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Abstract—Memory latency has always been a major issue in
embedded systems that execute memory-intensive applications.
This is even more true as the gap between processor and memory
speed continues to grow. Hardware and software prefetching
have been shown to be effective in tolerating the large memory
latencies inherit in large off-chip memories; however, both types of
prefetching have their shortcomings. Hardware schemes are more
complex and require extra circuitry to compute data access strides,
while software schemes generate prefetch instructions, which if
not computed carefully may hamper performance. On the other
hand, some applications domains (such as multimedia) have a uni-
form and known a priori memory access pattern, that if exploited,
could yield significant application performance improvement.
With this characteristic in mind, we present our findings on hiding
memory latency using the direct memory access (DMA) mode,
which is present in all modern systems, combined with a software
prefetch mechanism, and a customized on-chip memory hierarchy
mapping. Compared to previous approaches, we are able to
estimate the performance and power metrics, without actually
implementing the embedded system. Experimental results on
nine well known multimedia and imaging applications prove the
efficiency of our technique. Finally, we verify the performance
estimations by implementing and simulating the algorithms on the
TI C6201 processor.

Index Terms—Computer-aided analysis, design methodology,
memory architecture, performance, prefetching.

I. INTRODUCTION

OVER THE last decade, significant advancements in
the semiconductor industry have allowed for an un-

precedented increase in processor performance. Continued
exploitation of instruction level parallelism, microarchitectural
innovations, deeper pipelines, and faster clocks are just a few
techniques that have led to increased performance. Unfortu-
nately, innovations in memory system design and technology
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have been unable to achieve the same rate of improvement.
These facts have resulted in a continuously increasing gap
between processor speed and memory latency, which plagues
system developers, especially in application domains where
memory accesses are dominant.

Multimedia computing and image processing are domains
where memory accesses to large off-chip memories are very
frequent. The continued success of media and communications
applications have led researchers [1] to believe that these do-
mains will make up over 90% of the workload on embedded
and general purpose computers. Additionally, media and net-
work processing are an integral part of many consumer prod-
ucts, including DVD players, cellular phones, and PDAs, so ef-
fective computing support is an area of importance for both gen-
eral-purpose and embedded processors. Multimedia and image
processing applications demand high-performance systems to
be executed on, otherwise the real-time requirements are not
going to be fulfilled, resulting in serious performance degrada-
tion. Simply increasing the number of memory ports will im-
prove the performance but at a very high energy penalty for em-
bedded systems.

The importance of the CPU-memory bottleneck has fueled a
great deal of research work in this area, resulting in a multitude
of approaches to help counteract this trend. Of these, some have
proposed improving cache configurations by increasing cache
size, tuning cache block size, or changing cache associativity.
Other approaches involve software-controlled prefetching or
software specifically optimized for cache behavior. Finally,
other approaches involve multithreading, out-of-order execu-
tion, and usage of special access modes. All of these have been
at least moderately successful in reducing memory stall time.

We tackle the problem of hiding the memory latency as
part of a unified and formalized technique called Memory
Hierarchical Layer Assignment (MHLA). This technique ad-
dresses the problem of optimizing the data assignments into
memory layers, as well as the block transfers between memory
layers. Our technique has a global view of the data reuse
search space and selects the appropriate data copy candidates,
together with the appropriate block transfer place (where in
the code) and type (DMA or CPU controlled). This technique
takes into consideration the limited lifetime of data arrays and
temporal locality and finds Pareto-optimal tradeoff points in
terms of on-chip area, performance, and energy consumption.
It employs a prefetch mechanism combined with the DMA
mode that most contemporary embedded systems contain.
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Although prefetching techniques have been proposed since the
mid-1960s, and DMA transfers since the mid-1980s, to the
best of our knowledge until now, nobody has systematically
considered the beneficial opportunities of combining data
reuse possibilities, in-place optimizations, and prefetching
transfers using DMA, tailored to specific application domains.
Even though prefetching is implemented in many compilers
or architectures, the performance improvements are not as
significant because they do not take into consideration all the
optimization possibilities that the application may have. We
illustrate that performance (and power) can be improved by
the combination of optimizing the data memory hierarchy,
prefetching and DMA tailored specifically for the application
under consideration. We prove our claims using nine real-life
applications of three different processing domains, and report
performance improvement of up to 45%.

The rest of the paper is structured as follows. Section II
reports on various ways of tackling the bottleneck that memory
imposes to the system and describes in detail the various ways
of prefetching. Section III introduces the target memory archi-
tecture, while Section IV briefly describes the DMA access
mode. The next section (Section V) analyzes how prefetching
is combined with DMA. The subsequent section (Section VI)
discusses the demonstrator applications and experimental re-
sults, which prove the efficiency of our technique, concluding
with Section VII, where we summarize our findings.

II. HIDING THE MEMORY LATENCY FROM THE

PROCESSOR-RELATED WORK

Among the various techniques used to improve memory per-
formance, prefetching has always been one of the most studied
and apparently promising method. For this reason, a plethora of
different suggestions/implementations have been proposed by
various authors for over 30 years.

Prefetching can be divided into three main classes. 1) Hard-
ware prefetching [2]–[11], where the hardware alone decides
what data to prefetch and when and where to prefetch the data.
2) Software prefetching [12]–[21], where the hardware supports
a prefetching instruction to transfer off-chip elements to on-chip
caches. The user, or compiler, then directs prefetching by in-
serting prefetching instructions into the code. 3) Integrated hard-
ware/software prefetching [22]–[27], where prefetching is being
achieved by the combination of software analysis (profiling) and
specialized hardware circuitry.

Hardware and software prefetching are not novel techniques.
Early work on parallel computing and multiprocessor systems
have suggested and evaluated these techniques, in order to speed
up execution of memory intensive applications on these sys-
tems. The common conclusion is that although prefetching may
hide memory latency, it may as well hamper performance, if
done inappropriately.

A. Hardware Prefetching

Hardware prefetching schemes are more complex and costly
than software prefetching schemes. Furthermore, determining
the stride and achieving the appropriate prefetching lookahead
for a reference can only take place after a certain amount of
execution. Therefore, there will often be more start-up cache

misses in hardware schemes, relative to a software scheme, be-
fore the hardware scheme reaches the appropriate steady state.
Finally, conservative implementation, in order to keep a gen-
eral purposeness, and limited scope of the applications, are two
major drawbacks of the hardware prefetching.

Hardware prefetching initially focused on simple alterations
on the on-chip caches; researchers used to add extra circuitry
to perform the prefetch function. Enger [2] was the first to pro-
pose such a scheme, which was prefetching a fixed number of
cache pages. After some years, Bennet et al. [3] also proposed
some hardware alterations to existing caches and introduced
prefetching priorities. Lee et al. [4] also conducted another hard-
ware prefetching research work, and reported limitations on ex-
isting prefetching techniques on shared memory multiproces-
sors; they suggested a hardware-controlled prefetching scheme,
with the characteristics of long cache lines and instruction look-
ahead. Existing hardware prefetching schemes have also been
studied in detail by Smith [5], who introduced the fetch bypass
(or load through), and analyzed the cache memory pollution due
to expelling cache lines, which are more likely to be referenced.
Jouppi [6] addressed hardware prefetching by using one or more
special caches (called stream buffers) to prefetch after a miss in
the normal direct mapped cache. However, for large strides the
prefetch proved to be inefficient. Baer and Chen [7] described a
multiprocessor prefetching method based on branch prediction
using a look up tup table that keeps track of the access history.
Fritts [8] was one of the researchers that proposed a hardware
scheme, with preliminary promising results, but with increased
extra circuitry, prefetching to all levels of memory with no co-
herency control.

Hardware prefetching is still an open issue. Recently,
Lusecky and Vahid [9] introduced a bus wrapper with a
prefetch unit, in order to speed up execution, but limited inside
the CPU core. Cucchiara et al. [10] has proposed a costly
dynamic hardware prefetching scheme, which increases the
memory bus accesses. Finally, Zhuang and Lee [11] have
proposed the use of extra circuitry as a filtering mechanism for
prefetches to avoid cache pollution, which may be inefficient
for applications requiring large amounts of off-chip memories.

B. Software Prefetching

Apart from the hardware prefetching scheme, many re-
searchers have suggested the use of software prefetching.
Software prefetching schemes require less hardware support
than hardware schemes. Therefore, a software scheme can have
a cheaper implementation. A software scheme, however, must
generate address calculation instructions and a prefetch in-
struction for each datum that needs to be prefetched. Therefore,
code size increases both statically and dynamically. Most of
these schemes are similar and they only differ in their level of
sophistication and in where the prefetched data is placed.

The pioneer work in software prefetching was conducted by
Porterfield [12]. In his dissertation, Porterfield presented a com-
piler algorithm for inserting prefetches. This was implemented
as a preprocessing pass that inserted prefetching instructions
into the source code. He recognized that this scheme was is-
suing too many unnecessary prefetches, and presented a more
intelligent scheme based on dependence vectors and overflow
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iterations [13]. Since the simulation occurred at a fairly abstract
level, the prefetching overhead was estimated rather than pre-
sented. Overall performance numbers were not presented. Also,
the more sophisticated scheme was not automated (the overflow
iterations were calculated by hand) and did not take cache line
reuse into account.

The benefits of software prefetching have been recognized in
the last decade, and for this reason most contemporary micro-
processors support some form of fetch instruction that can be
used to implement prefetching [14]–[16]. The implementation
of a fetch can be as simple as a load into a processor register
that has been hardwired to zero. Slightly more sophisticated im-
plementations provide hints to the memory system as to how the
prefetched block should be used.

The most extensive software prefetching study is by Mowry
et al. [17]. Software prefetching in a multiprocessor context has
been studied by Mowry and Gupta [18], in which they insert by
hand the prefetching instructions. Another form of prefetching
in multithreaded processors was introduced by Luk [19], in
which he proposed a compiler algorithm for locality analysis
and explicit pre-execution scheduling for some critical parts of
the code, which may flush important data increasing the cache
miss ratio.

Finally, it is worth mentioning that state of the art compilers,
such as GCC 3.1 [20] and INTEL Compiler 8.0 [21], sup-
port software prefetching. Specifically, both compilers have a
function _builtin_prefetch that minimizes cache-miss
latency by moving data into a cache before it is accessed. The
compiler or the user inserts these function calls and, if the target
processor supports software prefetching, then the CPU may use
these hints.

C. Hardware/Software Prefetching

Integrated software and hardware prefetching is another
class of prefetching. Software prefetching relies exclusively
on compile-time analysis to schedule fetch instructions within
the user program. In contrast, the hardware techniques initiate
prefetching opportunities at runtime without any compiler or
instruction set support. Noting that each of these approaches
has its advantages, some researchers have proposed mecha-
nisms that combine elements of both software and hardware
prefetching.

Gornish and Veidenbaum [22] were the first researchers to
suggest combining the hardware and the software to outper-
form existing prefetching schemes. They described a variation
on tagged hardware prefetching, where the compiler calculates
at compile time what will be prefetched and when. Chen [23]
was another researcher that suggested the use of a prefetch en-
gine in a similar work. Xia and Torrellas [24] identified that the
data cache is a bottleneck to multiprocessor systems and they
suggested an integrated hardware/software technique to elimi-
nate data cache misses. Chiou and other researchers at the Mas-
sachuchettes Institute of Technology (MIT) [25], addressed also
the problem of prefetching in multilevel memories using dedi-
cated prefetch engines. Wang et al. [26] proposed a coopera-
tive hardware-software prefetching scheme called Guided Re-
gion Prefetching, where they reported that not every off-chip

data should be prefetched, but only some data, avoiding cache
pollution and keeping bus contention low, by prefetching when
the memory bus is idle. Although their work is general, it is not
application specific and data reuse or in-place optimizations are
not handled. Furthermore, the accuracy is not high (52%–81%)
and sometimes the aggressive prefetching displaces useful data.

Finally, Al-Sukhni et al. [27] suggested that to achieve more
efficient prefetching, it should be tailored to the needs of the
specific application.

To our knowledge, no one has combined the opportunities
for data reuse and in-place optimizations with DMA-based
prefetching in an automatizable exploration technique for
real-life applications, where the steering does not need to be
done by the designer. Moreover, our approach presents to the
designer all possible tradeoffs in terms of energy or perfor-
mance or on-chip memory space, taking into consideration
the characteristics of every layer of the memory hierarchy,
data reuse possibilities, in-place opportunities, contention of
memory bus, and scheduling of block transfers. Our tech-
nique allows finding the optimal assignment, respecting the
constraints that are imposed in a predictable way for both mem-
ories and hardware caches, as well as the optimal prefetching
opportunities for every block transfer.

III. TARGET MEMORY ARCHITECTURE

The MHLA technique that we present here is part of the
A Toolbox for Optimizing Memory I/O Using geometrical
Models (ATOMIUM) tool suite [28], which supports the Data
Transfer and Storage Exploration (DTSE) methodology. DTSE
is a systematic, step-wise, system-level methodology for opti-
mizing data dominated applications for memory accesses and
memory consumption [29]. The main goal of the methodology
is to start from the source code specification of the application
(e.g., in the C language) and determine an optimized execution
order for data transfers, together with an optimized memory
mapping for the data (on a potentially predefined or customized
memory organization). Concerning the target memory archi-
tecture, the tools of ATOMIUM are flexible; various multilevel
memory architectures can be used, consisting of scratch pad
memories and caches.

Although the MHLA technique is general and can be used
in many memory architectures, we have used a specific ar-
chitecture for our experiments. Our memory architecture is
a simplified version of the one used in TMS230C6000 DSPs
[30] (Fig. 1). We selected this platform because we also have a
TIC6201 developer’s board, which allowed us to compare our
estimations with real measurements. This platform consists of
a ’C6000 CPU core with two independent 32-bit data paths for
accessing on-chip or off-chip memory, two blocks of on-chip
memory, a program/data bus, a peripheral off-chip DMA
controller and an external memory. On-chip memory varies
and is one of the variables that our prototype tool explored
during its execution. On the data bus, a data memory controller
is introduced, which services requests to internal memory by
either the CPU or the DMA. Off-chip and on-chip memory are
used in a continuous memory map, which means that some
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Fig. 1. In our MHLA technique, we are able to use a platform description file to
describe many popular architectures. In this research work, we use the memory
architecture of the TI C6201 as an exploration platform.

memory addresses are located in the on-chip space, some are
reserved, and some are located off-chip.

IV. DMA OVERVIEW

Memory transfers between peripherals or off-chip memory
and main processors can be achieved in many modes. One mode
is the DMA [31] that is supported by a lot of contemporary ar-
chitectures. In order to support this mode, a special hardware
engine is used, which is called a DMA controller. We selected
the DMA controller that is used in the C620x/C670x DSP se-
ries of Texas Instruments (TI), because we have at our disposal
a TI C6201 DSP board. DMA controllers are similar between
vendors, therefore, the estimations of our tool are applicable to
non-TI-based architectures as well.

Initiating a DMA transfer is a bit complex and it depends
on the architecture used. A number of registers have to be set
and a DMA_START request has to be given to the DMA en-
gine. The CPU can operate concurrently with the DMA as long
as there are no data dependencies. Every DMA_START has
an associated DMA_WAIT statement that is usually placed as
late as possible, but no later than the place that the specific
data transferred through DMA is required by the processor. Ide-
ally the transfer would have been completed by the time the
processor reaches the DMA_WAIT and, thus, no cycles will
be spent stalling. However, putting the DMA transfer earlier,
requires more on-chip memory space. This side effect arises
from the increased life time of on-chip memory data, rendering
in-place mapping techniques for memory compaction less ef-
fective [29]. In realistic cases, a complete removal of the stalls
is not always possible, which means that some cycles are spent
in DMA_WAIT statements. Alternatively, another thread could
be initiated. Of course, interleaving of processing threads could
also result in an overhead, so a tradeoff is present that is not fur-
ther explored in this paper.

Usually, in current embedded systems, more than one DMA
channel is available to the developer. The DMA channel with
the lowest number (i.e., DMA0) is the channel with the highest
priority, and vice versa. The highest priority means the DMA

engine will first execute this block transfer and, next, the DMA
with the lower priority.

V. PREFETCHING COMBINED WITH DMA

To alleviate the bottleneck of the memory latency, we pro-
pose a unified technique that incorporates many characteristics
that are absent in all related work on prefetching. On one hand,
these characteristics increase the flexibility of exploration of the
memory assignments and scheduling, while on the other hand,
extensively optimize the performance and energy consumption.
In order to use our prefetch technique combined with DMA, two
additional key points are to be decided: what are the prefetching
candidates and how to effectively use the DMA mode for the
block transfer of these candidates.

A. Prefetching Candidates

In order to specify the prefetch candidates, we put additional
features into our prototype MHLA tool [32]. MHLA explores
all different copy candidates of arrays and selects the most
efficient ones for the given memory constraints, using accurate
cost models of the ATOMIUM suite. In order to select the copy
candidates, in-place optimizations are used to reduce memory
size requirements. Arrays and copy candidates are assigned
to specific memory layers in an exploration phase, estimating
what the energy consumption and performance improvement
and selecting the most efficient ones. The exploration process is
guided through a number of heuristics, significantly decreasing
the time required to reach optimum solutions. Not a single solu-
tion, but a pool of different solutions, is selected and presented
to the designer in the form of Pareto points.

MHLA did not consider prefetching (or time extensions as we
call it) when it was first presented [32]. This has forced us to add
an important extra functionality to our technique, as well as to
this prototype tool. In order to incorporate prefetching combined
with DMA transfer, some features were added. Specifically, we
added performance estimations of prefetching to block trans-
fers, an experimental DMA model based on TI measurements,
on-chip memory size estimation of prefetching, and life-time
analysis of prefetch candidates. The MHLA tool takes advan-
tage of temporal locality and limited lifetime of the memory ar-
chitecture constraints, while taking into account the copy over-
head, and explores all the possible different layer assignments.

Prefetch candidates or copy candidates (CC) can be identified
automatically in the MHLA tool by using a geometrical data
reuse analysis technique [33]. The output of this technique is
a file which describes the size of every buffer, the number of
accesses that can be captured by this buffer, and the number of
accesses required to fill this buffer (called misses). The ratio of
these two numbers is the reuse factor. This output can either be
created automatically using the MHLA tool or can be created by
the user manually. In our current work, prefetching candidates
are limited to arrays that are reused. Thus, we select prefetching
candidates for arrays that have a reuse factor greater than one.
Of course, this is not a hard constraint and can be lifted in a
future version, if we consider that arrays that are not reused
have a reuse factor of one (every element is written once and
is read once). From the list of all possible prefetch candidates
(and their combinations), the selection is based using energy and
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performance heuristics, which will not be described here, due to
lack of space.

B. Using DMA Transfers

Any selected prefetch copies can be implemented in the code
in such a way that the CPU controls the transfer (using for-loop
or the “memcopy” function), or it can be implemented in a
DMA transfer mode. The second key point is to replace these
memcopy commands with DMA commands. A DMA transfer
consists of a DMA_START and a DMA_WAIT command. The
DMA_START command instructs the DMA controller to start
the DMA transfer for a given block size, from a specific off-chip
(or on-chip) memory address to a specific on-chip (or off-chip)
memory address. The DMA_WAIT command is a crucial point
in the DMA implementation. In the DMA_WAIT command, the
processor stalls, waiting for the DMA transfer to be completed.
When the DMA transfer is completed, the processor can resume
the execution of the application. The DMA_WAIT statement
usually is placed after a computationally intensive nested loop.
Thus, while the CPU is performing the computations, the DMA
engine performs the memory transfer.

The core of the proposed approach is to hide the prefetch op-
eration for the CCs from the CPU using DMA, and to select the
best matching CCs. This means that the DMA transfer must take
place in parallel with a CPU computational task. Thus, when
the CPU finishes the computation and continues the execution
of the program, the off-chip data that will be required will have
been transferred to on-chip memory and available. This results
in hiding the off-chip memory access latency. In our MHLA
tool, we have incorporated two DMA transformations that can
be used to increase the flexibility of the technique, and achieve
greater performance gains: DMA priorities and DMA pipeline.

1) DMA Priorities: All contemporary DMA controllers sup-
port multiple DMA priorities. When it is required to prefetch
more than one array, we have to use multiple DMA priorities.
Assuming that we want to start a DMA [DMA(2)] transfer in ad-
vance, but in that loop another DMA transfer exists [(DMA(1)],
which prohibits us to use the same priority (DMA transfers can
not have the same priority simultaneously), and forces us to use
different priorities. DMA transfer [DMA(2)] has to be initiated
using a lower priority. As long as the DMA(1) is active the
DMA(2) is suspended.

Generally speaking, DMA priorities enable us to schedule
DMA transfers over long loops with low priorities, and in the
nested loops of this loop to schedule DMA transfers with higher
priorities. When the application enters the big loop, the DMA
with low priority is activated. After some time, the program
counter reaches a nested loop of the loop that has a DMA
transfer. The first (low-priority) DMA is suspended, allowing
the high-priority DMA of the nested loop to be completed.
When the high-priority DMA completes, the low-priority
DMA transfer resumes. DMA priorities are used to simplify
DMA transfer scheduling and to allow greater exploitation of
the loops. In our tool, we estimate the critical path of every
loop and the time required for a DMA transfer, allowing us to
schedule DMA transfer with loops of similar (or less) cycles.

In our technique, DMA priorities are used as follows. If we
want to prefetch an array to on-chip layers, then we use the

highest DMA priority. If another array needs to be prefetched
in a coincident time period with a second array, then the array
that belongs to the innermost loop has the highest priority. This
is valid for two reasons. First, the array of the innermost loop is
usually much smaller in size than the array in an outer loop, and
thus, the DMA transfer of it will be much faster, which means
the DMA channel (or, in other words, the DMA resource) will be
released quicker. Second, arrays belonging to innermost loops
are usually arrays that will be accessed much more often and
in very short periods of time, than arrays belonging to higher
loop levels. Thus, it is important for these arrays to be on-chip
before they are accessed. A question that arises is, what hap-
pens when two arrays that need to be transferred using DMA
belong to the same innermost loop. In that case, our architec-
ture supports multiple concurrent DMA transfers which solves
our problem. In the case that our architecture supports less con-
current DMA transfers, then we have to select what array will
have the highest priority. In our technique, we believe that, in
this specific case, the bigger the size of the array the higher pri-
ority it should have, because DMA usefulness is increased with
the size of the DMA transfer (the bigger the DMA transfer the
greater the performance savings). If all arrays have the same size
then there is no point in selecting a specific one and we chose
randomly. Note that the fact that both of the arrays belong to
the innermost loop means that both of these arrays should be
present by the time they are executed. If one of these arrays is
not present in the on-chip memory, then the CPU will stall in the
off-chip to on-chip access. This means that the selection of the
arrays that will be fetched first (the one with the highest DMA
priority) is not a crucial decision.

2) DMA Pipeline: Sometimes a DMA transfer can not be
initiated early, due to existing data dependencies. In that case,
DMA pipeline can be used to find another solution (which will
increase on-chip memory size, but may improve performance).
If the pipelined version is a new Pareto point, it should be in-
cluded in the Pareto graph with the nonpipelined version.

DMA pipeline creates tradeoffs between on-chip memory
size and performance, which we explain using an example
(Fig. 2). In this example [Fig. 2(i)], a DMA operation transfers
elements from an off-chip memory (off-chipA) to an on-chip
memory (on-chipB of “size” bytes). In the subsequent loop,
a dependency prohibits the masking of this DMA transfer by
moving the DMA_WAIT statement after the loop. This code
requires on-chip size of (declaration of array
[Fig. 2(i)]). The DMA transfer in this code is not done in
parallel with a computational loop because a data dependency
exists on array . In order to break this dependency,
loop pipelining is employed and is doubled in size
[Fig. 2(ii)]. Moreover, in the same figure, we illustrate that the
first iteration of the DMA transfer is unrolled in order to create
the DMA pipeline. This results in the situation, when the CPU
computes the motion vectors of the current iteration, the DMA
operation transfers elements of the next iteration. The depen-
dency is now broken and the DMA_WAIT statement is moved
to the end of this loop nest [Fig. 2(iii)]. Again, this DMA0_wait
statement has to be evaluated and measured in terms of CPU
cycles spent stalling there. A successive DMA hiding opera-
tion will have zero cycles spent waiting at the DMA_WAIT
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Fig. 2. Sometimes data dependencies prohibit prefetching. In these cases, DMA pipeline can be used to break the dependencies and initiate in advance the
prefetching transfer with some penalty in terms of on-chip memory size.

Fig. 3. MHLA can estimate whether a DMA pipeline is beneficial for performance, with some penalty in on-chip memory size, in seven steps.

statement. Finally, the first DMA0_wait statement, which is the
prepipeline context, can not be masked due to dependencies.

The implementation of the DMA pipeline, in the MHLA tech-
nique, is done in seven steps (Fig. 3). After the selection of
all copy candidates and the allocation of on-chip size, and the
decision of where DMA transfers will be used, another phase
follows, which target performance improvements through the
DMA pipeline. Note that in the prototype tool MHLA, no al-
gorithmic transformations occur but the performance and the
on-chip memory size are estimated. First, we locate the DMA
transfer that could not be moved earlier due to data dependen-
cies. The DMA pipeline is used only on DMA block transfers
that have data dependencies and, thus, they can not be moved
earlier. This DMA transfer will belong to a nested loop of a spe-
cific loop-level (e.g., ) and will transfer elements required for
the loop that follows in the subsequent level (e.g., ). Second,
we double the size of the CC that the DMA transfer copies data.
In our current implementation, we only consider pre-fetch and
not post-write, thus, DMA transfers are used only to transfer
elements from off-chip to on-chip memory. Third, we split the
DMA operation in the pipeline stages: a prologue phase that
can not be moved and transfers the initial data on the first half
of the on-chip array; and in a main body, similar with the first,
that transfers all the elements of the subsequent iteration of that
nested loop level to the on-chip array (to the other half of this
array). Note that the size of the on-chip array has been doubled
and, thus, it can hold data required for two iterations. Fourth, we
check whether a DMA operation is already done in loop . If
another DMA transfer is done in loop then the priority of
the new DMA operation must be lower. It is logical, but we have

also validated this with experiments, that the greater the level of
the nested loop level the DMA operation is scheduled, the higher
the priority it should have. Fifth, we schedule the stages and we
put the pipelined DMA operation in the beginning of the loop

and the DMA_WAIT in the end of the loop . Sixth,
we compute the old and new performance. We estimate both the
cycles of the DMA operation, using in-house mathematical for-
mulas, and the critical cycles needed for the computational loop,
using functions from the tool Storage Bandwidth Optimization
[34]. In our technique no algorithmic transformations have been
done; only the prototype tool MHLA is used. The cycles needed
for the pipelined loop will be the cycles needed for the prologue
phase added with the higher number of cycles of the DMA op-
eration or execution cycles of the computational loop (note that
they are happening in parallel). In that case, we know the perfor-
mance and on-chip memory size before and after DMA pipeline.
In the seventh step, we compare the estimated performance with
and without pipeline. If we have a new Pareto point, then we add
this to the list of Pareto points and MHLA continues working
with the next DMA block transfer (BT), until all DMA trans-
fers have been examined.

The position of the DMA_WAIT statement is crucial to the
system performance because if the DMA_WAIT statement is
placed early, the DMA transfer will be incomplete and CPU will
stall waiting for the transfer to be completed. If the DMA_WAIT
statement of array is placed after the read access of this array,
then the DMA transfer of elements of from off-chip to on-chip
may not have finished by the time the elements from the off-
chip memory are needed, resulting in accessing invalid memory
positions. The position of placing the DMA_WAIT statement
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together with the DMA_START statements are very crucial and
affect performance directly.

C. Estimating Performance and Energy Improvement

Our MHLA technique carries out a fast estimation of the
performance and energy improvement and can quickly deter-
mine the optimal implementations. Every implementation is
described by the selection and assignment of the arrays and the
prefetching candidates into the multilayer memory architec-
ture. In order to perform the estimations, we use some profiling
information (number of accesses for every array and where in
the code they are happening). This profiling information has
been extracted using the ATOMIUM tools. Once we profile
the application, we use the MHLA tool to estimate various
assignments into the memory layers. Note that no actual mod-
ifications are done to the code. The estimations are obtained
using some user-defined energy and performance functions.
These functions should follow two basic principles: 1) an
off-chip access is more expensive, both in energy and in time,
than an on-chip access, and 2) a bigger memory is slower and
less energy efficient per access than a smaller one. Concerning
the energy estimations, we are using a modified version of
cache access latency and power estimation tool (CACTI) [35],
which has been slightly altered according to data sheets from
our industrial partners.

Generally speaking in this context, we do not care to provide
energy and timing estimations closely to hardware implementa-
tion, because we perform a faster exploration. In this high-level
exploration, only relative numbers and gains are required. As
it was proven by the experimental results, if an estimation pin-
points one solution as better than another, then this will also be
valid when the solutions are implemented. The estimated and
measured numbers will differ but the optimal solutions will be
the same.

Our tool can quickly explore all different tradeoffs for a given
memory size in terms of performance and energy consumption.
In order to achieve this, it uses heuristics which pinpoint the so-
lutions to be estimated, along with estimators to compute the en-
ergy and performance gains. If either the energy consumption or
the performance, is better than any other previous solution (for
the same memory size), then this is a new Pareto-optimal point.
The exploration continues until either all the possible combi-
nations have been explored, or a user defined time-limit has
passed.

VI. DEMONSTRATORS AND EXPERIMENTAL RESULTS

Our experiments were performed using real-life applications
of motion estimation, video encoding, and image processing do-
main. Specifically, our demonstrator applications belong to the
following three categories: (A) Motion Estimation (ME) Ker-
nels: 1) full search (FS) [36]; 2) hierarchical search [37]; 3) par-
allel hierarchical one-dimensional search [36]; 4) 3-step loga-
rithmic search (3SLOG) [36]; 5) spiral search [38]. B) Video
Encoding: 6) quadtree structured difference pulse code mod-
ulation (QSDPCM) [39]. C) Image Processing Algorithms: 7)
cavity detection [40]; 8) wavelet [41]; and 9) three-dimensional
shape reconstruction (3-DR) [42].

Nine applications of different domains have been selected as
test vehicles to evaluate our technique: five multimedia algo-
rithms, one video encoder, and three image processing algo-
rithms. The ME algorithms are fundamental multimedia algo-
rithmic cores used in many embedded systems. The QSDPCM
is an interframe compression technique that uses a hierarchical
search and implements a full video encoder. This application
has similar complexity with MPEG2 and it is not a simple code.
In addition, we examine cavity detection, which belongs to the
medical image processing domain. It is used to detect tumor
cavities in computed tomography pictures of the brain. Further-
more, we examine one of the subalgorithms of a 3-D image
reconstruction algorithm [42], which is 600.000 lines of C++
code. Finally, we include in our test vehicles a 5-level 9/7 tap
row/column inverse wavelet transformation algorithm.

Concerning the experimental setup, all the estimations and
measurements are performed using typical and representative
parameters of these applications. Our experiments for the mo-
tion estimation algorithms are carried out using the luminance
component of QCIF (144 176 pixels), CIF (288 352 pixels),
and D1 (576 720 pixels) frames of the sequences of two suc-
cessive frames with the name “Akiyo,” “Tennis,” and “Barb,”
respectively. A reference window is selected to include 15 15
pixels , where is the search space. Our
experiments for the cavity are carried out using two medical im-
ages of a human brain; one at 640 400 pixels and one at 1280

800 pixels. The 3-D image reconstruction used as input pic-
tures of 640 480 pixels. Finally, the input to the wavelet is a
picture named “lena” with dimensions 512 512 pixels.

We used our prototype tool to explore different allocations
and assignments of arrays to memory layers, yielding all the
tradeoffs in terms of performance, power dissipation, and
on-chip memory size. Additionally, we validated our estima-
tions using an instruction set simulator, which reported the
same performance improvements. Finally, in order to further
analyze and confirm our findings, we ported one application
(QSDPCM) to a hardware development board, which confirmed
again our initial estimations.

A. MHLA Estimations

The MHLA prototype tool that implements the presented
technique, performs an automatic analysis and exploration to
discover all the performance, energy consumption, and on-chip
memory size tradeoffs. Energy and performance estimations
are done only for the memory accesses and not for the CPU.
Memory energy dissipation is the dominant contributor in the
overall system characteristics, and it is believed to be 50%–80%
of the overall system power consumption [29]. Thus, optimizing
the memory energy consumption results in gains for the whole
system. This is also true for the performance of the system. We
have not yet developed models for the CPU power consumption
and performance and, thus, we can not estimate the system’s
power consumption and performance. It is expected though,
that the memory optimization will optimize to a great extent
the embedded system.

The outputs of the MHLA tool are a number of optimum
implementations (tradeoffs) for specific architectural platform
descriptions. For example, considering the wavelet application
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Fig. 4. While the increase of on-chip memory reduces overall energy consump-
tion, after some application-dependent memory size, the energy consumption
starts to increase without performance gains. In Wavelet, this is noticed after 64
bytes.

Fig. 5. MHLA estimates tradeoffs between performance and energy consump-
tion for different memory assignments, for using prefetching/DMA or not. The
use of prefetching on CAVITY shows that, for the same energy consumption,
prefetching can boost performance up to 31%.

after a fast exploration of different memory assignments,
MHLA estimates the various tradeoffs (Fig. 4), helping the de-
signer decide what implementation suits better for his product.
In our case, we found out that further increase of the L1 size
of 64 bytes does not improve performance, since all important
arrays and copy candidates have been assigned to on-chip
memory. Increasing the on-chip memory size will improve
performance by some cycles, but it will deteriorate power
consumption. For increased on-chip memory sizes, the power
consumption of on-chip memory is becoming a dominant
power contributor.

The MHLA tool also supports prefetching with DMA (or time
extensions as we call it), which improves the performance even
further. Even though optimum assignments are found and re-
ported to the user, enabling prefetching (where this is possible)
increases the performance gains for the same power consump-
tion. The performance/energy estimations on CAVITY (Fig. 5),
show the optimum implementations in terms of performance for
an architecture with and without using prefetch. If prefetch is
enabled, then performance is increased from 10% up to 30%
for the same energy dissipation. We gain in performance be-
cause the block transfers are scheduled in parallel with pro-
cessing loops and are implemented using DMA transfer. The

Fig. 6. Taking into consideration the prefetching opportunities, enables further
optimization of the application. Here, we see performance estimations of 3-D
reconstruction for different L0, L1 sizes, with and without prefetching.

Fig. 7. Energy and performance improvement is similar for different sizes of
input frames.

energy consumption stays the same because our tool estimates
power based only on accesses to the memory hierarchy. Power
consumption spent in CPU or in DMA controller is not mod-
eled. However, it is anticipated that using DMA for block trans-
fers, power savings can occur, as it will be discussed later in this
section.

Similar results exist for 3-DR, where we performed an
exhaustive exploration for different on-chip L0 and L1 sizes
(Fig. 6). Estimations show that prefetching increases 3-DRs
performance up to 15% for the given memory characteristics.

In order to investigate the effect of input images of dif-
ferent sizes, we used MHLA to estimate the performance and
energy dissipation of our selected applications for different
commonly used frame sizes. We selected the most common;
QCIF (176 144), CIF (352 288), and D1 (720 576). The
estimations reveal that the energy and performance relative
gains are similar for the same on-chip memory (of course
the absolute energy dissipation and performance numbers are
different). For example, in the QSDPCM (Fig. 7), using an
on-chip memory size of 1024 bytes has an average performance
gain of 74.74% and an energy gain of 81.95% for input frame
of D1 dimensions, compared with an architecture without any
on-chip memory. The same gain is achieved for CIF input
frame (energy and performance gain of 81.88% and 75.46%,
respectively), and QCIF input frame (energy and performance
gain of 82.50% and 75.30%, respectively).
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Fig. 8. Measured gains on TIC6201 validate the fast MHLA estimations and
show the benefits of using prefetching on an optimum memory assignment.

B. Simulating MHLA Solutions on TI C6201

In order to evaluate the quality of the estimated results, we
used one popular instruction set simulator (ISS); Code Com-
poser Studio [30] for simulating the TI C6201, which provides
a very detailed simulation (it simulates DMA transfers). This
is a design environment for embedded processors based on TI.
Performance measurements that are obtained through the sim-
ulation with this IIS are very close to real measurements, and
provide a precise method for profiling applications that will be
ported to TI processors. The drawback of using this embedded
development suite, is the actual long execution time (simula-
tion) of the image.

The TIC6201 measurements are taken as follows. Initially,
MHLA performs an exhaustive exploration of an application
for varying on-chip sizes, for our specific architecture descrip-
tion. The output is the list of arrays and copy candidates that are
placed on-chip and the arrays that are placed off-chip, together
with the performance (and power) estimation of this memory
allocation. In order to compare the estimations with simulated
measurements, we are implementing these solutions by making
algorithmic transformations to the C code of every application.
Thus, for every application, different (transformed) versions are
created, which have the same functionality. The transformations
involve the insertion of additional arrays, namely copies, which
are copies of arrays that are placed on the off-chip memory. The
transfer of data elements from off-chip to on-chip is done using
DMA instructions, specific for the processor that we are using.
We also performed loop unrolling and pipeline in the trans-
formed algorithms, in order to better utilize the DMA mode. The
applications are compiled using normal compiler flags( O2).

The estimated results obtained from MHLA are compared
with the implemented and simulated (measured) results, ob-
tained by the IIS (Fig. 8). The figure shows relative performance
improvement of both estimated and simulated results. Evidently,
our technique overestimates the performance improvement that
can be achieved for a specific memory assignment. This is due
to the fact that MHLA considers only the time spent in memory
accesses (on-chip or off-chip), which even though it is the dom-
inating factor in the overall performance, it is not the only one
factor. Control overhead or other CPU delays also plays a small
part.

The general conclusion is that the real measurements follow
the estimated results of MHLA. Even though the performance

Fig. 9. CPU stall cycles in DMA_WAIT statements are negligible compared to
the total cycles of every application, showing that prefetching has been hidden
effectively.

improvement is not the same, when MHLA estimates an op-
timum solution, this is indeed an optimum implementation in
reality, because it is validated by the IIS. The values depicted
(Fig. 8) show the percentage of the performance improvement,
compared with the original (1-performance_optimized/perfor-
mance_original). PHODS, FS, and QSDPCM have the highest
average measured performance improvement (57%, 46%, and
47%, respectively), because they have computational intensive
loops that can effectively hide the DMA transfers from off-
chip to on-chip layers that are happening at the same time. Fur-
thermore, significant improvements are measured on all of our
test benches, indicating that prefetching is most beneficial when
prefetching is done after a thorough exploration of different
memory allocation and assignments of the multidimensional
signals of our applications.

A measure of the efficiency of the DMA mode is the cycles
of the CPU that are spent in stalling during the DMA_WAIT
statement. An efficient DMA implementation depends on the
minimization of the cycles spent in the DMA_WAIT (Fig. 9).
It can be easily seen that the number of cycles spent is indeed
very low; for example, QSDPCM application has only 14 954
cycles in CPU stalling during the DMA_WAIT, which is a very
small percentage of the total cycles in the optimized application
( 1%). If DMA wait cycles are significant, then it means that
DMA/prefetch transfers are not hidden from the processors, and
that they are scheduled with processing loops that take much
fewer cycles compared to the DMA prefetch that is happening
in parallel with them.

C. Prefetching on TI Board

In order to further validate our claims that prefetching pro-
vides significant benefits when it is done in a general framework
of memory optimization, we have actually implemented a solu-
tion that MHLA has pinpointed as one of the optimum for the
QSDPCM application, and uploaded the code to a TI C6201 de-
velopment board that was at our disposal. This cumbersome pro-
cedure leads us to take real implemented performance measure-
ments (Fig. 10), which again validate our claims. In addition,
this task enabled us to see the different performance improve-
ments that are achieved by using prefetch or DMA. Specifically,
after performing some initial loop transformations according to
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Fig. 10. Significant gains can be achieved using prefetching, DMA, and
pipeline. On QSDPCM, gains up to 75% were measured on a TI C6201
development board.

Fig. 11. Although prefetching and pipeline are beneficial to performance, they
slightly increase the on-chip memory size. On QSDPCM, a performance boost
of 75% is achieved by pipeline and prefetching combined with DMA, which
increases the on-chip memory size by 25%.

the ATOMIUM [29] framework and introducing some copy can-
didates which were pinpointed by MHLA, we achieved a gain of
43.89% over the original (out of the box) code. Prefetching some
copy candidates from off-chip to on-chip memory, allowed us
to achieve an additional 15% performance increase. Transfers
from off-chip to on-chip memory were CPU controlled (using
“for-loops”). In the next step, we made all the transfers of the
copy candidates to be DMA transfers, which boosted QSDPCM
performance by 9%. We combined DMA and prefetch on the
next step and this resulted in an additional 5% performance
increase. Finally, in order to break some data dependencies,
we used pipeline in some cases, which resulted in 75% per-
formance improvement over the original out of the box code.
Concerning the compilation process, we used the standard opti-
mization flag O2.

Using prefetching or pipelining prefetching has an impact on
the on-chip memory size (Fig. 11). Assigning some arrays and
CCs to on-chip layers, the on-chip memory size is 2048 (no
prefetch or DMA). If DMA is used to speed up the transfers,
on-chip memory remains the same but performance is improved
(Fig. 10). Using prefetching, or in other words transferring off-
chip data to on-chip data before they are requested, where data
dependencies allowed it, increased the on-chip memory size to
2348 bytes. Finally, further increase in performance was ob-
tained when loop pipeline was incorporated to break some de-
pendencies, allowing us to prefetch large block transfers much
earlier. This increased on-chip memory used in 3304 bytes, but
allowed us to achieve a 75% performance boost.

All these tradeoffs are estimated in advance using the MHLA
technique in a fast and accurate way. It is not necessary for the
designer to implement his applications, which is very costly
in terms of effort, in order to see all these different choices.
MHLA finds all these different choices. Different choices lead
to different performance, on-chip memory requirements and
power consumption. Thus, the designer can study the global
tradeoff curve, and decide the implementation that best fits his
constraints in an early phase of his design.

The MHLA technique optimizes the performance and en-
ergy consumption of the memory architecture. In multimedia
and image processing domains, the memory architecture is the
dominant part in both energy consumption and performance
[29]. Thus, the optimization of the memory architecture, in these
applications, leads to optimization of the whole system. Con-
cerning the performance optimization, this was verified by the
TI Code Composer I.S.S. and by the TI board.

Our optimized allocation and assignment solutions, for the
memory hierarchy, optimize the system concerning the energy
consumption. Even though we do not have any quantitative way
to prove this, we can support our claim as follows. First, in
memory intensive applications, the energy consumption opti-
mization of the dominant contributor (memory) is very likely to
lead to overall optimization of the system. Second, TI has pub-
lished an application report [43] that analyzes the power con-
sumption on the TI devices and peripherals. This report shows
that the C6201 core consumes 49% of total power consump-
tion of the system for high- or low-activity models, while pe-
ripherals (such as the DMA controller) consume 1% of the total
power consumption and, hence, have nearly no overhead when
activated. This means that decreasing the execution cycles on
the core of a given application utilizing the DMA mode has
a strong direct impact on the overall power consumption. It is
known that fewer cycles spent on an application execution, for
the same energy cost/cycle, translates to fewer mW dissipated
by the system. We are now unable to provide accurate numbers
of the power reduction, due to the lack of information on the TI
core breakdown, but it can be safely assumed that a performance
increase of 45% leads to an energy decrease to implement the
same task. Given these two factors, we believe that the power
consumption of the whole system is reduced when prefetching
with DMA is used.

In the case that hardware prefetchers are used in the specific
applications, it is expected that the efficiency will be reduced be-
cause the hardware schemes perform only prefetching and not
any algorithmic modifications. These applications have a lot of
dependencies, which can only be broken using specific algo-
rithmic transformations (i.e., loop pipeline), diluting the effec-
tiveness of pure hardware prefetching. Without performing e.g.,
software pipelining, the elaborated hardware, such as the DMA
controllers, or data movers, or hardware prefetchers, would have
abysmal efficiency. The key contribution of this paper is that
software prefetching, which is pipelined and performed using
DMA, exhibits a significant performance and energy improve-
ment. Of course, it is possible for someone with a good knowl-
edge of his hardware prefetcher, to rewrite his code upfront to
help the hardware prefetchers perform better. Though the ef-
fort that is required for this is great, hardware prefetching has
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TABLE I
MHLA PREFETCHING IS MORE BENEFICIAL THAN PREFETCHING USING A HARDWARE CACHE

the benefit of improving most of the applications without any
further effort. If we start putting effort on algorithmic transfor-
mations, then we lose this significant benefit.

An application specific prefetching scheme is more benefi-
cial than using a prefetching scheme with general applicability.
We verified this assumption by running a series of tests using
Dinero IV [44] cache simulator to analyze the execution traces
of all the applications for various input sizes. Dinero can sim-
ulate various popular prefetching techniques, like always (A),
miss (M), and tagged (T) for different prefetching distances
(DPF). The “always prefetching” prefetches DPF blocks in
every cache access (hit or miss), while the “miss prefetching”
prefetches DPF blocks after a miss cache access and the “tagged
prefetching” prefetches DPF blocks only after the first miss. In
our measurements we also include the demand (D) fetch, which
corresponds to the normal cache operation (without prefetch).
In order to compare the cache and MHLA prefetching, we used
the percentage of off-chip accesses with an on-chip memory
(cache or scratchpad) versus the off-chip accesses without any
on-chip memory. It can be easily concluded that the lower this
percentage is, the better the energy and performance. Table I
reports some of our measurements for different sizes of on-chip
memory and input frames. In the column labeled MHLA, we
inserted the estimations of the MHLA tool using prefetching,
while in the following columns we put the Dinero Cache
measurements for different cache parameters. Similar conclu-
sions exist for all the other applications. These numbers reveal
the following. 1) Hardware cache prefetching significantly
increases the off-chip accesses, meaning that a large number of
unnecessary off-chip accesses are being done. 2) For very small
memory sizes (512 bytes), MHLA is not as efficient as a cache
that does not use prefetching, which is expected, therefore,
prefetching requires on-chip memory size. 3) The application
specific prefetching is superior to these schemes of hardware
prefetching which do not have a global view of the application.

4) For a given on-chip memory size the input dimensions do not
significantly affect the gains. 5) There are cases where hardware
prefetching is totally wrong (e.g., CAVITY), where we see
that prefetching significantly increases the off-chip accesses
(compared to the same cache parameters without prefetching).
6) Finally, these applications benefit more by using a simple
cache, than by using a cache with prefetching. Concluding, we
found out that application specific prefetching is superior to
hardware prefetching, which is due to the fact that MHLA has
a global view of the application, does not make unnecessary
prefetches, and can fine tune the scheduling of the prefetches.

VII. CONCLUSION

The memory hierarchy plays an important role and should
be used and exploited efficiently. One of the key obstacles in
achieving high-memory performance utilization is memory-ac-
cess latency. As a result, various techniques have been devised
to hide memory access latency. This paper illustrates that
the performance (and power consumption) of multimedia
and image processing applications, which are characterized
by a uniform access pattern, can be significantly improved
by using the DMA mode, that most contemporary systems
have, combined with the prefetch mechanism. We showed
that prefetching should be done in a framework that optimizes
memory hierarchy, memory allocation, and assignment. Nine
real life applications are used as test vehicles for evalua-
tion. The measurements show that it is possible to mask the
prefetch latency, using the DMA mode, with a cost overhead
of increased usage of on-chip memory space. This results in
applications that perform faster and consume less energy to
execute the same task. The technique presented here has been
automated at IMEC in a prototype tool called MHLA, a part of
the ATOMIUM framework.
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