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Physical world integration with cyber world opens the opportunity of creating smart environments; this
new paradigm is called the Internet of Things (IoT). Communication between humans and objects has
been extended into those between objects and objects. Industrial IoT (IIoT) takes benefits of IoT commu-
nications in business applications focusing in interoperability between machines (i.e., IIoT is a subset
from the IoT). Number of daily life things and objects connected to the Internet has been in increasing
fashion, which makes the IoT be the dynamic network of networks. Challenges such as heterogeneity,
dynamicity, velocity, and volume of data, make IoT services produce inconsistent, inaccurate, incomplete,
and incorrect results, which are critical for many applications especially in IIoT (e.g., health-care, smart
transportation, wearable, finance, industry, etc.). Discovering, searching, and sharing data and resources
reveal 40% of IoT benefits to cover almost industrial applications. Enabling real-time data analysis, knowl-
edge extraction, and search techniques based on Information Communication Technologies (ICT), such as
data fusion, machine learning, big data, cloud computing, blockchain, etc., can reduce and control IoT and
leverage its value. This research presents a comprehensive review to study state-of-the-art challenges
and recommended technologies for enabling data analysis and search in the future IoT presenting a
framework for ICT integration in IoT layers. This paper surveys current IoT search engines (IoTSEs) and
presents two case studies to reflect promising enhancements on intelligence and smartness of IoT appli-
cations due to ICT integration.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Components of the Wireless Sensor Networks (WSNs) inte-
grated in daily life objects (e.g., lamb, car, persons, etc.) in order
to give piece of information about their states on the Internet. This
integration produces a new paradigm called the Internet of Things
(IoT), which was originated for the first time by Kevin Ashton in
1999 [1]. Now the IoT becomes a technology of connecting every-
day things and objects to the Internet for monitoring, controlling,
and understanding their surrounding environment [2,3]. Heteroge-
neous networking architectures (WSNs, Vehicular Networks,
Mobile Communication Networks, etc.) produce extra paradigms
such as Body Sensor Network (BSN) and Web of Things (WoT),
etc. The WoT relays on RESTful web services and web tools for
enabling its users to get benefits of the IoT in a visual form [4,5].
WoT is called the future IoT. In brief, WSNs evolved into the IoT,
which then evolved into the WoT [6]. Heterogeneous IoT (HetIoT)
[2] is a new paradigm for expressing that IoT is being employed
in numerous application areas, such as (environmental monitoring,
smart home, smart city, intelligent transportation, advanced
manufacturing, etc.) [7–10].

Industry 4.0 or Industrial IoT (IIoT) expresses the industrial use
cases applications of the IoT (e.g., tracking sales and goods for pre-
dicting future business issues), which means that IIoT is a subset of
the IoT [11]. The term industry 4.0 is used to reflect economic
impact, while IIoT is used to reflect technological improve in indus-
try. IIoT applications basis on how to utilize capabilities and facil-
ities of sensors communications to improve production processes
in the industry, while IoT applications concentrate on enabling
its user to be in more comfortable environments (e.g., smart home)
[11]. Industry automation already includes devices communica-
tions, but IIoT takes benefits of IoT global connections in industrial
applications. Sisinni et al. [11] summarize relation between IoT,
ings: A
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IIoT, Industry 4.0, and Cyber Physical Systems (CPS) such as
follows:

- Industry 4.0 � IIoT � IoT. - Industry 4.0 = IIoT \ CPS.
IIoT focuses mainly on interoperability between manufacturing

systems to trigger automation and synchronization for closed
ecosystemsmore rapidly. According toMcKinsey [12,13], interoper-
ability affects 40% from the IoT benefits. Machine learning, big data,
fog computing, cloud computing, and blockchain technologies
enable IoT to build secure digital transformation blocks (i.e. trans-
formational IoT). In this review, this composition of technologies
(data science and information communication technologies) is
referred as (ICT). These technologies work together to fulfill poten-
tial of IoT for creating billions or trillions of dollars in business (i.e.,
IIoT). The core of ICT integration in the IIoT is to allowgaining incred-
ible insights and decisions for enhancing manufacturing and pro-
duction processes. IIoT is sustained by machine learning and big
data, because itmainly depends onmachine-to-machine communi-
cations. Thus technologies that enable automated decision support
and services like discovery, searching, and information exchange
are recommended especially for the IIoT and generally for the IoT.
Major challenge faces the IIoT is number of Smart Things (SThs),
which are in increasing fashion (exponential growth) [3,14] and
expected to reach the order of billions in the next years.

There will be nearly 50 billion devices connected to the Internet
[15,16], with a $14:4 trillion business opportunities in the industry
(according to Cisco Systems). Regardless of this increasing number
of daily life heterogeneous objects, extra sensors and devices also
join the IoT in order to increase accuracy of sensed data, which
results in big data streams. Answering real-time queries becomes
challenging task; where IoT search engines (IoTSEs) fight against
keeping indices as up-to-date as possible [3,17]. IoTSEs are essen-
tial for the IIoT and IoT in order to reveal their potential in the con-
sumer and industrial applications. IoTSE is studied in more details
in this review. Because IIoT is a subset from the IoT, main architec-
ture and challenges are clarified in general on the IoT. But regard-
ing the IIoT, case studies are discussed in the field of health-care
and smart transportation.

Therefore, the contribution of this paper is to present an
exhaustive overview for the future IoT and related challenges
shading the light on the required data science and information
communication technologies (ICT) such as artificial intelligence,
cloud computing, etc. Industrial IoT (IIoT) takes benefits of IoT in
business applications. Because IoT is inclusive than IIoT, almost
work in this review on the architecture, challenges, and required
services are common for the IoT and IIoT. For revealing most of
Fig. 1. Paper s
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their benefits, ICT are required to be integrated in a form that
enhance search and discovery services: This review presents gen-
eral IoT architecture and main challenges on each layer discussing
their root causes, surveys current research work on ICT in the IoT.
This paper surveys current IoT search engines (IoTSEs) and oppor-
tunities to integrate ICT to enhance SThs search and discovery. Also
it studies how IIoT applications (e.g., smart transportation and
health-care) get benefits form ICT implementations. New research
trends are discussed at the end of this review.

The remainder of this article is ordered such as shown in Fig. 1.
Section 2 presents a literature review about scalability of the future
IoT and resulting big data followed by ICT implementations in the
IoT. Section 3 discusses the IoT architecture and highlights chal-
lenges on each layer, while Section 4 reviews most relevant ICT
focusing on how they can be integrated to enhance the IoT. Section 5
studies thoroughly IoT search engines problems, current related
work, and suggested ICT enhancement to present search service
for human and machine. Section 6 shows the impact of using ICT
in the IoT on two case studies. Finally, future research directions
are discussed in Section 7 followed by conclusion in Section 8.

2. Literature review

The IIoT has become one of the key development technologies
that adds smartness to our business life. Major IIoT characteristics,
but not limited, include large scale networks and applications,
devices and networks heterogeneity, huge number of connected
devices, dynamic devices’ states and measurements, and resulting
massive data produced. Because heterogeneity and scalability are
two faces for one coin, and the same for huge data and dynamicity
(i.e., real-time data streams), this section is organized into four
subsections. First subsection discusses current studies on hetero-
geneity of resources and scalability for enabling scalable IoT. Sec-
ond subsection presents current research work on IoT data
streams followed by discovery and search in the IoT. Fourth sub-
section surveys current ICT implementations in the IoT.

2.1. Heterogeneity and scalability

Scalability in IoT, for integrating everything into the Internet,
requires standardized communication protocols and new dis-
tributed and dynamic network models and topologies. Kyu Lee
et al. [14] present a review on the future IoT architecture for con-
nected exponential number of daily life objects to the IoT. They
highlight technical details of the IoT infrastructure (i.e., focusing
tructure.
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Table 1
A brief summary for most relevant research works.

Category Ref. Year Method

[2] 2018 Survey future IoT architecture, research trends, and proposed solutions.
Scalability &

Heterogeneity
[14] 2017 Survey IoT architecture focusing on number of SThs in the network layer.
[20] 2017 Proposes a semantic interoperability model based on RDF and SPARQL.
[22] 2017 Use BLE profile based on DDS with common data format.
[23] 2016
[24] 2012
[25] 2009 Services oriented middleware.
[26] 2007
[21] 2016 Extract common attributes from datasets (e.g., unique id, creation date, etc.).

Big data [27] 2018 Propose a generic framework consisting of three phases for processing and analyzing real-time big data in smart transportation
systems.

[28] 2017 Survey: advances in big data and IoT and requirements.

Heterogeneity & Big
data

[29] 2017 Use the idea of plug-in (Similar to [30]) for integrating new rules for extracting common attributes from datasets for receiving,
storing and accessing SThs’ data.

[31] 2017 Propose a framework (CSF) based Semantic Fusion.
[32] 2014 A retrieval system (Acrost) based on semantic awareness.
[33] 2013
[34] 2009
[35] 2009 Semantic middleware.
[36] 2008
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on the network layer), clarify difficulty of using client-server model
in the future IoT, and discuss current research projects in Europe,
Asia, and the United States.

For enlarging applications scale in the IoT, authors in [18] study
challenges and opportunities to integrate data fusion in ubiquitous
environments, while authors in [19] survey cloud and IoT integra-
tion (i.e., CloudIoT) discussing main facing challenges such as
heterogeneity and security, they also recommend future search
on some features such as efficiency of power consumption, storage,
handling large volume of data, etc.

Jabbar et al. [20] propose a semantic interoperability model
(IoT-SIM) for integrating heterogeneous IoT devices in health-
care domain. Heterogeneity in the IoT means implementing differ-
ent communication protocols, data formats, and technologies. In
their proposed framework, data analytics were applied on col-
lected datasets and transformed into Resource Description Frame-
work (RDF) to add semantics, where SPARQL was used as a query
language. Montori et al. [21] propose an architecture for fusing
heterogeneous data from multiple sources by generalizing com-
mon metadata in datasets, such as (stream id, stream name, geo-
localization, description, etc.) in JSON format from different data
sources (ThingSpeak and SparkFun). For the technical part, Park
et al. [22] use Bluetooth Low Energy (BLE) profile adaptor for solv-
ing communication interoperability among SThs based on dis-
tributed data services middleware.

Qiu et al. [2] describe future IoT with heterogeneity (HetIoT);
theydiscussed future IoT layers, related challenges and current solu-
tions. For enabling integration of heterogeneous computing and ser-
vices, Razzaque et al. [23] review existing middleware solutions
called orchestrator and extract set of requirements, related to mid-
dleware services and infrastructure. Functional requirements for
middleware services are: discovering andmanaging data, resources,
events, and codes, while nonfunctional requirements are: security,
ease-of development, integrity, availability, etc. The architectural
requirements are: service-oriented, distributed, context-aware,
lightweight, and autonomous. A brief summary for some selected
research works that address heterogeneity in the IoT is shown in
Table 1.

2.2. Real-time data streams

IoT applications continuously enhance the connectivity of
objects which resulting in huge data streams. Tonjes et al. [37] pro-
Please cite this article as: M. Younan, E. H. Houssein, M. Elhoseny et al., Challen
comprehensive review, Measurement, https://doi.org/10.1016/j.measurement.2
posed a framework for addressing real-time data stream analysis
gap using semantics. Wu et al. [29] proposed a framework called
HSFRH-IoT for data retrieval from hybrid IoT storage based in
plug-in idea of integrating new formats definitions and rules for
extracting common attributes, while, Guo et al. [31] proposed a
framework called Crowdsourcing Semantic Fusion (CSF), which
implements semantic fusion on two levels (document level and
object level) for improving IoT media big data retrieval. Discussed
challenges were: (1) data providers (resources) heterogeneity, (2)
storage heterogeneity (i.e., data formats), (3) multi-expression
(e.g., amounts of noise), and (4) dissemination socialization.

Ahmed et al. [28] discussed big data requirements (connectiv-
ity, storage, QoS, real-time analytics, and benchmark) and con-
cluded that IoT data become useless without analytics. Big data
techniques are concentrated on data storage and processing ser-
vices, while data analytics enable business decisions to be taken
in different IoT applications such as smart transportation and
smart home. They recommended implementing semantics and
applying seamless integration and interoperability for solving pro-
tocols’ heterogeneity. Babar and Arif [27] propose an architecture
framework for smart transportation, which consists of three phases
for real-time big data processing, first phase for filtering, reduction,
and data transformation, second phase for processing and analyz-
ing data. The third phase is for making decisions and managing
events. Summary of research works that address real-time big data
in the IoT is shown in Table 1.
2.3. Discovery and search

As mentioned above, communication between humans-
machines in the IoT has been extended into those between
machines-machines [10]. Number of human users of the IoT will
be less than number of SThs [17]. The IoT uses web tools (i.e.,
WoT) to provide its users with abstract and summarized data
about SThs and Entities of Interests (EoIs) in visual forms in the
real-time (i.e., using dynamic pages like AJAX pages) [38]. On the
other hand, in the future IoT, machines will not wait to get instruc-
tions and information from its users, but it will take almost of their
decisions in the real-time depending on decisions taken by other
machines. This recommends the future IoT to provide services for
preparing and summarizing such huge and highly frequently data
in a convenient form for heterogeneous SThs and EoIs. So doing
ges and recommended technologies for the industrial internet of things: A
019.107198
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search and performing analytics on IoT data streams in the real-
time becomes significant and challenging tasks [17,39].

Recently, some solutions were proposed for enhancing discov-
ery and search services in the IoT. Surveys [3,4,38,39] study current
motivation scenarios, challenges, and presented solutions for
searching and discovery problem in the IoT and the WoT. Research
works interested in presenting solutions in this area could be cat-
egorized based on their goals into two main classes: (a) research
works propose new architectures for IoT and WoT search engines
(IoTSEs and WoTSEs), and (b) research works present some solu-
tions for enhancing IoTSEs and WoTSEs performance [3]. Dyser
[40], Shodan [41,42], SenseWeb [43], Thingful [44], IoT-
SVKSearch [45], Thingseek [46], WoTSF [17] are some examples
of research works on IoTSE and WoTSEs architectures. Datta and
Bonnet [47] propose a framework presents simple RESTful services
for discovering and accessing indexed resources’ URIs. Research
work [48–50] tackle problem of indexing large volume of data in
the IoT. Truong et al. [51] propose a new method for searching
for similar sensors based on their context. DiscoWoT [30] is a ser-
vice for discovering SThs written in multiple formats. For the same
purpose, other solutions like [52], which aggregates GPS data for
estimating traffic state, could be integrated as well.

2.4. ICT implementations

In accordance with our knowledge, there is no research paper is
consecrated to survey the impact of integrating ICT in the IoT for
addressing challenges of the future IoT and enabling search and
discovery services for SThs and resources. There are few research
papers that present partial topics from ICT in the IoT (e.g., machine
learning implementation, utilization of big data tools in the IoT,
etc.). Research work [53] presents a comprehensive survey on the
required technologies for sensing and networking layers (commu-
nications, networking, etc.), and recommends services such as
searching and discovery services for enabling and realizing scalable
IoT in the future (discussed in more details in [54]). But they didn’t
mention the ICT and their impact on the future IoT. They shaded
the light on two main challenging issues: IoT network size and net-
works coexistence (i.e., network heterogeneity) and recommended
using standardized approaches for enabling global identity and dis-
covery for things and services in secure manners.

Automatic discovery and search for IoT data and resources in
the real-time are key services that future IoT should provide
[17,54,55]. Most of industrial applications in IIoT usually require
automated decision support. Thus ICT [56] based computational
intelligence such as data fusion [15,57], machine learning [58],
data mining [59], cloud computing [60], context aware computing
[16], etc. would have a major impact on the future IoT. These tech-
nologies enable dealing with the massively produced and fre-
quently changed data, in order to achieve the open IoT
ecosystem of heterogeneous systems and platforms (i.e., a fully
integrated system of systems that capable of making real-time
decisions).

Because ICT enable interoperability at device and application
levels [6,56], ICT could be organized into two levels: (a) infrastruc-
ture level, for enabling devices communication and information
exchange, and (b) data level, for understanding and extracting
knowledge data in the real-time for making decisions and controls.

� Infrastructure Level. Authors in [6], discuss IoT layers and
required technologies for devices identification and communi-
cation (i.e., on the hardware level). Also, they recommended
factors such as energy, latency, topology, scalability, security,
and throughput to be considered in the future IoT architecture.
For the IoT architecture (i.e., Hardware technologies for sensing
and networking layers), there are two types of technologies
Please cite this article as: M. Younan, E. H. Houssein, M. Elhoseny et al., Challen
comprehensive review, Measurement, https://doi.org/10.1016/j.measurement.2
[61]: (a) data acquisition technologies (e.g., barcode, radio-
frequency identification (RFID), etc.) and (b) networking tech-
nologies (e.g., Wi-Fi, ZigBee, etc.).
Lin et al. [62] survey IoT architecture and study the impact of
fog computing on the IoT for decreasing response time required
for accessing data from central cloud servers. They also pre-
sented an overview for security and privacy issues in the IoT.
For the same purpose, Information Flow of Things (IFoT) frame-
work was proposed in [63] for processing real-time IoT streams
depending on distributed components instead of the cloud.
Main challenges for real-time processing are timeliness and
huge data (i.e., require intelligent system for understanding
contents). The research work [10] presents an overview for
the IoT discussing required hardware technologies for leverag-
ing the IoT connections from machine-to-human to machine-
to-machine; where intelligent decisions control these
connections.

� Data Level. Most of surveys on the IoT concern with WSNs, IoT
architecture, applications, and security and privacy issues,
while few papers are on heterogeneity, data fusion, and context
awareness. Authors in [2] spot the light on data fusion, decision
making, energy consumption, and security issues as future
research trends for the future IoT. Integrating data fusion tech-
nology in the IoT can reduce networking traffic, energy con-
sumption, and enhance the accuracy of the results [15], and
results in optimizing the IoT performance [64]. Alam et al.
[15] surveyed data fusion in the IoT, they discussed mathemat-
ical methods, IoT environments, opportunities, challenges, and
applications’ areas that could benefit from the data fusion. Pires
et al. [65] implemented data fusion techniques for identifying
mobile activities, they classified techniques into four types
and concluded that choice of best technique rely on types of
sensors, data representation, and constraints of sensors and
algorithms.
Bagley et al. [66] present a prototype for live video transmission
via distributed data service (DSS) middleware highlighting
importance of existence of such services in the future IoT, espe-
cially for smart transportation applications. DSS provides a solid
bridge for heterogeneous platforms and applications. Medjahed
et al. [67] propose a tele-monitoring system called EMUTEM for
elderly people, which implements multi-modal fusion based on
fuzzy logic in order to increase system accuracy and robustness.
They use fuzzy logic, because (1) it deals with imprecision and
uncertainty, (2) has a wide range of operators, and (3) works on
numeric and symbolic computations. Khaleghi et al. [68] pro-
pose an IoT system in the field of fish farming industry, which
optimizes data fusion values by using maximum likelihood esti-
mation. Authors in [51] propose a framework using fuzzy logic
for searching for similar sensors that produce similar readings.
Authors in [59] present a survey for discussing data mining
technologies in the IoT (clustering, classification, and pattern
mining). They also conclude that integration of cloud comput-
ing, big data, and smart grid with the IoT increase life smartness
and partially solve problem of increasing number of devices
connected and their data produced. Data fusion, filtering,
abstraction, compression, summarization, prediction are hot
research issues, also technologies of incremental learning and
data securing have a critical impact on the future IoT. Authors
in [33] recommended using middleware solutions for managing
context in the IoT.

To sum up, all research works discussed in this section reflect
the importance of ICT integration in the IoT to build a new vision
for the future IoT concentrating on how the IoT architecture should
be to enhance services it presents in order to face incremental chal-
lenges on SThs and data levels. Standardization in the future IoT
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should be enhanced [53], because it eases extensibility and inter-
operability between SThs. Also sharing context information taking
benefits of the cloud computing and edge computing eases mobil-
ity and transition between SThs and can aide in reducing additional
costs and efforts for deploying and managing extra SThs. Enabling
extensible context awareness makes the IoT loosely coupled. Sum-
mary of research works that implement or recommend some of ICT
for the future IoT is shown in Table 1. On the light of this study, this
review puts an initial vision for ICT integration to serve IoTSEs to
crawl, index and search IoT data in the real-time (details in
Section 5).

3. The future IoT

The IoT has many definitions, in general, The IoT could be
defined as a dynamic network of networks, where sensors and
actuators allow states of things (e.g. persons, objects, etc.) they
attached to be monitored and controlled through the Internet
[38]. In brief, the attached sensors and actuators add smartness
to ordinary things and their environments to be SThs and intelli-
gent spaces [59]. Functionalities of SThs could be abstracted as ser-
vices. As IoT in more inclusive than IIoT, this section discusses
main layers of IoT architecture and related challenges followed
by main causes of these challenges.

3.1. The architecture of the future IoT

IoT architecture could be organized into different number of
layers according to business requirements [6], for example, the
architecture of telecommunications systems consists of sensing,
accessing, networking, middleware, and application layers. Wan
et al. [69] discussed IIoT architecture on three main layers: physi-
cal layer, control layer, and application layer. Authors in [2,6,14]
organized the architecture of the IoT into main four layers (see
Fig. 2) such as follows:

� Sensing layer (perception layer [62]), where smart devices (e.g.,
RFID, GPS) are deployed in the infrastructure layer. IIoT sup-
ports communication between SThs and the cloud [69]. Main
characteristics of this layer are heterogeneity and big number
of SThs used to build IoT applications. Most of these devices
have limited resources and different capabilities. The infrastruc-
ture layer implements different technologies such as Wi-Fi,
WSN, etc., where SThs provide different connectivity (i.e.,
heterogeneity based network level). Power consumption is a
critical challenge that could be solved by using alternative
power resources (e.g., natural resources) and implementing
wireless recharging technologies for difficult and critical events
Fig. 2. Future IoT
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and places. Implementing some technologies for filtering and
fusing sensed data and reduces power consumption for sending
data to fog and cloud servers [15].Cloud capabilities enable data
providers in the IoT to store massive information and perform
analysis, and decisions making tasks. Fog layer decreases dis-
tance between SThs and the cloud. AI is required for the IIoT,
which mainly basis on interoperability between SThs for
enabling automated decisions support.

� Networking layer, where some protocols, such as IPv6 over Low
power Wireless Personal Area Networks (6LowPAN), Z-wave,
etc. are used for securing communications in the IoT [61,62].
Network topologies or models (e.g., star, scale-free, etc.) are
implemented to transmit data to the third layer (cloud layer)
through sink nodes. This layer should provide best topologies
for covering different areas. Power consumption also relays on
the implemented topology. Transmission bandwidth should be
balanced with network performance, resources consumption,
and reality of sensed data for recording data on the cloud. Such
challenges require implementing machine learning and big data
technologies for classifying sensed data and determining the
main critical events that need to be scheduled with high priority
for the periodical check, which also depends on extracting pre-
diction patterns from historical learned data.

� Cloud layer (services layer [6]), Because SThs have limited
resources and capabilities, the cloud layer receives and process
data from other layers. Heavy resources consumption algo-
rithms for data mining and retrieval for making smarter deci-
sions are implemented on the cloud.

� Application layer (interface layer [6]), Most of daily life applica-
tions in the IoT are of type WSN applications, which require
friendly interfaces for normal users (i.e., graphical user inter-
faces (GUI)) and machine (i.e., RESTful APIs) to ease information
exchange and utilization. Searching and getting real-time infor-
mation reveal potential benefit of the IoT. Machine learning and
data retrieval technologies could enhance such services. This
layer should enhance API services for allowing automatic
machine services calling. In general, critical feature of the future
IoT that highlight its potential benefits is to enable human users
and machines to discover and search for things and services and
allow data sharing between different networks.

3.2. Challenges of the future IoT

General IoT design considerations: scalability, energy consump-
tion, devices throughput, latency, network topology, security and
safety are discussed in [70] and referred by Da Xu et al. in [6]. In
order to deal with heterogeneous devices, features such as scalabil-
ity, interoperability, etc. are recommended for the future IoT
Architecture.
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architecture [6]. Lin et al. [62] shade the light on two main features
that should be addressed in the future IoT: interoperability
between various networks (i.e., applications) and heterogeneity
of things (i.e., SThs). Authors in [23] discuss and organize IoT char-
acteristic into two levels; IoT infrastructure characteristic and IoT
applications’ characteristics. Main IoT characteristics that concerns
to our review are: heterogeneity, scalability, dynamicity, mobility,
availability, resource constraints, and huge real-time data (histori-
cal and real-time data streams) written in different types and for-
mats [3,17,48].

Fig. 3(a) shows Scopus [71] analysis report on the topic ‘‘IoT
challenges” from 2010 to 2019; this figure indicates research pro-
gress on IoT challenges. Fig. 3(b) shows citation reports fromWeb of
Science [72] core collection between 2010 and 2018 on the topic of
IoT challenges almost of research paper concentrates on the fields of
computer science, engineering, and telecommunications.

IoT challenges have different meaning in each layer. For exam-
ple, heterogeneity in IoT data differs from those in IoT devices and
Networks [14,23]. Heterogeneity appears in IoT data when they are
written in different formats like RDF, microdata, and microformats,
and in IoT devices when non-standardized naming for SThs proper-
ties are used, while in IoT networks when different technologies
and protocols are implemented [2,14].Thus challenges related to
the first three layers (sensor, network, and cloud) are classified into
three categories (see Fig. 4): (1) data challenges, (2) SThs chal-
lenges, and (3) Network challenges; where corresponding chal-
lenges in these classes have the same back color, i.e.,
dependences between challenges, for example, yellow diamonds
represent scalability factors and results in each challenge class.
Recommendations of the application layer are discussed at the
end of this sub-section.

� Devices challenges: In the same network SThs may speak differ-
ent protocols with different capabilities, thus converting things
to SThs, by attaching sensors and devices to them in order to
express things states, should take into consideration commen-
surability of devices communication capabilities. Each STh pro-
duces some information about itself and may share this
information with other SThs to calculate state of certain EoI
(e.g., room state) [38]. None standardized naming is one of
the main challenges, where manufactures with no standardized
naming, which also deployed in IoT with different naming.
Truong et al. [51] proposed a framework for searching for sim-
ilar sensors which are of the same type and read similar read-
ings. This framework could be used for solving none-
standardized naming challenge by importing description of
similar sensors. Ontologies are used for this purpose as well.
In addition to the GPS attribute, SThs need to handle their log-
ical path for enabling human users know their absolute loca-
Fig. 3. Scopus analysis for: (a) research progress on IoT c
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tions, but in some cases such as in vehicle system, SThs are
movable devices, thus it is a critical challenge specially for
tracking systems. Summary of challenges are shown in Fig. 4(a).

� Network challenges: Research in the IoT scalability (i.e., Network
challenges) concentrates on how to leverage the infrastructure
layer of the IoT to connect almost objects and things to the
Internet to give information about themselves achieving scala-
bility of the future IoT [38,73]. The IoT partially solves this issue
(i.e., scalability) by using standard IP and 6LoWPAN protocols
[14]. Thus, the IoT is considered as the global system of very
thing support IP connection to the Internet. The integration of
cloud computing with the IoT enlarges the scale of applications
in different fields. Fog Computing comes with the need for
requirements of interoperability, low latency and mobility of
objects [53,74]; Where it provides a great performance for call-
ing and responding services in the IoT [62]. In order to convert
spaces to smart spaces, SThs localization and distribution in
WSN and the IoT need to be studied and optimized. Sharing
data between IoT applications will reduce number of connected
devices, required storage spaces, and the required efforts for
managing them as well. Adapting topology structure to be large
or wide enough for integrating daily life objects is critical fea-
ture for the future IoT, specially for smart transportation sys-
tems, which partially aide for large-scale in the future IoT.
Future IoT is expected to connect everything on the earth to
the Internet and convert many ‘‘impossible” to possible [59],
Summary of challenges are shown in Fig. 4(b).

� IoT data challenges: Data in the IoT could be categorized into: (1)
data bout things (e.g., ID, type, logical address, etc.) and (2) data
generated by things (e.g., sensed values like temperature, humid-
ity, occupancy, power consumption, etc.) [59]. SThs in IoT appli-
cations generate massive and huge data (i.e., it is called huge
scale [29]), which results in big data. To partially solve big data
problem, sensors are recommended to filter and clean data in
order to keep only interested data [59] and share it with their
base stations (i.e., gateways) once a critical change occurs
[38]. IoT data may be written in different formats [38], and
change frequently. This massive data are collected from multi-
ple sources (i.e., heterogeneous) and measure different attri-
butes, thus it is called multisource and multidimensional
scalar [29]. Thus data retrieval in the IoT faces big challenge
due to wide scale of IoT applications in different fields and con-
straints of user involvement. Heterogeneous IoT data may suffer
from inconsistence, inaccuracy, quality, and time sensitivity.
Accessing real-time information in IoT applications requires
implementation of big data techniques [28] for enabling data
collecting, storing, retrieving, mining, and sharing. Big data
characteristics are discussed next. Summary of challenges are
shown in Fig. 4(c).
hallenges, (b) progress level on main IoT challenges.
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� The fourth layer requires some recommendations but not lim-
ited for enabling IoT services for its users (human and machi-
nes), they are:
– –Integration between legacy web pages and IoT (i.e., WoT).
– Searching for real-time information.
– –Enabling historical analysis and future prediction for events

and SThs states.
– –Sharing information between different IoT applications.
– –Allowing automatic analysis on selected IoT devices and

networks.
– –Knowledge extraction.
– –Enabling information browsing in a visual form.
– –Enabling automatic services discovery and execution

through RESTful APIs.
– –Integrating extra devices and services (i.e., dynamic appli-

cations for dynamic networks)
– –Leveraging IoT services to be on the cloud Taking benefits

of the edge-cloud and middleware

To sum up, main challenges based on SThs and data could be
summarized into three terms for each; (1) huge number of SThs,
which produce big data, (2), heterogeneity of SThs, which produce
heterogeneous data (i.e., multi-sources and multi-dimensions), and
(3) mobility of SThs and frequent change of data (i.e., dynamicity).

3.3. SThs and data streams

Proliferation of SThs is the main source of big data in the IoT, for
example, heterogeneous devices in smart transportation systems
produce big data to cover multiple features, conditions, and situa-
tions. Main causes of the highly increased number of SThs and EoIs
could be summarized into: (1) Rapid advances and enhancement in
hardware development and manufacturing give the chance for
more devices to be connected to the Internet with extra capabili-
Fig. 5. (a) Google analysis: number of queries on
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ties, (2) because sensor nodes still have restricted resources like
batteries, memories, etc. the need for enhancing faulty tolerance
in sensor networks, requires to deploy extra number of sensors
nodes, (3) certain phenomenon may need extra nodes for sensing
complementary part, and (4) making accurate decisions in the
IoT depends on accuracy of sensed data, which could be done by
deploying a lot of sensor nodes in the monitored environment. This
results in increasing number of sensors or SThs to be exponential.
Thus, in the next few years, number of SThs will be much more
than number of normal users [17].

The question here is how the human users follow and deal with
such huge sensed data in the real-time. In the future IoT, most of
real-time decisions depend on machine-to-machine communica-
tion. No doubt, data mining techniques will be one of the main
ICT for solving problems of large volume data in the IoT [59].

4. Technologies for the future IoT

The future IoT, cloud computing, and big data become the main
research goals in the Europe’s Horizon 2020 [14]. Artificial intelli-
gence (AI) and data mining are best solutions for managing huge
data flows and storage. AI methods include fuzzy logic (relay on
‘‘if-else” rules), and neural networks (relay on existence of a trans-
formation function). Data mining steps are data preparation, filtra-
tion, aggregation, selection, transformation, mining and pattern
evaluation. This section discusses big data, sensor fusion, cloud
and fog computing, and blockchain technologies in order to clarify
their relations and impact on IoT applications. Fig. 5(a) presents
number of queries on ICT and IoT using Google search engine, this
chart indicates that big data, machine learning and blockchain
technologies are highly required over the last five years (i.e., recent
research papers focus on data level). Fig. 5(b) shows citation anal-
ysis report created using web science knowledge tools on ICT inte-
gration in the IoT from 2010 to 2018.
ICT and IoT (b) ICT implementations in IoT.
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4.1. Big data

Structured and unstructured datasets with large volumes refers
to big data, which are convenient for processing large datasets in
the IoT [75]. Traditional data processing techniques couldn’t be
used with the high increased data volumes in the IoT [16]. Due
to massive connected number of SThs and EoIs to the Internet,
the IoT concentrates on big data and AI to make inferences and
decisions from sensory datasets. IoT big data has different charac-
teristics when compared to common big data problems [76]. Main
attributes are:

� Volume (due to IoT scalability): large volume data may produce
conflict meanings (vagueness); as a result it requires to be
checked for assessing quality and value. Deploying multiple
similar sensors allows increasing data accuracy but results in
producing extra noise data.

� Velocity (due to high sensitivity for changes): frequent change of
data recommends the IoT to check accuracy and consistency
of its data (veracity).

� Heterogeneity (due to IoT dynamicity): this property may be
demonstrated in writing IoT in different formats to assess dif-
ferent attributes.

� Time and location correlation:most of sensed data in IoT applica-
tions record time and sensing location.

4.2. Cloud and fog computing

Because IoT connects everything to the Internet, then gaining
real-time access for controlling and monitoring objects that change
their locations and data frequently becomes more challenging and
tedious task. Edge computing technologies is essentially for allow-
ing interoperability between SThs [74] and for enabling IoT objects
to gain cloud computing facilities [3] (i.e., bring the cloud closer to
SThs), where these technologies target to make IoT closer to com-
putation stations. Edge computing [77] implementations are: fog
computing, mobile-edge, and cloudlet, these concepts are closer
to each other, they have a common purpose, which is to build mid-
dle layer between SThs and the cloud). Gateway, base-station ser-
ver and data center are examples for fog computing, mobile-edge,
and cloudlet, respectively. This means that each concept has a
specific role in the middle layer, more details about these concepts
are in [78]. Here, fog computing is referred as a general concept for
the edge computing.

Fog/Edge computing enables IoT gateways for performing lower
level of computations for reducing response time (i.e., local compu-
tations) and network traffic [77]. Fog layer works as a middle layer
of middle services; where it presents facilities for storage (cloud)
and response time (SThs) [79]. Services such as fault tolerance
Fig. 6. Relation between IoT devices (SThs), Fog nodes, and Cloud.
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and security could be performed by edge computing gateways in
enhanced manner. Fig. 6 summarizes the relation between IoT
objects (SThs and EoIs), Cloud computing, and Edge computing
(gateways).

4.3. Data fusion

Analysis technologies should be integrated into the IoT to solve
resulting challenges by enabling smart decisions making; one of
the most valuable technologies is sensor fusion or data fusion
[15]. Sensor fusion has many definitions, but it could be defined
in general as the process of comparing, filtering, and combining
row data or derived data from multiple sources to extract new
information that is better than those individual row data [80,81].
Data fusion has many useful applications, it is used as fault diagno-
sis tool for damage detection problems of mechanical systems [82].
In this review it is used as a purging strategy for sensory data in
order to reduce redundancy indexing. Elmenreich [83] presents
an introduction to sensor fusion and describe its methods (e.g.,
inference methods), algorithms (e.g., the Kalman Filter [84]) and
applications (e.g., robots). Data Fusion features in brief [15]: (a)
merging data in optimal manner, (b) extracting intelligence from
raw data, (c) substitute for low accuracy data generated by low-
power resources, (d) hiding critical information, and (e) providing
abstract knowledge about fused results.

Sensor fusion techniques could be categorized based on multi-
ple criteria. Castanedo [80] presents different criteria for classify-
ing data fusion techniques and clarifies characteristics based on:
(1) input and output relation, (2) data types for input and output
parameters, (3) abstraction level, (4) data fusion type, and (5) data
fusion architecture. Authors in [15] perform data fusion on four
levels (pixel, signal, feature, and decision). Also it could be catego-
rized based on type of sensors configurations [80] as follows:

� Complementary (integral configuration): this type of data fusion
could be done for sensors that have indirect independence,
where their data are combined together to draw a complete pic-
ture concerning certain environmental phenomenon or condi-
tion. For example, deploying different sensors such as
(temperature sensors, humidity sensor, etc.) for assessing the
weather forecast, existence of almost sensors gives complete
information about the weather forecast.

� Competitive (redundant configuration): this type of data fusion
targets ensuring existence or not of certain phenomena by
doing a vote of confidence between sensors, where they are
independent and measure the same phenomena. For example,
when some temperature sensors (of the same type) are
deployed in different locations in a certain region, their mea-
surements are compared to make a final decision about the
temperature in that region

� Cooperative (distinct configuration): when independent sensors
are deployed to give a piece of information that are combined
to present a final decision about certain EoI. For example, when
some types of sensors. For example, a room is considered as an
EoI in smart home, where it hosts three types of sensors, (a)
light sensor, (b) motion detection sensors, and (c) sound sensor,
room state is assessed if it is calm room or not by combining the
three measurements of those sensors.

4.4. Machine learning

AI, speciallymachine learning (ML) plays a critical role inpredict-
ing future events, making decisions, controlling systems based on
historical data [76]. AI acts as a brain for the body IoT. Performing
analytics on big heterogeneous data streams in the real-time raises
the integration of Complex Event Processing (CEP) in various types
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of the IoT application areas [85]. IoT data analytics based on histor-
ical and real-time data becomes complex task, where it could be
used for predicting future SThs states. Akbar et al. [85] use ML cou-
pled with CEP for that purpose. They highlight that combination
between ML and CEP enhances IoT performance in health-care and
manufacturing sectors. Authors in [17,40] build their prototypes
for implementing search services in the IoT and WoT based on pre-
diction models generated from the historical data and indexed in
their databases. As mentioned previously, fuzzy logic is used and
implemented in different applications such as sensor search in
[53]. Deep learning will has high impact on the future IoT, Authors
in [76] presents a survey on deep learning in the IoT for handling
big data streams at different levels. IoT data could be found at three
levels; (a) SThs, (b) Edge devices, and (c) IoT cloud. Deep learning
technique could be implemented on the first two levels for perform-
ing fast analytics, while on level (c) for big data analytics.
4.5. Blockchain

Recently blockchain has been integrated in a wide span of appli-
cation areas: finance, government, health-care, etc. [86], which
leads the authors of [87] to study its impact on the IoT. Blockchain
is a type of data structure that implement distributed leger with
Bitcoin that use public key cryptography for enabling secure trans-
actions in peer-to-peer networks [87–89], where each element in
the chain references to the hash of the previous one [87]. Powerful
benefits of the blockchain enhance IoT security [90] and allow IoT
data to be accessed in decentralized manner (e.g., IBM Watson IoT
Platform), immutability also increase its power for detecting mali-
cious actions. Smart contracts (self-executed scripts) solve costly
management for the exponential increased number of SThs.

The nature of the blockchain technology solves cloud server
downtime in the IoT [88,91]. Sagirlar et al. [91] suggested a hybrid
architecture for the integrating blockchain in the IoT Called
Hybrid-IoT. Blockchain and IoT technologies add new business
opportunities in almost of application areas, especially in the
industry, government, and health-care sectors [87,92,93], where
IoT devices provide real-time data about products using automatic
services (RESTful), also IoT technology is used for tracking objects
in the network, and on the other side, the blockchain provide
shared leger for manage information in the business transactions
[89] in order to achieve efficiency, reduce costs, and remove single
point failure, i.e., blockchain serves as proof of transactions com-
pleteness [92] and enables building decentralized IoT using private
ledgers to secure transactions between devices.

Supply chain solutions in commerce take benefits [87,88] like
(a) saving time consumed for ensuring the shipment process (no
need for third party authentications), (b) pertinent shipment, (c)
sharing services (services marketplace), (d) accurate prediction
Table 2
Examples for ICT Implementations in IoT.

ICT Ref. Year

Machine Learning [94–97] 2019, 2019,
2017, 2016

Wireless communicat
balancing network tra

Machine Learning and
Blockchain

[98] 2018 Security: this research
convenient they are w

Machine Learning and Bigdata [99] 2018 Real-time monitoring
prediction model on s

Cloud Computing and Machine
Learning

[100] 2018 Summarize ML algori
care, etc. Survey curre

Data Fusion [101,57] 2019, 2018 Used as a data prepar
where its output is a
. . .etc. Data analytics:

Cloud Computing, Bigdata, Data
Fusion, and Blockchain

[102–
105]

2018, 2018,
2017, 2017

Smart Traveling. Heal
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for manufacturing materials, (e) better alignments for stocks and
inventories, and (f) tracking sales provided by IoT services. Auton-
omous vehicle application in blockchain (self-driving cars) records
and shares participants information (owners, manufacturers,
financing firms, etc.) for enabling services such as self-deriving,
self-detection for recharging or refueling, etc. [88,89].

Research works [40,87] present comprehensive survey on
blockchain challenges and opportunities, and discuss deployment
considerations. According to the best of our knowledge, blockchain
faces the following challenges to be integrated in the IoT:

� The main obstacle for the blockchain technology is the scalabil-
ity, which will be increased due to exponential number of SThs
in the IoT, consequently, transactions conflicts may increase.

� Blockchain security check in each transaction requires agree-
ments from all sharing node in the network to be accomplished,
as a result number of transactions will be increased (security
check and updating information after transactions), which
causes higher latencies compared with centralized database
systems. Moreover, maintaining encryption keys and hash
codes is tedious task.

� Enforcement rules of smart contracts are limited.
� Sharing large information between nodes face limited resources
of SThs.

� Blockchain requires SThs in the IoT to be live almost of the time,
which consumes more energy.

To sum up, Table 2 presents a list of recent ICT implementations
in the IIoT to clarify integration of these technologies in IIoT appli-
cations (e.g., smart home, health-care, and smart traveling) and
services (e.g., improving wireless communication and networking,
security, real-time monitoring, and data analytics).

This research proposes simple architecture for integrating ICT in
the IIoT for enabling SThs discovery and search(see Fig. 7). Data
fusion could increase robustness of sensed data, which are then
reduced once final conclusions are calculated (i.e., complex events
are extracted). Dyser search engine [40] reduces sensed data by
indexing prediction models that summarize how data changed
over time unit. The research work [106] could enhance fog edge
nodes to make local decisions using data summarization tech-
niques to reduce data volume that need to be stored on the cloud
(i.e., store data on a local server for fast response). Above this layer
some optimization algorithms could be implemented in order to
store meaningful information in fewer volumes. Machine learning
technologies (e.g., fuzzy logic [107]) enable decision making and
automatic control (discussed above). Machine learning algorithms
presents promising solutions for resources discovery and search in
the IoT by extracting main features that represent EoIs states to be
indexed in higher indices like indices’ structure of the WoTSF
Description

ion, security, and data analytics. Networking: making automatic decisions for
ffic, online clustering, and anomalies detection and prediction.
compare between security degree that these technologies provide, and how
ith tiny constrained IoT devices.
for large scale systems (e.g., manufacturing systems) Implementing hybrid
pecial platforms like Kafka for detecting faults during manufacturing.
thms implementations in different IoT applications such as smart home, health-
nt implementation on the cloud and fog computing.
ation technique for implementing incremental learning on IoT data streams;
set of features depending on aggregation functions such as maximum, average,
weather forecasting, traffic monitoring.
th-care Services. Security services and applications.

ges and recommended technologies for the industrial internet of things: A
019.107198

https://doi.org/10.1016/j.measurement.2019.107198


Fig. 7. The proposed architecture for integrating ICT in the future IoT.

10 M. Younan et al. /Measurement xxx (xxxx) xxx
framework [5]. In addition, prediction models are used to index
large volume of data increasing its prediction sense to retrieve
semi-real information about SThs in their applications [17,40]. Also
this architecture proposes to big data algorithms implementation
for efficient storage and retrieval.

5. IoT search engine (IoTSE)

The future IoT should presents a lot of critical services that
leverage applications benefits to its users; this review discusses
the main common services for most of IoT applications. Recently,
researchers spot the light on real-time services like searching
and discovery for IoT resources, such as shown in Fig. 8. Articles
[2,14,39,60,73,75] highlight needs for existing such services in
the future IoT.

General web search engines go beyond keyword search in the
web, while in IoTSEs, SThs and their dynamic states and measure-
ments should be taken into account. In addition to related work
discussed above in sub-section (Discovery and Search). Based on
most recent and relevant research papers, this section discusses
challenges, solutions and recommended services for building smart
IoTSEs.

5.1. Related work

Pattar et al. [3] concluded their comprehensive research with
future work directions targeting generating special search engine
that addresses IoT challenges. One of these directions is a need
Fig. 8. Scopus analysis for re
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for an efficient indexing mechanism that sort and rank IoT data.
Authors recommended that Geohash encoding is one of the key
technologies that should be used for addressing the problem of
indexing spatiotemporal data. Also they concluded that current
crawlers or spiders have no ability to reach every STh in IoT appli-
cations, which are distributed with exponential number in very
smart environment as mentioned previously. Further, due to fre-
quent change of SThs states (i.e., their locations and reads or mea-
surements), the crawling process becomes a hot research point in
the future IoT. As a result deep learning and regression techniques
are recommended to predict and search in real-time data streams.

Tran et al. [39] discussed open issues for crawling, which are:
(a) detecting data sources, (b) extracting resource automatically
in XML or JSON format, and (c) automatic integration of different
resources by using aggregation methods. They also discussed open
issues for indexing, which are: (a) live outdating of sensors indices,
which recommended to index prediction models instead, (b) needs
for new distribution and deployment strategies for keeping indices
as small as possible. Also, they suggest implementing user sub-
scription in search engine; where this idea could be useful in
enhancing crawling schedule. Dyser [40], a search engine proposed
by Ostermaier et al. for the IoT, takes benefit of traditional search
engines like Google to get static information about EoIs performing
keyword search, then it looks up for the resulting list of EoIs in its
indices to get relevant prediction patterns expanding them to pre-
dict EoIs states. Limitations of Dyser are: (1) index size was built on
SThs level, and (2) crawling processes need to be optimized to con-
sume less time.
search trends on IoTSE.
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The WoTSF framework was proposed by Younan et al. [17] for
searching in the WoT, which reduces dyser index by building
two types of indices, where indices in the higher layer are built
on EoIs states using aggregation methods. Each IoT network han-
dles its own index. WoTSF speed crawling process by using the
idea of putting the server root file (Google optimization). WoTSF
limitations crawling process need to be optimized on the level of
the scalable IoT resources. It works on the application layer of
the IoT (i.e., WoT). Yaqoob et al. [73] discuss requirements for scal-
able IoT architecture in the future, one of the selected require-
ments is information retrieval based quality of services from
scalable IoT resources (i.e., searching). Data fusion and similarity
search will be integrated in the future IoT. Zhao et al. [32] propose
a retrieval system for the IoT based on semantic awareness and
topic discovery.
5.2. ICT for IoTSEs

Fig. 9 summarizes current features of IoT applications and data
and indicates resulting challenges that face IoTSEs. On the light of
related work discussed in this section, this survey proposes some
recommendations, organized into three levels: SThs, network,
and data; for overcoming search challenges shown in Fig. 9. This
architectural analysis could enhance IoTSE performance by prepar-
ing data (e.g., filtering, reduction, summarization, etc.), and select-
ing most effective titles (i.e., most live and expressing data) for
building multi-level indices for IoT applications. This architecture
Fig. 9. IoTSE recommended services

Table 3
Recommended ICT in IoT layers for enabling real-time IoTSE based on set of related work

Criteria (Features) IoT layer Challenges

Real-time monitoring, searching,
knowledge abstraction,
summarization, visualization

Apps Human and machine queries,
data sharing

Accurate, consistent, real-time, easy to
store and retrieve, readable (human
and machine)

Data Large volume, different format,
different meanings, analysis,
storage, retrieval

Low latency, high management,
scalable, secure (availability)

Network Scalability, protocols, security,
latency, devices discovery

Fault tolerance, ideal consumption
(resource), live response, secure
(integrity)

Device Limited resources, heterogeneity
dynamic states, dynamic sensing
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also enables IoTSE to build crawl scheduling for keeping indices
as up-to-date as possible. These recommendations could partially
overcome almost IoTSE challenges. For more flexibility, IoTSEs
are recommended to support query format that human and machi-
nes can understand (i.e., implement semantic meaning and provide
RESTful services). Once users write their queries, IoTSE semanti-
cally analyze queries and serve them using parallel computing to
retrieve and rank results after assembling.

A summary of recommended ICT based a set of criteria that
IoTSE could provide, is indicated in Table 3. Data fusion technolo-
gies have to be integrated for increasing data accuracy and consis-
tency, while machine learning is for extracting and assessing data
titles to be indexed. In this layer, SThs put their signature every
time they sense critical or abnormal readings for enhancing learn-
ing algorithms that could be used for initiating crawling schedule.
Securing data could be achieved using blockchain, where SThs put
their communication logs in IoT ledger [115]. Technologies like fog
computing in the second layer should decrease response time and
enable IoTSE to get high level indices like WoTSF [17]. Sensor
search [51], Dyser [40], and WoTSF [17] implement/depend on
machine learning and fuzzy logic for building their indices. Thing-
Seek framework [46] is a search engine based cloud computing.
Search engines like Shodan [41], which crawl SThs to index their
banners recommend blockchain technology to be implemented in
a manner that secure crawling process for SThs.

In addition to fog computing, blockchain and semantic middle-
ware are recommended to for securing transactions and enabling
on the light of IoT challenges.

s.

ICT Ref. IoTSE
Service

RESTful APIs, Blockchain, AI, Semantic [17] [51] [92] [93] Query
analysis

Big data, Cloud, Machine learning, Data
structure, AI, Ontologies

[16] [27] [48] [49]
[60] [76]

Search,
Index,
Rank

Fog computing, Blockchain, Big data,
Machine learning, 6LowPAN, topologies,
semantic middleware

[23] [28] [31] [50]
[89] [108]

Crawling

, Data fusion, Clustering, Machine learning,
Blockchain

[107] [109] [110]
[111] [112] [113]
[114]

Crawling,
Sensing
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interoperability between applications [74]. Because low-level
indices are built in the second layer, then big data and machine
learning have to be integrated as well. Third layer, where all sensed
data are stored, cloud computing enhances IoTSE to run heavy
algorithms to extract abstracted knowledge from a huge data.
The application layer, where queries are received, semantic tech-
nologies should be implemented to enable normal users to retrieve
their intended information. Because machines are considered as
users in the IoT, then REDTful APIs have to be the core of IoT
implementations.

Special search engines in the IoT targets searching by meaning
and real-time queries. To accomplish such types of queries, IoTSEs
have to build indices in a way that ease updating and data retrieval
processes. Distributing indices to be available on the fog edge net-
works presents promising solutions [48–50] (e.g., Geo-hash [3]).
Create a hybrid method taking benefits from the related work, such
as in [17,40,48,50] for creating indices that allow specific and gen-
eral search queries. Search engines’ developers should take of their
account deep learning, prediction models and regression tech-
niques for data analysis and correlation [3]. This native solution
could balance between index update and data freshness [39].

Data fusion saves consumed power for sending more frequently
changed measurements by sending abstract and accurate measure-
ments. Scheduling critical events enable base-stations and gate-
ways to pull and ask critical SThs about their measurements in
the right time as possible [17]. Such services will enable search
engines spiders to crawl IoT networks following a set of priorities
that is identified by networks themselves. Blockchain could be
integrated in most of IoT layers; for example, in perception layer
(on things level) digital signature mechanism of the blockchain
ensures data integrity by allowing only authorized things to mod-
ify their data [90].

6. IoT case studies

By IoT definition in [116], the IoT enables its users and compo-
nents (people, objects, things, etc.) to communicate anywhere at
any time, which makes the IoT has a lot of applications [117] in dif-
ferent fields such as industry, agriculture, security, smart home,
health-care, transportation, etc. [2]. Extra applications are dis-
cussed in [6,118–120]. Most of the IoT applications could be cate-
gorized as sub-components in the smart city application like smart
health-care and smart transportation, etc. [118]. This section dis-
cusses two high risky applications to reflect ICT impacts on the
IIoT: (a) smart transportation and (b) health-care.

6.1. Smart transportation

Smart transportation is a central measurement for the perfec-
tion of life in modern cities. It increases the quality of services
(QoS) presented to its citizens [27]. The future IoT enhances trans-
portation systems by providing rich information in the real-time so
that users, administrators, and machines in such systems can make
a decision about certain actions in the right time [52].

Problems but not limited in the transportation systems are traf-
fic congestion, risky road conditions, safety, and pollution [8]. The
IoT should provide security issues for (1) drivers by warning them
with alerts in smart cars [121], (2) passengers by informing near
ambulances with current accidents and critical issues occurred
on the way, (3) administrators by studying crowd seasons and pro-
viding some developments for transportation, and (4) machines by
preventing them from going on critical actions [2].

Main services in the smart transportation system are monitor-
ing vehicles and objects, sensing devices’ ranges and risky road
conditions, and sharing sensitive data between system parts in
the real-time to make accurate decisions. Qinglu Ma et al. [52] pro-
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posed an approach for estimating real traffic speed based on GPS
data aggregation, and they concluded that calculating mean speed
is closer to real measurements. Smart cities implement roadside
infrastructures by deploying multiple sensors, cameras, actuators,
etc. to sense and collect data about environmental conditions on
the road (e.g., such as road conditions, vehicle conditions, and traf-
fic conditions). This system collects data from multi-sensory envi-
ronments, thus data fusion and fuzzy logic play an important role
in this application area [8].

To sum up, future IoT should improve intelligent transportation
systems, by improving the safety and traffic control, and develop
algorithms for selecting best interfaces for alarm, detecting fast
moving objects, and making more accurate decision automatically.
Big data analytics can extract valuable information form raw
sensed and captured data form sensors and cameras [27].

6.2. Health-care

IoT presents more enhancements generally in normal life and
especially in the health-care sector by observing patients and help-
ing them in their life using wearable devices. The impact of the IoT
on the health-care is to present health-care services with high
quality and with little costs [122]. Examples of IoT applications
in the field of health-care: (a) wearable devices that are used for
diagnosis Alzheimer disease [123], (b) monitoring heart rate, blood
pressure, and extra vital measurements, and (c) tracking and guid-
ing aging individuals [122]. The recommended and expected fea-
tures concerns the IoT in the near future are: easy install and
management for SThs, providing simple connectivity, enhancing
information analytics, solving problems of interoperability, hetero-
geneity, and security and privacy issues [20,124].

ICT enable the IoT to plan, analysis, monitor, and control quality
of services in the field of diagnosis and treatment. Data integrity is
critical in this field, which recommended almost of IIoT applica-
tions in the health-care field to handle fault tolerance by integrat-
ing multiple shipments or inventing new algorithms for handing
this issue [125]. Blockchain is a promising solution for handling
security issues in this field such availability, data integrity, etc.

Fog computing, cloud computing, and big data technologies
enhance IoT health-care applications [126,127], E.g., big data classi-
fication for Electrocardiographic (ECG) signals [128]. Authors in [58]
proposed a framework for cancer diagnosis based machine learning
and big data. Data analysis, fusion, filtering, and compression are
main local data processing of smart gateways (UT-GATE) in the fog
edge layer of the IoT architecture discussed in [129], where gate-
ways act as a middle layer between SThs and the cloud. Authors in
[130] propose a health-care IoT architecture consisting of three
phases for data collecting, transferring, and big data storing. This
architecture has two main parts: (a) Meta Fog-Redirection (MF-R)
part for collecting and storing sensed data by implementing big data
technologies, and (b) Grouping and Choosing (GC) part for securing
patients’ information between the cloud and fog edge layers.
7. Future research directions

Up on our best of knowledge based on most earlier surveys on
the IoT such as [2–4], the future IoT have to efficiently handle and
secure data and SThs. Main future research issues concentrate on
the following points and summarized in Table 4.

7.1. Heterogeneity

Service oriented architecture (SOA) plays a key role in systems
or devices heterogeneity in the IoT [6]. It is recommended to
implement different data transfer between heterogeneous
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Table 4
A Summary for future research recommendations.

Category Ref. Year Future Recommendations

Scalability & Heterogeneity – Large-scale and self-organization for IoT.
[2] 2018 – Rational and heterogeneous topologies.
[79] 2018 – Fog layer.
[14] 2017 – Big data (collecting, processing, etc.).

– Network to network data sharing.
[20] 2017 – Syntactic interoperability and security issues.
[22] 2017 – Combining the BLE profile adaptor with Beacon.
[73] 2017 – Distributed index for scalable the IoT.
[21] 2016 – Natural language processing (NLP) techniques.
[23] 2016 – Functional requirements (e.g., resources discovery and management).
[24] 2012 – Non-functional requirements (e.g., availability, integrity, etc.).
[25] 2009 – IoT infrastructure (e.g., interoperability).
[26] 2007 – Networking

Big data [27] 2018 – Increase system efficiency for huge datasets.
[6] 2014 – Implement ICT in the IoT.

– handling and processing data at device level or gateway level.
[79] 2018 – implementing semantics and using rule engines for annotated data.
[28] 2017 – solving problem of heterogeneous protocols (fog layer).

– in brief (Data provenance, governance, regulation, management, and security).

Heterogeneity & Big data [74] 2018 – Fog layer.
[79] 2018 – Mining and analysis techniques on the massive heterogeneous IoT data.

– Improve quality of information extraction using different workflows.
[31] 2017 – Implement different fusion approaches on object level.

– Incorporate CSF in real world.
[32] 2014 – Scalable and context aware middleware.
[33] 2013 – Implementing dynamic and automatic algorithms for knowledge extraction.
[34] 2009 – Enhance search performance.

Security [131] 2018 – Enhance hardware components for enabling parts replacement.
– Developing lightweight algorithms, protocols, and anti-malware solutions.

[132] 2017 – Lightweight attribute-based encryption (ABE).
– Policy-hidden ABE for data confidentiality.

Real-time Search [27] 2018 – Data Preparation.
[17] 2016 – Crawling.
[73] 2017 – Indexing.
[32] 2015 – Query.
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resources [2], and to use distributed middle layers between hetero-
geneous platforms [23]. Cloud computing allows for implementing
data unification algorithms. Heterogeneity in IoT devices may lead
for using different protocols, which requires the future IoT manage
connections between them. Ahmed et al. [28] recommend to solve
problems of heterogeneous protocols (e.g., CoAP, MQTT, XMPP,
HTTP, etc.) by applying seamless integration and interoperability.
Fog layer is a promising solution on the hardware level [74] by
enabling heterogeneous protocols and on the data level [79] by
implementing internal semantics and computations. Grouping
devices on two levels (physical and logical) is a promised solution
in this case [14]. Data fusion techniques are recommended for han-
dling data at device level or gateway level. Also Implementing
semantics and using rule engines for annotated data [28] is a
research trend for solving data heterogeneity in the IoT.

7.2. Scalability

Research trends that aim to reduce development costs, enhance
marketing speed, and improve quality of services, result in enlarg-
ing the IoT scale. One of the main impacts on the IoT scalability is
standardization of the communication protocols (IP), which ease
the connection for almost devices [38]. The Chinese project Internet
Plus aims to make cooperation between the IoT supports and the
manufacturers to establish the standardization strategy [14]. Using
RESTful APIs, SThs can communicate and interact to exchange their
data [14,38]. As mentioned in [14] client-server model is not appli-
cable for the future IoT. The API CoAP (based on TinyOS) enables
integration of client and server to IoT. Fog layer is an essential solu-
tion for enabling interoperability that affects the IoT scale [74].
Please cite this article as: M. Younan, E. H. Houssein, M. Elhoseny et al., Challen
comprehensive review, Measurement, https://doi.org/10.1016/j.measurement.2
7.3. Data collection and storage

Collecting data from smart spaces should cover their required
features, thus optimization on sensors or SThs localizations is rec-
ommended. Cloud computing technology gives the IoT the ability
for handling large scale data and implementing big data technolo-
gies. As mentioned previously, IoT components are restricted with
some features like battery, memory, and wireless communications,
so big data techniques is a hot research area to be applicable with
these constraints. Fog computing enhances IoT performance to call
and respond services. Authors in [2] recommend scheduling emer-
gency events, self-organization, big data transfer and integration,
and building large-scale network model ensuring network cover-
age and connectivity for the future IoT, i.e., by implementing best
topologies for managing nodes and saving resources (e.g., battery).
The research work [7] recommended the following: (a) integration
between IoT systems to share data, which reduce number of
required nodes (SThs) that need to be installed to cover the same
features that other IoT system may provide. Thus heterogeneity
and standardization become critical features, (b) developing unifi-
cation algorithms for collecting data, and (c) implementing robust-
ness algorithms for analyzing and comparing large scale data.

7.4. Security

Threads issues concerning security and privacy in the IoT may
cause harmful and highly cost damages in most of IoT applications
especially health-care and smart home applications. Yang et al.
[133] present a comprehensive survey on IoT security classifying
threads following the IoT architecture. The authors in the research
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work [132] study network architecture such as resources con-
straints and self-organization, list security and privacy require-
ments such as location and identity privacies, and take in their
account how to secure data aggregation on the cloud based IoT.

Security threats in the IoT could be categorized mainly into
three levels, as mentioned in [131,133], following the main archi-
tecture of the IoT: (a) perception level (devices), where some com-
ponents are replaced for gaining access or stealing encryption keys,
(b) transition level (network), where middleware layers affected by
DoS, and (c) application level (data), where services and data
become unavailable.

Limited resources restrict implementations of some security
and encryption algorithms and also enforced the IoT to use the
cloud as a computational and storage resource, which raises new
challenges in IoT security and privacy [132], thus lightweight
attribute-based encryption (ABE) is recommended to be used as a
solution for fine-grained cipher-text access control, and policy-
hidden ABE is recommended for data confidentiality. Authors in
[131] recommended trust management and security in the future
IoT. They recommend future research on the following points for
securing devices and data in the IoT: (a) Hardware manufacturer
should enhance components for enabling parts replacement in
the internal components (i.e., on the device level), (b) developing
lightweight algorithms for encrypting messages balancing
between security level and consumed time and resources and
enhancing privacy protection issues, and (c) developing secure
and lightweight routing protocols and anti-malware solutions.
7.5. Real-time search

As mentioned above in sections Literature Review and IoT Search
Engine (IoTSE), existence of such service could leverage benefits of
the IIoT. From the study of most recent research papers (e.g.,
[3,4,11,33,40]) in this area, this paper proposes an architecture
for integrating ICT in the IIoT (Fig. 7) for fulfilling recommended
services in IoTSEs (Fig. 9) such as: (a) data preparation (i.e., filter-
ing, reduction, clustering, etc.) [17,27,37,40,111], (b) crawl
scheduling (based on frequent changes in states and readings)
[17,46], (c) multi-level indexing (implementing fog-technology
for decreasing response delay) [17,73] (see Fig. 7), (d) human and
machine query (implement semantic meaning and provide RESTful
services to be accessed by machines) [32,38,40].
8. Conclusion

Internet of Things (IoT) has been integrated in almost of daily
life objects and applications in different fields. Industrial IoT (IIoT)
concerns with the business and financial applications which
focuses on interoperability among machines. Increasing number
of SThs in these new technologies results in many challenges such
as heterogeneity, real-time streaming, big data, privacy and secu-
rity, etc. IIoT requires automated decision support for connections
in the sensing layer between machines (SThs). Information Com-
munication Technologies (ICT) present promising solutions that
address and handle most of these challenges. Proceeding from this
point, this review was organized to present a comprehensive
review about: current research work on heterogeneity and scala-
bility, real-time big data, and ICT implementations, and discovery
and search for SThs. Searching for resources, data, and SThs is a
common service that enables IoT users (human and machine) to
get benefit and share information between applications. Sharing
and extracting information in the IoT and IIoT reveal more than
40% from their potentials. This review discusses main data science
and ICT: big data, cloud and fog computing, data fusion, machine
learning, and blockchain to clarify their impact on the future IoT.
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Impacts of ICT are clarified on smart transportations and health-
care use cases.

IoT search engines (IoTSEs) could enhance their performance by
integrating such technologies, Dyser and WoTSF have to imple-
ment machine learning to extract repetition patterns in SThs mea-
surements. IoT crawlers enhance their performance by analyzing
extracted patterns to schedule SThs URIs. Blockchain enable IoT
devices to secure themselves from fake crawling. To guide
researchers for the recent trends in the IoT, this review ended by
the future research directions (challenges and promising work on
each challenge): heterogeneity, scalability, task scheduling, data
storage (on the cloud), security, and real-time search that enable
IoTSEs to present services in a global and secure manners.
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