in km, then the path loss associated with distancer in [10] is formulated as

ζ (r) =























ζ1 (r) ,

ζ2 (r) ,
...

ζN (r) ,

when0 ≤ r ≤ d1

whend1 < r ≤ d2
...

whenr > dN−1

, (1)

where the path loss functionζ (r) is segmented intoN pieces with each piece denoted byζn (r), and

dn, n ∈ {1, 2, . . . , N − 1}, are the segment break points.

In [11], the authors treated the event of LoS or NLoS transmission as a probabilistic event for a

millimeter wave communication scenario. Specifically, thepath loss associated with distancer in [11]

is formulated as

ζ (r) =

{

ζL (r) ,

ζNL (r) ,

with probability PrL (r)

with probability
(

1− PrL (r)
) , (2)

where ζL (r), ζNL (r) and PrL (r) are the path loss function for the case of LoS transmission, the

path loss function for the case of NLoS transmission and the LoS probability function, respectively.

To simplify analysis, the LoS probability function PrL (r) was proposed to be approximated by a

moment matched equivalent step function in [11].

In [10], the multi-slope piece-wise path loss model shown in (1) does not fit well with the model

defined by the 3GPP, in which the path loss function is not a one-to-one mapping to the distance.
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In [11], the single-piece path loss model and the proposed step function are not compatible with

the practical piece-wise path loss functions assumed in the3GPP, the detailed modeling of which is

presented in SectionIII . In this paper, considering the incompleteness of the worksin [10] and [11],

we propose a general path loss model that features piece-wise path loss functions with probabilistic

LoS and NLoS transmissions.

The proposed path loss model will be formally presented in Section III . Note that the proposed

model is very general and include almost all existing modelsused to capture LoS and NLoS trans-

missions [10-14] as its special cases. Furthermore, it incorporates the fact that according to some

measurement studies [13], [14], the path loss function should be a piece-wise function that is better

separated into several segments.

III. SYSTEM MODEL

We consider a DL cellular network with BSs deployed in a planeaccording to an HPPPΦ of

intensityλ BSs/km2. UEs are Poisson distributed in the considered network withan intensity ofλUE

BSs/km2. Note thatλUE is assumed to be sufficiently larger thanλ so that each BS has at least one

associated UE in its coverage. As in (1) and (2), the distance between an arbitrary BS and an arbitrary

UE is denoted byr in km. Considering practical LoS/NLoS transmissions, we propose to model the

path loss associated with distancer as

ζ (r) =























































ζ1 (r) =

{

ζL
1 (r) ,

ζNL
1 (r) ,

with probability PrL1 (r)

with probability
(

1− PrL1 (r)
) , when0 ≤ r ≤ d1

ζ2 (r) =

{

ζL
2 (r) ,

ζNL
2 (r) ,

with probability PrL2 (r)

with probability
(

1− PrL2 (r)
) , whend1 < r ≤ d2

...
...

ζN (r) =

{

ζL
N (r) ,

ζNL
N (r) ,

with probability PrLN (r)

with probability
(

1− PrLN (r)
) , whenr > dN−1

,(3)

where the path loss functionζ (r) is segmented intoN pieces with each piece denoted byζn (r).

Besides,ζL
n (r), ζ

NL
n (r) and PrLn (r) , n ∈ {1, 2, . . . , N}, are then-th piece of path loss function for

LoS transmission, then-th piece of path loss function for NLoS transmission, and the n-th piece of

the LoS probability function, respectively. This is a very general model, which includes almost all

existing models used to capture probabilistic LoS and NLoS transmissions [13], [14] as its special

cases.

Furthermore,ζL
n (r) andζNL

n (r) are modeled as

March 17, 2015 DRAFT
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ζn (r) =















ζL
n (r) = AL

nr
−αL

n ,

ζNL
n (r) = ANL

n r−αNL

n ,

for LoS

for NLoS

, (4)

whereAL
n andANL

n , n ∈ {1, 2, . . . , N} are the path losses at a reference distancer = 1 for the LoS

and the NLoS cases inζn (r), respectively, andαL
n and αNL

n , n ∈ {1, 2, . . . , N} are the path loss

exponents for the LoS and the NLoS cases inζn (r), respectively. In practice,AL
n, ANL

n , αL
n andαNL

n

are constants obtained from field tests [13], [14].

Finally, in (3), PrLn (r) is the n-th piece probability function that a transmitter and a receiver

separated by a distancer has an LoS path, which is typically a monotonically decreasing function

with respect tor. For convenience,
{

PrLn (r)
}

is further stacked into a piece-wise LoS probability

function expressed as

PrL (r) =























PrL1 (r) , when0 ≤ r ≤ d1

PrL2 (r) , whend1 < r ≤ d2
...

...

PrLN (r) , whenr > dN−1

. (5)

Our model is consistent with the one adopted in the 3GPP [13], [14]. Obviously, the considered path

loss model will degenerate to that addressed in [10] and [11] when PrLn (r) = 0,∀n ∈ {1, 2, . . . , N}

andN = 1, respectively.

As a common practice in the field [4-10], the multi-path fading between an arbitrary BS and an

arbitrary UE is modeled as independently identical distributed (i.i.d.) Rayleigh fading. Specifically,

the channel gain is denoted byh and is modeled as an i.i.d. exponential random variable (RV). We

further denote byP andN0 the transmit power of each BS and the additive white Gaussiannoise

(AWGN) power at each UE, respectively.

Furthermore, in this paper, we consider two user association strategies (UASs), which are

• UAS 1: Each UE is associated with the BS with the smallest path lossto the UE [11], [16]

• UAS 2: Each UE is associated with the nearest BS to the UE [4], [10]

Provided that all small cell BSs transmit with the same power, UAS 1 implies a strategy that associates

each UE to the BS with the strongest signal reception strength, averaging out the multi-path fading.

Using UAS 1, it is possible for a UE to associate with a BS further way but with an LoS path,

instead of a nearest BS with an NLoS path. Note that both association strategies are widely used in

the literature [4], [10], [11], [16].
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IV. A NALYSIS BASED ON THEGENERAL PATH LOSSMODEL

Using the properties of the Poisson point process, we study the performance of SCNs by considering

the performance of a typical UE located at the origino. We first investigate the coverage probability

that the typical UE is covered by its associated BS. The coverage probability is defined as the

probability that the signal to interference plus noise ratio (SINR), denoted bySINR, is above a

per-designated thresholdγ:

pcov (λ, γ) = Pr[SINR > γ] , (6)

where the SINR is computed by

SINR =
Pζ (r)h

Ir +N0
, (7)

whereIr is the cumulative interference given by

Ir =
∑

i∈Φ/bo

Pβigi, (8)

wherebo is the BS associated with the typical UE and located at distancer from the typical UE, and

βi andgi are the path loss and the multi-path fading channel gain associated with thei-th interfering

BS, respectively.

Moreover, according to [10] and [11], the area spectral efficiency (ASE) in bps/Hz/km2 for a given

λ can be expressed as

AASE (λ, γ0) = λ

ˆ ∞

γ0

log2 (1 + x) fX (λ, x) dx, (9)

whereγ0 is the minimum working SINR for the considered SCN, andfX (λ, x) is the probability

density function (PDF) of SINR observed at the typical UE at aparticular value ofλ.

Based on the definition ofpcov (λ, γ), which is the complementary cumulative distribution function

(CCDF) of SINR,fX (λ, x) can be computed by

fX (λ, x) =
∂ (1− pcov (λ, x))

∂x
. (10)

Given the definition of the coverage probability and the ASE respectively presented in (6) and (9),

in the following we will analyze the two performance measures for the two UASs.

A. Analysis for UAS 1

Based on the path loss model of (3), we present our main result onpcov (λ, γ) for UAS 1 in

Theorem1.

Theorem 1. Considering the path loss model of (3) and UAS 1,pcov(λ, γ) can be derived as

March 17, 2015 DRAFT
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pcov(λ, γ) =

N
∑

n=1

(

T L
n + TNL

n

)

, (11)

whereT L
n =

´ dn

dn−1

Pr
[

PζL
n
(r)h

Ir+N0

> γ
]

fL
R,n (r) dr, TNL

n =
´ dn

dn−1

Pr
[

PζNL
n
(r)h

Ir+N0

> γ
]

fNL
R,n (r) dr, and d0

and dN are respectively defined as0 and∞. Moreover,fL
R,n (r) and fNL

R,n (r) are represented as

fL
R,n (r) = exp

(

−

ˆ r1

0

(

1− PrL (u)
)

2πuλdu

)

× exp

(

−

ˆ r

0
PrL (u) 2πuλdu

)

×PrL
n (r)× 2πrλ, (dn−1 < r ≤ dn) , (12)

and

fNL
R,n (r) = exp

(

−

ˆ r2

0
PrL (u) 2πuλdu

)

× exp

(

−

ˆ r

0

(

1− PrL (u)
)

2πuλdu

)

×
(

1− PrL
n (r)

)

× 2πrλ, (dn−1 < r ≤ dn) , (13)

wherer1 and r2 are determined by the value ofr and given implicitly in the following equations as

ζNL
n (r1) = ζL

n (r) , (14)

and
ζL
n (r2) = ζNL

n (r) . (15)

Furthermore, Pr
[

PζL
n
(r)h

Ir+N0

> γ
]

and Pr
[

PζNL
n
(r)h

Ir+N0

> γ
]

are respectively computed by

Pr

[

PζL
n (r)h

Ir +N0
> γ

]

= exp

(

−
γN0

PζL
n (r)

)

LIr

(

γ

PζL
n (r)

)

, (16)

and

Pr

[

PζNL
n (r)h

Ir +N0
> γ

]

= exp

(

−
γN0

PζNL
n (r)

)

LIr

(

γ

PζNL
n (r)

)

, (17)

whereLIr (s) is the Laplace transform of RVIr evaluated ats.

Proof: See Appendix A.

Pluggingpcov (λ, γ) obtained from (11) into (10) , we can get the result of ASE from (9) for UAS 1.

As can be observed from Theorem1, the piece-wise path loss function for LoS transmission
{

ζL
n (r)

}

, the piece-wise path loss function for NLoS transmission
{

ζNL
n (r)

}

, and the piece-wise

LoS probability function
{

PrLn (r)
}

play active roles in determining the final result ofpcov (λ, γ). We

will investigate their impacts on network performance in detail in the following sections.

B. Coverage Analysis for UAS 2

Based on the path loss model of (3), we present our main result onpcov (λ, γ) for UAS 2 in

Theorem2.
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Theorem 2. Considering the path loss model of (3) and UAS 2,pcov(λ, γ) can be derived as

pcov(λ, γ) =

N
∑

n=1

(

T L
n + TNL

n

)

, (18)

whereT L
n =

´ dn

dn−1

Pr
[

PζL
n
(r)h

Ir+N0

> γ
]

fL
R,n (r) dr, TNL

n =
´ dn

dn−1

Pr
[

PζNL
n
(r)h

Ir+N0

> γ
]

fNL
R,n (r) dr, and d0

and dN are respectively defined as0 and∞. Moreover,fL
R,n (r) and fNL

R,n (r) are represented as

fL
R,n (r) = PrL

n (r)× exp
(

−πr2λ
)

× 2πrλ, (dn−1 < r ≤ dn) , (19)

and

fNL
R,n (r) =

(

1− PrL
n (r)

)

× exp
(

−πr2λ
)

× 2πrλ, (dn−1 < r ≤ dn) . (20)

Furthermore, Pr
[

PζL
n
(r)h

Ir+N0

> γ
]

and Pr
[

PζNL
n
(r)h

Ir+N0

> γ
]

are respectively computed by

Pr

[

PζL
n (r)h

Ir +N0
> γ

]

= exp

(

−
γN0

PζL
n (r)

)

LIr

(

γ

PζL
n (r)

)

, (21)

and

Pr

[

PζNL
n (r)h

Ir +N0
> γ

]

= exp

(

−
γN0

PζNL
n (r)

)

LIr

(

γ

PζNL
n (r)

)

, (22)

whereLIr (s) is the Laplace transform of RVIr evaluated ats.

Proof: See Appendix B.

Pluggingpcov (λ, γ) obtained from (18) into (10), we can get the result of ASE from (9) for UAS 2.

A similar observation as that in Theorem1 can be drawn for Theorem2, i.e., the final result of

pcov (λ, γ) is also affected by the piece-wise functions
{

ζL
n (r)

}

,
{

ζNL
n (r)

}

, and
{

PrLn (r)
}

. We will

investigate the analytical results in detail in the following sections.

V. STUDY OF A 3GPP SPECIAL CASE

As a special case of Theorem1 and Theorem2, we consider the path loss function,ζ (r), adopted

in the 3GPP as [13]

ζ (r) =















ALr−αL

,

ANLr−αNL

,

with probability PrL (r)

with probability
(

1− PrL (r)
)

, (23)

together with the linear LoS probability function, PrL (r), defined in the 3GPP as [14]

PrL (r) =

{

1− r
d1

,

0,

0 < r ≤ d1

r > d1
. (24)

Considering the general path loss model presented in (3), the path loss model presented in (23) and

(24) can be deemed as a special case of (3) with the following substitution:N = 2, ζL
1 (r) = ζL

2 (r) =

March 17, 2015 DRAFT
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ALr−αL

, ζNL
1 (r) = ζNL

2 (r) = ANLr−αNL

, PrL1 (r) = 1 − r
d1

, and PrL2 (r) = 0. For clarity, this 3GPP

special case is referred to as 3GPP case 1 in the sequel.

A. Analysis for UAS 1 in 3GPP Case 1

According to Theorem1, pcov (λ, γ) for UAS 1 can then be obtained as

pcov (λ, γ) =

2
∑

n=1

(

T L
n + TNL

n

)

. (25)

In the following sections, we investigateT L
1 , TNL

1 , T L
2 , andTNL

2 , respectively.

1) The Computation ofT L
1 : From Theorem1, T L

1 for UAS 1 can be obtained as

T L
1 =

ˆ d1

0
exp

(

−
γN0

PζL
1 (r)

)

LIr

(

γ

PζL
1 (r)

)

fL
R,1 (r) dr

(a)
=

ˆ d1

0
exp

(

−
γrα

L

N0

PAL

)

LIr

(

γrα
L

PAL

)

fL
R,1 (r) dr, (26)

whereζL
1 (r) = ALr−αL

from (23) is plugged into (a) of (26) andLIr (s) is the Laplace transform

of RV Ir evaluated ats.

For UAS 1, according to Theorem1 and (24), fL
R,1 (r) can be derived as

fL
R,1 (r) = exp

(

−

ˆ r1

0
λ
u

d1
2πudu

)

× exp

(

−

ˆ r

0
λ

(

1−
u

d1

)

2πudu

)

×

(

1−
r

d1

)

× 2πrλ

= exp

(

−πλr2 + 2πλ

(

r3

3d1
−

r31
3d1

))

×

(

1−
r

d1

)

× 2πrλ, (0 < r ≤ d1) , (27)

wherer1 =
(

ANL

AL

)
1

αNL

r
α
L

αNL according to (14).

Besides, to computeLIr

(

γrα
L

PAL

)

for UAS 1 in the range of0 < r ≤ d1, we propose Lemma3.

Lemma 3. LIr

(

γrα
L

PAL

)

for UAS 1 in the range of0 < r ≤ d1 can be calculated by

LIr

(

γrα
L

PAL

)

=

exp

(

−2πλ

(

ρ1

(

αL, 1,
(

γrα
L

)−1
, d1

)

− ρ1

(

αL, 1,
(

γrα
L

)−1
, r

)))

× exp

(

2πλ

d0

(

ρ1

(

αL, 2,
(

γrα
L

)−1
, d1

)

− ρ1

(

αL, 2,
(

γrα
L

)−1
, r

)))

× exp

(

−
2πλ

d0

(

ρ1

(

αNL, 2,

(

γANL

AL
rα

L

)−1

, d1

)

− ρ1

(

αNL, 2,

(

γANL

AL
rα

L

)−1

, r1

)))

× exp

(

−2πλρ2

(

αNL, 1,

(

γANL

AL
rα

L

)−1

, d1

))

, (0 < r ≤ d1) (28)

where
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ρ1 (α, β, t, d) =

[

d(β+1)

β + 1

]

2F1

[

1,
β + 1

α
; 1 +

β + 1

α
;−tdα

]

, (29)

and

ρ2 (α, β, t, d) =

[

d−(α−β−1)

t (α− β − 1)

]

2F1

[

1, 1 −
β + 1

α
; 2−

β + 1

α
;−

1

tdα

]

, (α > β + 1) , (30)

where2F1 [·, ·; ·; ·] is the hyper-geometric function [15].

Proof: See Appendix C.

To sum up, for UAS 1,T L
1 can be evaluated as

T L
1 =

ˆ d1

0
exp

(

−
γrα

L

N0

PAL

)

LIr

(

γrα
L

PAL

)

fL
R,1 (r) dr, (31)

wherefL
R,1 (r) andLIr

(

γrα
L

PAL

)

are computed by (27) and (28), respectively.

2) The Computation ofTNL
1 : From Theorem1, TNL

1 for UAS 1 can be obtained as

TNL
1 =

ˆ d1

0
exp

(

−
γN0

PζNL
1 (r)

)

LIr

(

γ

PζNL
1 (r)

)

fNL
R,1 (r) dr

(a)
=

ˆ d1

0
exp

(

−
γrα

NL

N0

PANL

)

LIr

(

γrα
NL

PANL

)

fNL
R,1 (r) dr, (32)

whereζNL
1 (r) = ANLr−αNL

from (23) is plugged into (a) of (32) andLIr (s) is the Laplace transform

of RV Ir evaluated ats.

For UAS 1, according to Theorem1 and (24), fNL
R,1 (r) can be written as

fNL
R,1 (r) = exp

(

−

ˆ r2

0
λPrL (u) 2πudu

)

× exp

(

−

ˆ r

0
λ
(

1− PrL (u)
)

2πudu

)

×
r

d1
× 2πrλ, (0 < r ≤ d1) , (33)

wherer2 =
(

AL

ANL

) 1

αL

r
α
NL

αL according to (15). Since the numerical relationship betweenr2 and d1

affects the calculation of the first multiplier in (33), i.e.,exp
(

−
´ r2
0 λPrL (u) 2πudu

)

, we will discuss

the cases of0 < r2 ≤ d1 andr2 > d1 in the following.

If 0 < r2 ≤ d1, i.e., 0 < r ≤ x1 = d
α
L

αNL

1

(

ANL

AL

)
1

αNL

, we have

fNL
R,1 (r) = exp

(

−

ˆ r2

0
λ

(

1−
u

d1

)

2πudu

)

× exp

(

−

ˆ r

0
λ
u

d1
2πudu

)

×
r

d1
× 2πrλ

= exp

(

−πλr22 + 2πλ

(

r32
3d1

−
r3

3d1

))

×

(

r

d1

)

× 2πrλ, (0 < r ≤ x1) . (34)

Otherwise, ifr2 > d1, i.e., x1 < r ≤ d1, we can get
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fNL
R,1 (r) = exp

(

−

ˆ d1

0
λ

(

1−
u

d1

)

2πudu

)

× exp

(

−

ˆ r

0
λ
u

d1
2πudu

)

×
r

d1
× 2πrλ

= exp

(

−
πλd21
3

−
2πλr3

3d1

)

×

(

r

d1

)

× 2πrλ, (x1 < r ≤ d1) . (35)

Besides, to computeLIr

(

γrα
NL

PANL

)

for UAS 1 in the range of0 < r ≤ d1, we propose Lemma4.

Note that since the calculation offNL
R,1 (r) is divided into two cases, i.e.,0 < r ≤ x1 andx1 < r ≤ d1,

the calculation ofLIr

(

γrα
NL

PANL

)

for UAS 1 in the range of0 < r ≤ d1 will also be divided into those

cases, because the interference inLIr

(

γrα
NL

PANL

)

needs to be integrated from the distancer to infinity.

Lemma 4. LIr

(

γrα
NL

PANL

)

for UAS 1 in the range of0 < r ≤ d1 can be divided for two cases, i.e.,

0 < r ≤ x1 and x1 < r ≤ d1. The results are as follows,

LIr

(

γrα
NL

PANL

)

=

exp

(

−2πλ

(

ρ1

(

αL, 1,

(

γAL

ANL
rα

NL

)−1

, d1

)

− ρ1

(

αL, 1,

(

γAL

ANL
rα

NL

)−1

, r2

)))

× exp

(

2πλ

d0

(

ρ1

(

αL, 2,

(

γAL

ANL
rα

NL

)−1

, d1

)

− ρ1

(

αL, 2,

(

γAL

ANL
rα

NL

)−1

, r2

)))

× exp

(

−
2πλ

d0

(

ρ1

(

αNL, 2,
(

γrα
NL

)−1
, d1

)

− ρ1

(

αNL, 2,
(

γrα
NL

)−1
, r

)))

× exp

(

−2πλρ2

(

αNL, 1,
(

γrα
NL

)−1
, d1

))

, (0 < r ≤ x1) , (36)

and

LIr

(

γrα
NL

PANL

)

= exp

(

−
2πλ

d0

(

ρ1

(

αNL, 2,
(

γrα
NL

)−1
, d1

)

− ρ1

(

αNL, 2,
(

γrα
NL

)−1
, r

)))

× exp

(

−2πλρ2

(

αNL, 1,
(

γrα
NL

)−1
, d1

))

, (x1 < r ≤ d1) , (37)

whereρ1 (α, β, t, d) and ρ2 (α, β, t, d) are defined in (29) and (30), respectively.

Proof: See Appendix D.

To sum up, for UAS 1,TNL
1 can be evaluated as

TNL
1 =

ˆ x1

0
exp

(

−
γrα

NL

N0

PANL

)[

LIr

(

γrα
NL

PANL

)

fNL
R,1 (r)

∣

∣

∣

∣

∣

0 < r ≤ x1

]

dr

+

ˆ d1

x1

exp

(

−
γrα

NL

N0

PANL

)[

LIr

(

γrα
NL

PANL

)

fNL
R,1 (r)

∣

∣

∣

∣

∣

x1 < r ≤ d1

]

dr, (38)

wherefNL
R,1 (r) is computed by (34) and (35), andLIr

(

γrα
NL

PANL

)

is given by (36) and (37).

3) The Computation ofT L
2 : From Theorem1, T L

2 for UAS 1 can be derived as
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T L
2 =

ˆ ∞

d1

exp

(

−
γN0

PζL
2 (r)

)

LIr

(

γ

PζL
2 (r)

)

fL
R,2 (r) dr. (39)

For UAS 1, according to Theorem1 and (24), fNL
R,1 (r) can be calculated by

fL
R,2 (r) = exp

(

−

ˆ r1

0
λ
(

1− PrL (u)
)

2πudu

)

× exp

(

−

ˆ r

0
λPrL (u) 2πudu

)

× 0× 2πrλ

= 0, (r > d1) . (40)

Plugging (40) into (39), yields

T L
2 = 0. (41)

4) The Computation ofTNL
2 : From Theorem1, TNL

2 for UAS 1 can be derived as

TNL
2 =

ˆ ∞

d1

exp

(

−
γN0

PζNL
2 (r)

)

LIr

(

γ

PζNL
2 (r)

)

fNL
R,2 (r) dr

(a)
=

ˆ ∞

d1

exp

(

−
γrα

NL

N0

PANL

)

LIr

(

γrα
NL

PANL

)

fNL
R,2 (r) dr, (42)

whereζNL
2 (r) = ANLr−αNL

from (23) is plugged into (a) of (42) andLIr (s) is the Laplace transform

of RV Ir evaluated ats.

For UAS 1, according to Theorem1 and (24), fNL
R,2 (r) can be derived as

fNL
R,2 (r) = exp

(

−

ˆ d1

0
λ

(

1−
u

d1

)

2πudu

)

× exp

(

−

ˆ d1

0
λ
u

d1
2πudu−

ˆ r

d1

λ2πudu

)

× 2πrλ

= exp
(

−πλr2
)

× 2πrλ, (r > d1) . (43)

Besides, to computeLIr

(

γrα
NL

PANL

)

for UAS 1 in the range ofr > d1, we propose Lemma5.

Lemma 5. LIr

(

γrα
NL

PANL

)

for UAS 1 in the range ofr > d1 can be calculated by

LIr

(

γrα
NL

PANL

)

= exp

(

−2πλρ2

(

αNL, 1,
(

γrα
NL

)−1
, r

))

, (r > d1) , (44)

whereρ2 (α, β, t, d) is defined in (30).

Proof: See Appendix E.

To sum up, for UAS 1,TNL
2 can be evaluated as

TNL
2 =

ˆ ∞

d1

exp

(

−
γrα

NL

N0

PANL

)

LIr

(

γrα
NL

PANL

)

fNL
R,2 (r) dr. (45)

wherefNL
R,2 (r) andLIr

(

γrα
NL

PANL

)

are computed by (43) and (44), respectively.
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5) The Result ofpcov(λ, γ) andAASE(λ, γ0): Considering (25) and (41), pcov (λ, γ) for UAS 1 in

3GPP Case 1 can be written as

pcov (λ, γ) = T L
1 + TNL

1 + TNL
2 , (46)

where T L
1 , TNL

1 and TNL
2 are computed from closed-form expressions using (31), (38) and (45),

respectively.

Pluggingpcov (λ, γ) obtained from (46) into (10), we can get the result ofAASE (λ, γ0) from (9)

for UAS 1 in 3GPP case 1.

B. Analysis for UAS 2 in 3GPP Case 1

According to Theorem2, pcov (λ, γ) for UAS 2 can then be obtained as

pcov (λ, γ) =

2
∑

n=1

(

T L
n + TNL

n

)

. (47)

In the following sections, we investigateT L
1 , TNL

1 , T L
2 , andTNL

2 , respectively.

1) The Computation ofT L
1 : From Theorem2 and (47), and similar to (31), T L

1 can be derived as

T L
1 =

ˆ d1

0
exp

(

−
γrα

L

N0

PAL

)

LIr

(

γrα
L

PAL

)

fL
R,1 (r) dr, (48)

where according to Theorem2 and (24), fL
R,1 (r) is computed by

fL
R,1 (r) =

(

1−
r

d1

)

× exp
(

−πr2λ
)

× 2πrλ, (0 < r ≤ d1) . (49)

To computeLIr

(

γrα
L

PAL

)

for UAS 2 in the range of0 < r ≤ d1, we propose Lemma6.

Lemma 6. LIr

(

γrα
L

PAL

)

for UAS 2 in the range of0 < r ≤ d1 can be calculated by

LIr

(

γrα
L

PAL

)

=

exp

(

−2πλ

(

ρ1

(

αL, 1,
(

γrα
L

)−1
, d1

)

− ρ1

(

αL, 1,
(

γrα
L

)−1
, r

)))

× exp

(

2πλ

d0

(

ρ1

(

αL, 2,
(

γrα
L

)−1
, d1

)

− ρ1

(

αL, 2,
(

γrα
L

)−1
, r

)))

× exp

(

−
2πλ

d0

(

ρ1

(

αNL, 2,

(

γANL

AL
rα

L

)−1

, d1

)

− ρ1

(

αNL, 2,

(

γANL

AL
rα

L

)−1

, r

)))

× exp

(

−2πλρ2

(

αNL, 1,

(

γANL

AL
rα

L

)−1

, d1

))

, (0 < r ≤ d1) , (50)

whereρ1 (α, β, t, d) and ρ2 (α, β, t, d) are defined in (29) and (30), respectively.
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Proof: The proof is the same as the one provided in Appendix C with thesubstitution ofr1 with

r, because in UAS 2 interference only comes from a distance larger thanr.

2) The Computation ofTNL
1 : From Theorem2 and similar to (38), TNL

1 can be derived as

TNL
1 =

ˆ d1

0
exp

(

−
γrα

NL

N0

PANL

)

LIr

(

γrα
NL

PANL

)

fNL
R,1 (r) dr, (51)

where according to Theorem2 and (24), fNL
R,1 (r) is computed by

fNL
R,1 (r) =

r

d1
× exp

(

−πr2λ
)

× 2πrλ, (0 < r ≤ d1) . (52)

To computeLIr

(

γrα
NL

PANL

)

for UAS 2 in the range of0 < r ≤ d1, we propose Lemma7.

Lemma 7. LIr

(

γrα
NL

PANL

)

for UAS 2 in the range of0 < r ≤ d1 can be calculated by

LIr

(

γrα
NL

PANL

)

=

exp

(

−2πλ

(

ρ1

(

αL, 1,

(

γAL

ANL
rα

NL

)−1

, d1

)

− ρ1

(

αL, 1,

(

γAL

ANL
rα

NL

)−1

, r

)))

× exp

(

2πλ

d0

(

ρ1

(

αL, 2,

(

γAL

ANL
rα

NL

)−1

, d1

)

− ρ1

(

αL, 2,

(

γAL

ANL
rα

NL

)−1

, r

)))

× exp

(

−
2πλ

d0

(

ρ1

(

αNL, 2,
(

γrα
NL

)−1
, d1

)

− ρ1

(

αNL, 2,
(

γrα
NL

)−1
, r

)))

× exp

(

−2πλρ2

(

αNL, 1,
(

γrα
NL

)−1
, d1

))

, (0 < r ≤ d1) , (53)

whereρ1 (α, β, t, d) and ρ2 (α, β, t, d) are defined in (29) and (30), respectively.

Proof: The proof is the same as the one provided in Appendix D with thesubstitution ofr2

with r, because in UAS 2 interference only comes from a distance larger thanr.

3) The Computation ofT L
2 : From Theorem2, (47), and similar to (39), T L

2 can be derived as

T L
2 =

ˆ ∞

d1

exp

(

−
γN0

PζL
2 (r)

)

LIr

(

γ

PζL
2 (r)

)

fL
R,2 (r) dr

= 0. (54)

Note that the reason whyT L
2 = 0 in (54) is because according to Theorem2 and (24), we have

fL
R,2 (r) = 0× exp

(

−πr2λ
)

× 2πrλ

= 0, (r > d1) . (55)

4) The Computation ofTNL
2 : From Theorem2 and similar to (45), TNL

2 can be derived as
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TNL
2 =

ˆ ∞

d1

exp

(

−
γrα

NL

N0

PANL

)

LIr

(

γrα
NL

PANL

)

fNL
R,2 (r) dr, (56)

where according to Theorem2 and (24), fNL
R,2 (r) is computed by

fNL
R,2 (r) = 1× exp

(

−πr2λ
)

× 2πrλ

= exp
(

−πλr2
)

× 2πrλ, (r > d1) . (57)

To computeLIr

(

γrα
NL

PANL

)

for UAS 2 in the range ofr > d1, Lemma5 is reused.

5) The Result ofpcov(λ, γ) andAASE(λ, γ0): Considering (47) and (54), pcov (λ, γ) for UAS 2 in

3GPP Case 1 can be written as

pcov (λ, γ) = T L
1 + TNL

1 + TNL
2 , (58)

where T L
1 , TNL

1 and TNL
2 are computed from closed-form expressions using (48), (51) and (56),

respectively.

Pluggingpcov (λ, γ) obtained from (58) into (10), we can get the result ofAASE (λ, γ0) from (9)

for UAS 2 in 3GPP case 1.

VI. SIMULATION AND DISCUSSION

In this Section, we use simulations to further study the performance of SCNs and establish the

accuracy of our analysis. According to [13] and [14], we use the following parameters:d1 = 300 m,

αL = 2.09, αNL = 3.75, AL = 10−4.11, ANL = 10−3.29, P = 24 dBm, N0 = −95 dBm (including a

noise figure of 9 dB at the UE). Moreover, we study another 3GPPspecial case with an alternative LoS

probability function, PrL (r), using numerical integration to show the generality of our conclusions

on the performance impact of LoS and NLoS transmissions.

A. Validation and Discussion of the Analytical Results ofpcov(λ, γ)

For 3GPP case 1 studied in SectionV, and for both UASs, the results ofpcov (λ, γ) with γ = 1

and γ = 10 are plotted in Fig.3 and Fig.4, respectively. As can be observed from both figures,

our analytical results perfectly match the simulation results. Since the results ofAASE (λ, γ0) are

computed based onpcov (λ, γ), we will only use analytical results onpcov (λ, γ) in our discussion

hereafter. For comparison, we have also included analytical results assuming a simplistic path loss

model that does not differentiate LoS and NLoS transmissions [4]. Note that in [4], only one path

loss exponent is defined and denoted byα. In our figures,α is set toαL or αNL respectively to show

the results of the analysis from [4].
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Fig. 3. pcov (λ, 1) vs λ for 3GPP case 1. Fig. 4. pcov (λ, 10) vs λ for 3GPP case 1.

From Fig. 3 and Fig.4, we can observe that the coverage probability performance given by the

stochastic geometry analysis in [4] first increases with the BS density because more BSs provide

better coverage in noise-limited networks. Then, whenλ is large enough, the coverage probability

becomes independent ofλ since the network is pushed into the interference-limited region, e.g.,λ >

10−1 BSs/km2 andλ > 102 BSs/km2 for the analysis from [4] with α = αL andα = αNL, respectively.

This observation is consistent with the conclusion in [4], which shows that for a sufficiently largeλ,

the coverage probability becomes almost a constant with theincrease of the small cell density. The

intuition behind the observation is that with the simplistic assumption on the path loss model, the

increase in interference power is counterbalanced by the increase in signal power in a interference-

limited network, and thus the coverage probability remainsthe same asλ further increases. Besides,

we can find that the coverage probability performance of the analysis from [4] with α = αNL is

much better than that withα = αL whenλ is relatively large, e.g.,λ > 10BSs/km2. The reason is

that a larger path loss exponent allows a faster decay of the aggregated interference power, which

has a dominating impact on the SINR performance for the UE, and hence the coverage probability

performance improves as the path loss exponentα increases. The implication is that high path loss

exponents help to separate adjacent small cells in the senseof less power leakage.

In Fig. 3 and Fig.4, the coverage probability performance of the proposed stochastic geometry

analysis for the 3GPP case 1 incorporating both LoS and NLoS transmissions exhibits a significant

deviation from that of the analysis from [4], because when the distancer decreases, or equivalently

when the small cell densityλ increases, LoS transmission occurs with an increasingly higher proba-

bility than NLoS transmission. When the SCN is sparse and thus noise-limited, e.g.,λ ≤ 10BSs/km2,

the coverage probability given by the proposed analysis grows asλ increases for the same reason as

explained in the above paragraph, i.e., deploying more small cells is beneficial for removing coverage
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holes. Then, when the network is dense enough and all coverage holes are removed, the coverage

probability given by the proposed analysis decreases asλ increases, due to the transition of a large

number of interference paths from NLoS to LoS. It is important to note that the coverage probability

performance of the proposed analysis for 3GPP case 1 peaks ata certain valueλ0. Specifically, as

λ increases aboveλ0, interfering BSs may also be close to the typical UE and hencetheir signals

may reach the UE via strong LoS paths too. Such crucial point can be readily obtained by setting the

partial derivative ofpcov (λ, γ) with regard toλ to zero, i.e.,λ0 = arg
λ

{

∂pcov(λ,γ)
∂λ = 0

}

. The solution

to this equation can be numerically found using a standard bisection searching [17]. In Fig. 3, the

numerical results forλ0 are 19.95 and 15.85 for UAS 1 and UAS 2, respectively. In comparison, in

Fig. 4, the numerical results forλ0 are 12.59 and 10.21 for UAS 1 and UAS 2, respectively.

It is also important to note that the proposed analysis incorporating both LoS and NLoS trans-

missions exhibits better coverage probability performance than the analysis from [4] with α = αNL

whenλ is relative small, e.g.,λ ≤ 10BSs/km2. This is because with the proposed path loss model

of (3) and the considered UASs, the signal is more likely to transmit via an LoS path while the

interference from interfering BSs further away is more likely to suffer more attenuation due to NLoS

paths caused by more obstacles along the longer distance. Moreover, the performance of UAS 1 is

strictly superior to that of UAS 2 because the UE is always associate with the BS with the smallest

path loss in UAS 1, leading to a better coverage performance.However, such performance superiority

is noticeable only when1 ≤ λ ≤ 102 BSs/km2, where the transition of interference paths from NLoS

to LoS frequently take place. Whenλ is tremendously large, e.g.,λ ≥ 104 BSs/km2, the coverage

probability decreases at a very slow pace because both the signal power and the interference power

are LoS dominated and thus statistically stable.

To sum up, our results are in stark contrast with those of the analysis in [4] assuming a simplistic

path loss model that does not differentiate LoS and NLoS transmissions. The implication is profound.

Particularly, the conventional stochastic geometry analysis leads to the conclusion that the cell split-

ting gain resulting from spectrum reuse can be surely achieved in dense SCNs since the coverage

probability is invariant withλ. In contrast, our theoretical analysis shows that the coverage probability

will initially increase with the increase ofλ, but whenλ is larger thanλ0, the coverage probability

will decrease as small cells become denser in practical SCNs, where the decrease is caused by the

transition of a large number of interference paths from NLoSto LoS. Considering such trend of the

coverage probability and looking at the ASE expression in (9), we can conclude that the trend of the

ASE performance for SCNs should be complicated and it will beinvestigated in the next subsection.
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B. Discussion of the Analytical Results ofAASE(λ, γ0)

In this subsection, we first investigate the analytical results of AASE (λ, γ0) with γ0 = 1, based

on the analytical results ofpcov (λ, γ). The results ofAASE (λ, 1) are plotted in Fig.5, comparing

the proposed stochastic geometry analysis with the analysis from [4] with α = αL andα = αNL,

respectively.

As can be seen from Fig.5, the analysis from [4] indicates that when the SCN is dense enough,

e.g.,λ ≥ 102 BSs/km2, the ASE performance increases linearly withλ, which is logically correct

from the conclusion thatpcov (λ, γ) is invariable with respect toλ for a givenγ in dense SCNs [4]. In

contrast, the proposed stochastic geometry analysis for the 3GPP case 1 reveals a more complicated

trend for the ASE performance. Specifically, when the SCN is relatively sparse, e.g.,λ ≤ λ0 BSs/km2,

the ASE quickly increases withλ because the network is generally noise-limited, thus adding more

small cells immensely benefits the ASE. When the SCN is extremely dense, e.g.,λ ≥ 104 BSs/km2,

the ASE exhibits a nearly linear trajectory with regard toλ because both the signal power and the

interference power are now LoS dominated and thus statistically stable as explained before. As for

the practical range ofλ, i.e., λ ∈
[

λ0, 10
4
]

BSs/km2, the ASE first exhibits a slowing-down in the

rate of growth due to the fast decrease of the coverage probability at aroundλ ∈ [λ0, λ1] BSs/km2 as

shown in Fig.3, whereλ1 is another threshold larger thanλ0. Whenλ ≥ λ1, the ASE will pick up

the growth rate as the decrease of the coverage probability becomes negligible. In Fig.3, the value

of λ1 seems to be around103 BSs/km2.

Fig. 5. AASE (λ, 1) vs λ for 3GPP case 1. Fig. 6. AASE (λ, 10) vs λ for 3GPP case 1.

In the following, we investigate the impact ofγ0 on AASE (λ, γ0) by showing the results of

AASE (λ, 10) in Fig. 6. An interesting observation is that the ASE of the proposed stochastic geometry

analysis even decreases with the increase ofλ at around
[

10, 102
]

BSs/km2, indicating the significant

impact of the path loss model incorporating both NLoS and LoStransmissions. Such impact makes
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a difference for SCNs in terms of the ASE both quantitativelyand qualitatively, compared with the

SCNs with a simplistic path loss model that does not differentiate LoS and NLoS transmissions. As

a confirmation, note that comparing Fig.3 and Fig.4, we can observe that increasingγ0 from 1 to

10 will greatly accelerate the decrease of the coverage probability at aroundλ ∈
[

10, 102
]

BSs/km2,

which in turn causes the decrease of the ASE at that range ofλ in Fig. 6.

To sum up, our theoretical analysis concludes that when the density of small cells is larger than

λ0, the ASE suffers from a slow growth or even a notabledecreaseasλ increases, because of the

decrease of the network coverage probability, as discussedin SubsectionVI-A . Furthermore, the ASE

will grow almost linearly as the small cell density increases aboveλ1.

With the thresholdsλ0 andλ1, SCNs can be roughly classified into 3 categories, i.e., the sparse

SCN (0 < λ ≤ λ0), the dense SCN (λ0 < λ ≤ λ1) and the very dense SCN (λ > λ1). The ASEs for

both the sparse SCN and the very dense SCN grow almost linearly with the increase ofλ, while the

ASE of the dense SCN shows a slow growth or even a notable decrease with the increase ofλ. From

Fig. 5 and Fig.6, we can get a new look at the ultra-dense SCN, which has been identified as one of

the key enabling technologies of the 5th-generation (5G) networks [2]. Up to now, there is no clear

view in both industry and academia on how dense a SCN can be categorized as an ultra-dense SCN.

According to our study, for 3GPP case 1, we propose that the 5Gsystems should target the third

kind of SCNs as ultra-dense SCNs, i.e., the SCNs withλ > λ1, because the associated ASE will

grow almost linearly asλ increases since both the signal power and the interference power are LoS

dominated and thus statistically stable. Numerically speaking, λ1 is around103 BSs/km2 in Fig. 5

and Fig.6. It is important to note that the second category of SCNs (λ0 < λ ≤ λ1) is better to be

avoided in practical SCN deployments due to its cost-inefficiency.

C. Investigation ofAASE(λ, γ0) for an Alternative PrL (r)

As another application of our analytical work and to demonstrate that the conclusions obtained

on the performance impact of LoS and NLoS transmissions havegeneral significance, we consider

another widely used LoS probability function adopted by the3GPP as [13]

PrL (r) = 0.5−min

{

0.5, 5 exp

(

−
R1

r

)}

+min

{

0.5, 5 exp

(

−
r

R2

)}

, (59)

whereR1 = 156 m andR2 = 30 m. To show how PrL (r) in (59) can be fitted into our general path

loss model proposed in (3), we reformulate (59) as
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PrL (r) =

{

1− 1
2 exp (−R1/r) ,

1
2 exp (−r/R2) ,

0 ≤ r ≤ d1

r > d1
, (60)

whered1 =
R1

ln 10 . The combination of the LoS probability function in (60) and the path loss formula

in (23) can then be deemed as a special case of the proposed general path loss model addressed in (3)

with the following substitution:N = 2, ζL
1 (r) = ζL

2 (r) = ALr−αL

, ζNL
1 (r) = ζNL

2 (r) = ANLr−αNL

,

PrL1 (r) = 1 − 1
2 exp (−R1/r), and PrL2 (r) =

1
2 exp (−r/R2). For clarity, this 3GPP special case is

referred to as 3GPP case 2 in the sequel.

Due to the complicated expressions of PrL (r) in (60), closed-form expressions ofpcov (λ, γ) like

those in (25) and (47) are difficult to obtain. Here, we evaluate the network performance for 3GPP

case 2 by applying numerical integration on Theorem1 and Theorem2. The results ofpcov (λ, 1)

and AASE (λ, 1) for 3GPP case 2 are plotted in Fig.7 and Fig. 8, respectively. As can be seen

from both figures, our analytical results are accurate compared with the simulation results and all

the observations in SubsectionsVI-A and VI-B are qualitatively valid for Fig.7 and Fig.8 except

for some quantitative deviation. Specifically, in Fig.7, the numerical results forλ0 are 98.72 and

79.43 for UAS 1 and UAS 2, respectively. In Fig.8, the ASE is also shown to suffers from a

slow growth or even a slight decrease asλ increases whenλ > λ0, because of the decrease of

the network coverage probability shown in Fig.7. Furthermore, the ASE will grow almost linearly

as λ increases above another larger thresholdλ1. Suchλ1 is in the order of several103 BSs/km2

as shown in Fig.8. Therefore as expected, changing the LoS probability function may only cause

quantitative difference on the coverage probability and the ASE, but the trend observed on the network

performance remains the same. Thus, the results obtained inthis paper on the performance impact

of LoS and NLoS transmissions have general significance and may not be affected by the particular

path loss model being considered.

Fig. 7. pcov (λ, 1) vs λ for 3GPP case 2. Fig. 8. AASE (λ, 1) vs λ for 3GPP case 2.
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VII. C ONCLUSION

In this paper, we show that a sophisticated path loss model incorporating both LoS and NLoS

transmissions has a significant impact on the performance ofSCNs, measured by the two metrics

of the coverage probability and the ASE. Such impact is not only quantitative but also qualitative.

Specifically, our theoretical analysis concludes that the network coverage probability will initially

increase with the increase of the small cell density, but when the density of small cells is larger

than a thresholdλ0, the network coverage probability will decrease as small cells become denser in

practical SCNs, which in turn makes the ASE suffer from a slowgrowth or even a notabledecrease

as the small cell density increases. Furthermore, the ASE will grow almost linearly as the small cell

density increases above another larger thresholdλ1. The intuition behind our conclusion is that when

the density of small cells is larger than a threshold, the interference power will increase faster than

the signal power due to the transition of a large number of interference paths from NLoS to LoS,

and thus the small cell density matters!

For practical regime of small cell density, the performanceresults derived from our analysis are

distinctively different from previous results considering a simplistic path loss model that does not

differentiate LoS and NLoS transmissions. It is therefore important to consider a path loss model

incorporating both LoS and NLoS transmission when studyingthe performance of dense SCNs.

Specifically, previous results predict that the ASE should monotonically grows with the increase of

the small cell density. However, our results show that the ASE will not necessarily improves with

the increase of the small cell density, which sheds valuableinsights on the design and deployment

of future small cell.

Finally, according to our study, for 3GPP cases, we propose that the 5G systems should target the

SCNs as ultra-dense SCNs withλ > λ1, because the associated ASE will grow almost linearly asλ

increases. Numerically speaking,λ1 appears to be around several103 BSs/km2 from our results.

As our future work, we will consider other factors of realistic networks in the theoretical analysis of

SCNs, such as practical directional antennas or sophisticated beam-forming functions. Another future

work is the introduction of an even more sophisticated multi-path fading model into the analysis of

SCNs because the multi-path fading model is also affected byLoS and NLoS transmissions.

APPENDIX A: PROOF OFTHEOREM 1

For clarity, we first summarize our basic ideas to prove Theorem1. In order to evaluatepcov (λ, γ),

the first key step is to calculate the PDFs of the events that the typical UE is associated with a BS
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with an LoS path or an NLoS path, taking the proposed path lossmodel of (3) into account. The

second key step is to calculate the probability of Pr[SINR > γ] conditioned on distancer.

Logically, according to UAS 1, the event that the UE is associated with a BS with an LoS path at

distancer is equivalent to the joint event that the UE is associated with a nearest LoS BS and there

is no NLoS BS gives a smaller path loss than such nearest LoS BS. Similarly, according to UAS 1,

the event that the UE is associated with a BS with an NLoS path at distancer is equivalent to the

joint event that the UE is associated with a nearest NLoS BS and there is no LoS BS gives a smaller

path loss than such nearest NLoS BS. Besides, the metric Pr[SINR > γ] should be evaluated based

on our assumption on the distribution of the multi-path fading RV, i.e., the exponential distribution.

Following the summarized thoughts, we provide our proof of Theorem1 in the sequel.

From (6) and (7), we can derivepcov (λ, γ) in a straightforward way as

pcov (λ, γ)
(a)
=

ˆ

r>0
Pr[SINR > γ| r] fR (r) dr

=

ˆ

r>0
Pr

[

Pζ (r)h

Ir +N0
> γ

∣

∣

∣

∣

r

]

fR (r) dr

=

ˆ d1

0
Pr

[

PζL
1 (r)h

Ir +N0
> γ

]

fL
R,1 (r) dr +

ˆ d1

0
Pr

[

PζNL
1 (r)h

Ir +N0
> γ

]

fNL
R,1 (r) dr

+ · · ·

+

ˆ ∞

dN−1

Pr

[

PζL
N (r)h

Ir +N0
> γ

]

fL
R,N (r) dr +

ˆ ∞

dN−1

Pr

[

PζNL
N (r)h

Ir +N0
> γ

]

fNL
R,N (r) dr

△
=

N
∑

n=1

(

T L
n + TNL

n

)

, (61)

whereT L
n andTNL

n are piece-wise functions defined asT L
n =
´ dn

dn−1

Pr
[

PζL
n
(r)h

Ir+N0

> γ
]

fL
R,n (r) dr and

TNL
n =

´ dn

dn−1

Pr
[

PζNL
n

(r)h
Ir+N0

> γ
]

fNL
R,n (r) dr, respectively. Besides,d0 anddN are respectively defined

as 0 and∞. Moreover,fL
R,n (r) and fNL

R,n (r) are the piece-wise PDFs of the event that the UE is

associated with a BS with an LoS path at distancer based on UAS 1 and the event that the UE is

associated with a BS with an NLoS path at distancer based on UAS 1, respectively. All thefL
R,n (r)

andfNL
R,n (r) are stacked intofR (r) in (a) of (61), andfR (r) is defined in a similar form as in (3):

fR (r) =























































fR,1 (r) =

{

fL
R,1 (r) ,

fNL
R,1 (r) ,

the UE is associated with an LoS BS

the UE is associated with an NLoS BS
, 0 ≤ r ≤ d1

fR,2 (r) =

{

fL
R,2 (r) ,

fNL
R,2 (r) ,

the UE is associated with an LoS BS

the UE is associated with an NLoS BS
, d1 < r ≤ d2

...
...

fR,N (r) =

{

fL
R,N (r) ,

fNL
R,N (r) ,

the UE is associated with an LoS BS

the UE is associated with an NLoS BS
, r > dN−1

.(62)
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RegardingfL
R,n (r) in (61), we define two events as follows, the joint event of which is equivalent

to the event that the UE is associated with a BS with an LoS pathat distancer according to UAS 1.

• EventBL: the nearest BS with an LoS path is located at distancer

• EventCNL: there is no BS with an NLoS path in the disk centered on the UE with a radius of

r1 < r, wherer1 satisfiesζL
n (r) = ζNL

n (r1)

Note that EventBL guarantees that the path loss associated withan arbitrary LoS BSwith a distance

greater thanr is always larger than that associated withthe considered LoS BSat distancer. Besides,

EventCNLguarantees that the path loss associated withan arbitrary NLoS BSwith a distance greater

thanr1 is always larger than that associated withthe considered LoS BSat distancer.

According to [4], the cumulative density function (CDF) of EventBL with regard tor is given by

FBL

R,n (r) = 1− exp

(

−

ˆ r

0
PrL (u) 2πuλdu

)

, (dn−1 < r ≤ dn) . (63)

Hence, taking the derivative ofFBL

R,n (r) with regard tor, yields the PDF of EventBL as

fBL

R,n (r) = exp

(

−

ˆ r

0
PrL (u) 2πuλdu

)

× PrLn (r)× 2πrλ, (dn−1 < r ≤ dn) . (64)

The PDFfBL

R,n (r) should be further thinned by the probability of EventCNL on condition ofr, which

is exp
(

−
´ r1
0

(

1− PrL (u)
)

2πuλdu
)

[4], and we can get the PDF of the joint event ofBL andCNL:

fL
R,n (r) = exp

(

−

ˆ r1

0

(

1− PrL (u)
)

2πuλdu

)

× fBL

R,n (r) . (65)

As for the calculation of Pr
[

PζL
n
(r)h

Ir+N0

> γ
]

in (61), we have

Pr

[

PζL
n (r)h

Ir +N0
> γ

]

= E[Ir]

{

Pr

[

h >
γ (Ir +N0)

PζL
n (r)

]}

= E[Ir]

{

F̄H

(

γ (Ir +N0)

PζL
n (r)

)}

, (66)

whereE[X] {·} denotes the expectation operation taking the expectation over the variableX and

F̄H (h) denotes the complementary cumulative density function (CCDF) of RV h. Since we assume

h to be an exponential RV, we havēFH (h) = exp (−h) and thus (66) can be further derived as

Pr

[

PζL
n (r)h

Ir +N0
> γ

]

= E[Ir ]

{

exp

(

−
γ (Ir +N0)

PζL
n (r)

)}

= exp

(

−
γN0

PζL
n (r)

)

E[Ir]

{

exp

(

−
γ

PζL
n (r)

Ir

)}

= exp

(

−
γN0

PζL
n (r)

)

LIr

(

γ

PζL
n (r)

)

, (67)
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whereLIr (s) is the Laplace transform of RVIr evaluated ats.

RegardingfNL
R,n (r) in (61), we also define two events, the joint event of which is equivalent to the

event that the UE is associated with a BS with an NLoS path at distancer according to UAS 1.

• EventBNL: the nearest BS with an NLoS path is located at distancer

• EventCL: there is no BS with an LoS path in the disk centered on the UE with a radius ofr2,

wherer2 satisfiesζL
n (r2) = ζNL

n (r)

Note that EventBNL guarantees that the path loss associated withan arbitrary NLoS BSwith a

distance greater thanr is always larger than that associated withthe considered NLoS BSat distance

r. Besides, EventCNLguarantees that the path loss associated withan arbitrary LoS BSwith a

distance greater thanr2 is always larger than that associated withthe considered NLoS BSat r.

According to [4], the CDF of EventBNL with regard tor is written as

FBNL

R,n (r) = 1− exp

(

−

ˆ r

0

(

1− PrL (u)
)

2πuλdu

)

, (dn−1 < r ≤ dn) . (68)

Hence, taking the derivative ofFBNL

R,n (r) with regard tor, yields the PDF of EventBNL as

fBNL

R,n (r) = exp

(

−

ˆ r

0

(

1− PrL (u)
)

2πuλdu

)

×
(

1− PrLn (r)
)

2πrλ, (dn−1 < r ≤ dn) .(69)

Similar to (65), the PDFfBNL

R,n (r) should be further thinned by the probability of EventCL on

condition of r, which is exp
(

−
´ r2
0 PrL (u) 2πuλdu

)

[4], so that we can get the PDF of the joint

event ofBNL andCL as

fNL
R,n (r) = exp

(

−

ˆ r2

0
PrL (u) 2πuλdu

)

× fBNL

R,n (r) . (70)

As for the calculation of Pr
[

PζNL
n

(r)h
Ir+N0

> γ
]

in (61), we have

Pr

[

PζNL
n (r)h

Ir +N0
> γ

]

= E[Ir]

{

Pr

[

h >
γ (Ir +N0)

PζNL
n (r)

]}

= E[Ir]

{

F̄H

(

γ (Ir +N0)

PζNL
n (r)

)}

. (71)

SinceF̄H (h) = exp (−h), thus (71) can be further derived as

Pr

[

PζNL
n (r)h

Ir +N0
> γ

]

= E[Ir]

{

exp

(

−
γ (Ir +N0)

PζNL
n (r)

)}

= exp

(

−
γN0

PζNL
n (r)

)

E[Ir]

{

exp

(

−
γ

PζNL
n (r)

Ir

)}

= exp

(

−
γN0

PζNL
n (r)

)

LIr

(

γ

PζNL
n (r)

)

. (72)

Our proof of Theorem1 is completed by plugging (65), (67), (70) and (72) into (61).
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APPENDIX B: PROOF OFTHEOREM 2

The proof of Theorem2 is very similar to that of Theorem1. First, from (6) and (7), we can

reuse (61) as the general result ofpcov (λ, γ) for UAS 2. However,fL
R,n (r) andfNL

R,n (r) should be

specifically derived for UAS 2 as follows.

RegardingfL
R,n (r), we define two events as follows, the joint event of which is equivalent to the

event that the UE is associated with a BS with an LoS path at distancer based on UAS 2.

• EventB: the nearest BS is located at distancer

• EventDL: the BS is one with an LoS path

According to [4], the cumulative density function (CDF) of EventB with regard tor is given by

FB
R,n (r) = 1− exp

(

−πr2λ
)

, (dn−1 < r ≤ dn) . (73)

Hence, taking the derivative ofFB
R,n (r) with regard tor, yields the PDF of EventB as

fB
R,n (r) = exp

(

−πr2λ
)

× 2πrλ, (dn−1 < r ≤ dn) . (74)

The PDFfB
R,n (r) should be further thinned by the probability of EventDL on condition ofr, which

is PrLn (r), so that we can get the PDF of the joint event ofB andCNL as

fL
R,n (r) = PrLn (r)× fB

R,n (r) . (75)

RegardingfNL
R,n (r), we also define two events as follows, the joint event of whichis equivalent to

the event that the UE is associated with a BS with an NLoS path at distancer based on UAS 1.

• EventB: the nearest BS is located at distancer

• EventDNL: the BS is one with an NLoS path

Similar to (75), the PDFfB
R,n (r) should be further thinned by the probability of EventDL on condition

of r, which is
(

1− PrLn (r)
)

, so that we can get the PDF of the joint event ofB andDL as

fNL
R,n (r) =

(

1− PrLn (r)
)

× exp
(

−πr2λ
)

× 2πrλ, (dn−1 < r ≤ dn) . (76)

Our proof of Theorem2 is completed by plugging (75), (67), (76) and (72) into (61).

APPENDIX C: PROOF OFLEMMA 3

Based on the assumption of UAS 1, it is straightforward to derive LIr (s) in the range of0 < r ≤ d1

as
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LIr (s) = E[Ir] {exp (−sIr)| 0 < r ≤ d1}

= E[Φ,{βi},{gi}]







exp



−s
∑

i∈Φ/bo

Pβigi





∣

∣

∣

∣

∣

∣

0 < r ≤ d1







= E[Φ]







∏

i∈Φ/bo

E[β,g] {exp (−sPβg)}

∣

∣

∣

∣

∣

∣

0 < r ≤ d1







(a)
= exp

(

−2πλ

ˆ ∞

r

(

1− E[g] {exp (−sPβ (u) g)}
)

udu

∣

∣

∣

∣

0 < r ≤ d1

)

, (77)

where (a) in (77) is obtained from [4].

Since0 < r ≤ d1, E[g] {exp (−sPβ (u) g)} in (77) should consider interference from both LoS

and NLoS paths. Thus,LIr (s) can be further derived as

LIr (s) = exp

(

−2πλ

ˆ d1

r

(

1−
u

d1

)

[

1− E[g]

{

exp
(

−sPALu−αL

g
)}]

udu

)

× exp

(

−2πλ

ˆ d1

r1

u

d1

[

1− E[g]

{

exp
(

−sPANLu−αNL

g
)}]

udu

)

× exp

(

−2πλ

ˆ ∞

d1

[

1− E[g]

{

exp
(

−sPANLu−αNL

g
)}]

udu

)

= exp

(

−2πλ

ˆ d1

r

(

1−
u

d1

)

u

1 + (sPAL)−1 uαL
du

)

× exp

(

−2πλ

ˆ d1

r1

u

d1

u

1 + (sPANL)−1 uαNL
du

)

× exp

(

−2πλ

ˆ ∞

d1

u

1 + (sPANL)
−1

uα
NL

du

)

. (78)

Based on (78), LIr

(

γrα
L

PAL

)

for UAS 1 in the range of0 < r ≤ d1 can be further written as

LIr

(

γrα
L

PAL

)

=

exp

(

−2πλ

(

ˆ d1

0

u

1 +
(

γrαL
)−1

uαL

du−

ˆ r

0

u

1 +
(

γrαL
)−1

uαL

du

))

× exp

(

−2πλ
−1

d1

(

ˆ d1

0

u2

1 +
(

γrαL
)−1

uαL

du−

ˆ r

0

u2

1 +
(

γrαL
)−1

uαL

du

))

× exp






−2πλ

1

d1







ˆ d1

0

u2

1 +
(

γANL

AL rαL

)−1
uαNL

du−

ˆ r1

0

u2

1 +
(

γANL

AL rαL

)−1
uαNL

du













× exp






−2πλ

ˆ ∞

d1

u

1 +
(

γANL

AL rαL

)−1
uαNL

du






, (0 < r ≤ d1) . (79)

In order to evaluate (79), we define the following integral functions according to [15],
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ρ1 (α, β, t, d) =

ˆ d

0

uβ

1 + tuα
du

=

[

d(β+1)

β + 1

]

2F1

[

1,
β + 1

α
; 1 +

β + 1

α
;−tdα

]

, (80)

and

ρ2 (α, β, t, d) =

ˆ ∞

d

uβ

1 + tuα
du

=

[

d−(α−β−1)

t (α− β − 1)

]

2F1

[

1, 1 −
β + 1

α
; 2−

β + 1

α
;−

1

tdα

]

, (α > β + 1) , (81)

where2F1 [·, ·; ·; ·] is the hyper-geometric function [15].

Our proof is completed by plugging (80) and (81) into (79).

APPENDIX D: PROOF OFLEMMA 4

Following the same approach in Appendix C, it is straightforward to deriveLIr

(

γrα
NL

PANL

)

for UAS 1

in the range of0 < r ≤ x1 as

LIr

(

γrα
NL

PANL

)

= exp






−2πλ

ˆ d1

r2

(

1−
u

d1

)

u

1 +
(

γrαNL

PANL PAL
)−1

uαL

du







× exp






−2πλ

ˆ d1

r

u

d1

u

1 +
(

γrαNL

PANL PANL
)−1

uαNL

du







× exp






−2πλ

ˆ ∞

d1

u

1 +
(

γrαNL

PANL PANL
)−1

uαNL

du






. (82)

Similarly, LIr

(

γrα
NL

PANL

)

for UAS 1 in the range ofx1 < r ≤ d1 can be calculated by

LIr

(

γrα
NL

PANL

)

= exp






−2πλ

ˆ d1

r

u

d1

u

1 +
(

γrαNL

PANL PANL
)−1

uαNL

du







× exp






−2πλ

ˆ ∞

d1

u

1 +
(

γrαNL

PANL PANL
)−1

uαNL

du






. (83)

Our proof is thus completed by plugging (80) and (81) into (82) and (83).

APPENDIX E: PROOF OFLEMMA 5

Following the same approach in Appendix C, for UAS 1, it is straightforward to deriveLIr

(

γrα
NL

PANL

)

for UAS 1 in the range ofr > d1 as
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LIr

(

γrα
NL

PANL

)

= exp

(

−2πλ

ˆ ∞

r

u

1 +
(

γrαNL
)−1

uαNL

du

)

= exp

(

−2πλρ2

(

αNL, 1,
(

γrα
NL

)−1
, r

))

, (r > d1) , (84)

whereρ2 (α, β, t, d) is defined in (30).

Our proof is thus completed with (84).
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