Mincheol Kim

Mincheol Kim
University of Texas at Austin | UT · Department of Mechanical Engineering

About

12
Publications
778
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
136
Citations

Publications

Publications (12)
Preprint
In this study, we present the Differential Spiral Joint (DSJ) mechanism for variable stiffness actuation in tendon-driven robots. The DSJ mechanism semi-decouples the modulation of position and mechanical stiffness, allowing independent trajectory tracking in different parameter space. Past studies show that increasing the mechanical stiffness achi...
Preprint
Full-text available
We introduce a sample-efficient method for learning state-dependent stiffness control policies for dexterous manipulation. The ability to control stiffness facilitates safe and reliable manipulation by providing compliance and robustness to uncertainties. So far, most current reinforcement learning approaches to achieve robotic manipulation have ex...
Article
Having a wide range of achievable stiffness is essential for a robotic manipulator to robustly and safely interact with unknown environments. However, the achievable controller stiffness is fundamentally bounded by the system's passive stiffness, which introduces problems for compliant robots with series elasticity. Since strong passive stiffness i...
Conference Paper
In the research, we propose a cost-effective 3-finger exoskeleton hand motion-capturing device and a physics engine-based hand interaction module for immersive experience in manipulation of virtual objects. The developed device provides 12 DOFs data of finger motion by a unique bevel-gear structure as well as the use of six 3D magnetic sensors. It...
Article
Full-text available
Wrapping-based informed RRT*, proposed in this paper, combines a size-diminishing procedure, i.e., ‘wrapping procedure’ with informed RRT*, which samples random path nodes within a hyperellipsoid. The major and minor axes of the hyperellipsoid are determined by the initial and final configurations and current best solution’s path cost. Wrapping-bas...
Article
An adaptive robot hand (AR-Hand) has a stable grasp of different objects in unstructured environments. In this study, we propose an AR-Hand based on a tendon-driven mechanism which consists of 4 fingers and 12 DOFs. It weighs 0.5 kg and can grasp an object up to 1 kg. This hand based on the adaptive grasp mechanism is able to provide a stable grasp...

Network

Cited By