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Abstract

Epidemiological studies have indicated that regular consumption of red wine and green tea is associated with a reduced risk of coronary

heart disease and tumor progression. The development of tumors and of atherosclerosis lesions to advanced plaques, which are prone to

rupture, is accelerated by the formation of new blood vessels. These new blood vessels provide oxygen and nutrients to neighboring cells.

Therefore, recent studies have examined whether red wine polyphenolic compounds (RWPCs) and green tea polyphenols (GTPs) have

antiangiogenic properties.

In vitro investigations have indicated that RWPCs and GTPs are able to inhibit several key events of the angiogenic process such as

proliferation and migration of endothelial cells and vascular smooth muscle cells and the expression of two major proangiogenic factors,

vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2, by both redox-sensitive and redox-insensitive mechanisms.

Antiangiogenic properties of polyphenols have also been observed in the chick embryo chorioallantoic membrane since the local application

of RWPCs and GTPs strongly inhibited the formation of new blood vessels. Moreover, intake of resveratrol or green tea has been shown to

reduce corneal neovascularization induced by proangiogenic factors such as VEGF and fibroblast growth factor in mice.

The ability of RWPCs and GTPs to prevent the formation of new blood vessels contributes, at least in part, to explain their beneficial

effect on coronary heart disease and cancer. This review focuses on the antiangiogenic properties of natural polyphenols and examines

underlying mechanisms.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Epidemiological studies have suggested an inverse

relation between regular consumption of natural polyphe-

nols, particularly red wine and green tea, and the risk of

coronary heart disease and cancer [1–7]. The beneficial

effect of red wine and green tea on coronary diseases might

be attributable, in part, to their ability to retard the

progression of early atherosclerotic lesions, as observed in

human coronary arteries at childhood, to advanced plaques,

which are prone to rupture with superimposed thrombosis as

suggested by studies with experimental models of athero-

sclerosis [8–12]. Since polyphenolic compounds from red
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wine and green tea such as quercetin and catechin were also

able to prevent the progression of atherosclerotic lesions,

polyphenols present in wine and green tea account, at least

in part, for the protective effect of moderate wine and green

tea consumption [8–11].

The formation and progression of atherosclerotic lesions

are characterized by excessive vascular remodeling with

accumulation of cells and lipids within the intimal layer of

the pathologic artery [13]. Recent experimental and human

studies have shown an increased number of adventitial vasa

vasorum in advanced coronary atherosclerosis [14–17].

Moreover, a correlation between the extent of vasa vasorum

and the severity of atherosclerotic plaques has been found in

human coronary arteries [17]. Mechanical injury of the

adventitial layer has also been shown to stimulate the

formation of new blood vessels in injured arteries [18–20].
iochemistry 16 (2005) 1–8
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These observations have led to the proposition that

adventitial vasa vasorum contribute to the development

and progression of coronary atherosclerosis by providing

oxygen and nutrients and possibly also of such complica-

tions as intimal hemorrhage and plaque rupture since these

new blood vessels are fragile. Consistent with such a

concept, two angiogenesis inhibitors, endostatin and TNP-

470, reduced intimal neovascularization and plaque growth

in apolipoprotein E-deficient mice [21].

During the angiogenic process, new blood vessels

develop from the existing microvascular bed. The initial

event involves dilatation of an existing blood vessel

followed by an increase in vascular permeability and the

degradation of extracellular matrices. Thereafter, endothelial

cells (ECs) can migrate and proliferate, and these events are

followed by maturation of new blood vessels. The angio-

genic process is controlled by two major proangiogenic

factors, matrix metalloproteinases (MMPs), which degrade

extracellular matrices, and vascular endothelial growth

factor (VEGF), which strongly stimulates EC migration

and proliferation and the formation of new blood vessels.

Therefore, recent investigations have examined the

possibility that natural polyphenols from red wine and

green tea prevent the development of atherosclerotic lesions

by inhibiting the formation of new blood vessels. Alterna-

tively, the beneficial effect of natural polyphenols might also

be related to their ability to up-regulate the level of high-

density lipoprotein and to prevent oxidation of low-density

lipoprotein [22,23], activation of platelets [24,25] and

expression of prothrombotic and proatherosclerotic mole-

cules such as monocyte chemoattractant-1 [26] and tissue

factor [27] in vascular cells. This review focuses on recent

in vitro and in vivo experimental evidence showing that

natural polyphenols, particularly those from green tea and

red wine, have antiangiogenic properties and discusses

underlying mechanisms.
Fig. 1. Red wine polyphenolic compounds inhibit VEGF expression in VSMCs. G

via the formation of intracellular ROS. The formation of ROS by the NADPH ox

which, in turn, activates hypoxia-inducible factor-1 alpha, a key transcription fact

the stimulatory effect of PDGFAB most likely by preventing the formation of intr

iodonium; NAC, N-acetyl cysteine; Vit C, vitamin C.
2. Polyphenols inhibit the expression of VEGF

Vascular endothelial growth factor, a major proangio-

genic factor [28], has been suggested to contribute to intimal

neovascularization in atherosclerosis. Indeed, VEGF is

strongly expressed in human atherosclerotic plaques

[29,30] and the number of VEGF-positive cells increases

gradually with the progression of lesions [29]. The cellular

sources of VEGF in human atherosclerotic plaques are

predominantly vascular smooth muscle cells (VSMCs) and,

to some extent, foamy macrophages [29]. In addition to

inducing a proangiogenic response, VEGF also stimulates

gene expression of several endothelial proteins involved in

prothrombotic and proatherosclerotic responses including

tissue factor [31], adhesion molecules [32] and monocyte

chemoattractant protein-1 [33]. Moreover, VEGF induces

monocyte procoagulant activity and promotes monocyte

chemotaxis [31]. Thus, VEGF is likely to play an important

role in the formation of new blood vessels and in the

expression of proinflammatory and prothrombotic mole-

cules in atherosclerotic plaques.

We have recently reported that red wine polyphenolic

compounds (RWPCs) strongly inhibit growth factor-

induced VEGF expression in VSMCs at concentrations that

are likely to be achieved in blood after moderate consump-

tion of red wine [34]. These investigations have indicated

that the stimulatory effect of growth factors such as

PDGFAB on VEGF expression is a redox-sensitive event

(Fig. 1) [34,35].

The major enzymatic source of reactive oxygen species

(ROS) in VSMCs in response to growth factors is the

nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase. Indeed, exposure of VSMCs to thrombin or

PDGFAB caused the generation of substantial amounts of

ROS via activation of a p22phox-containing NADPH

oxidase [35–37]. Moreover, prevention of the generation
rowth factors such as PDGFAB strongly stimulate the expression of VEGF

idase mediates activation of the redox-sensitive p38 MAP kinase pathway,

or regulating VEGF expression. Red wine polyphenolic compounds inhibit

acellular ROS and phosphorylation of p38 MAP kinase. DPI, diphenylene
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of ROS by either antioxidant treatments, diphenylene

iodonium, a nonselective inhibitor of NADPH oxidase, or

p22phox antisense attenuated the expression of VEGF in

response to growth factors such as thrombin, PDGFAB and

basic fibroblast growth factor (bFGF) [35,36,38]. Reactive

oxygen species appear to control the expression of VEGF

by activating the heterodimeric transcription factor hypoxia-

inducible factor-1 [35].

Polyphenols from red wine and green tea have been

shown to have antioxidant properties most likely due to their

ability to directly scavenge ROS such as hydroxyl radical

and superoxide anion [22,39,40] and to inhibit the expres-

sion of NADPH oxidase [41] and the activity of xanthine

oxidase [42]. In addition, polyphenols can also increase the

activity of catalase and glutathione peroxidase [43], which

detoxify H2O2 by converting it to O2 and H2O.

Consistent with their antioxidant properties, the inhibi-

tory effect of RWPCs on PDGFAB-induced expression of

VEGF was associated with the total prevention of the

formation of ROS [34]. In addition, RWPCs also signifi-

cantly reduced the H2O2-stimulated release of VEGF in

VSMCs [34]. Altogether, these findings suggest that the

inhibitory effect of RWPCs on the expression of VEGF

involves, at least in part, their antioxidant properties.

However, although antioxidants such as vitamin C, N-

acetylcysteine and diphenylene iodonium completely pre-

vented the formation of ROS in VSMCs, they only partially

reduced the PDGFAB-induced expression of VEGF [34].

These findings suggest that the stimulatory effect of

PDGFAB on VEGF expression involves both redox-sensitive

and redox-insensitive mechanisms. Consistent with such an

idea, RWPCs caused a sustained inhibition of PDGFAB-

induced VEGF expression that lasts several hours after their

removal from the incubation medium, a condition that was

not associated with an impaired formation of ROS [34].

Such a long-lasting effect of RWPCs might reflect their

association with VSMCs and/or the possibility that RWPCs

induce the production of one or several peptide(s)/pro-

tein(s), which, in turn, contribute(s) to prevent the expres-

sion of VEGF via redox-insensitive mechanisms.

Previous studies have shown that PDGFAB causes

activation of several redox-sensitive protein kinases includ-

ing members of the mitogen-activated protein kinases such as

p38 MAPK, ERK1/2 and JNK and also PI3-kinase/Akt,

which have all been involved in the up-regulation of VEGF

expression in several cell types [44–46]. However, only the

activation of the p38 MAPK pathway seems to play a major

role in PDGFAB-induced release of VEGF in VSMCs.

Indeed, PDGFAB-induced release of VEGF was abolished

by SB203580, a specific inhibitor of p38 MAPK, slightly

reduced by PD98059, an inhibitor of MEK, and not affected

by wortmannin and JNKI, inhibitors of PI3-kinase and JNK,

respectively [34]. Reactive oxygen species appear to mediate

the stimulatory effect of PDGFAB on p38 MAPK activation

since the response was prevented by several antioxidants and

H2O2 is a strong activator of p38 MAPK [34]. Red wine
polyphenolic compounds strongly inhibited PDGFAB-in-

duced p38 MAPK phosphorylation without affecting that

of ERK1/2, JNK and Akt in VSMCs. Although RWPCs have

been shown to inhibit PDGFBB binding to the PDGF-h
receptor and PDGF-h receptor phosphorylation [47], such an

explanation is unlikely to account for the impaired expres-

sion of VEGF because the PDGFAB-induced phosphoryla-

tion of ERK1/2, JNK and Akt was not affected by RWPCs.

Taken together, RWPCs are potent inhibitors of growth

factor-induced VEGF expression in VSMCs partly by the

selective prevention of the redox-sensitive activation of the

p38 MAPK pathway, which leads to VEGF gene expression.

In addition, green tea polyphenols (GTPs) and epigallo-

catechin-3-gallate (EGCG) have also been shown to

decrease VEGF production in head and breast carcinoma

cells by inhibiting epidermal growth factor receptor-related

pathways of signal transduction [48,49] such as the

constitutive activation of Stat3 and NF-nB but not ERK1/2

or Akt [48].
3. Polyphenols inhibit MMP-2 expression and activity

The structural reorganization of the arterial wall during

atherogenesis is controlled by MMPs, a family of structur-

ally related zinc endopeptidases that are capable of

degrading components of the extracellular matrix [50,51].

Recent findings have indicated that the gelatinases, MMP-2

and MMP-9, are dominant MMPs in vascular tissues and

that they play an important role in the turnover of basement

membrane type IV collagen during angiogenesis and

formation of atherosclerotic plaques [52,53], leading to an

increased risk of cardiovascular events. Besides MMP-2 and

MMP-9, vascular cells also produce MMP-1, -3 and

membrane type (MT) 1 MMP, which have all been involved

in the destabilization and rupture of atherosclerotic plaques

(see for review, Refs. [51,54]).

Matrix metalloproteinase-2 is expressed abundantly in

atherosclerotic and restenotic lesions and has been sug-

gested to play a key role in the degradation of the basement

membrane, thereby promoting migration of ECs and

VSMCs [55].

Matrix metalloproteinase-2 is unique among the MMPs

in that it does not possess the propeptide sequence that is

susceptible to proteolytic activation by other proteases such

as plasmin or trypsin [53]. Activation of the precursor of

MMP-2, pro-MMP-2, takes place predominantly at the cell

surface and is mediated by MT1-MMP [50,53,54]. The

following model of pro-MMP-2 activation by MT1-MMP

and tissue inhibitor of metalloproteinase-2 (TIMP-2) has

been proposed (see for review, Ref. [50]). MT1-MMP

forms a dimer or multimers on the cell surface through

interaction of the hemopexin domains. Pro-MMP-2 forms a

tight complex with TIMP-2 through their C-terminal

domains, therefore permitting the N-terminal inhibitory

domain of TIMP-2 in the complex to bind to MT1-MMP
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on the cell surface [50]. Binding of pro-MMP-2 to the

MT1-MMP/TIMP-2 complex localizes the pro-MMP-2 on

the cell surface, and activation is initiated by the

proteolytic action of a second TIMP-2-free MT1-MMP

molecule at the Asn37–Leu38 bond of the MMP-2 propep-

tide [50]. Alternatively, MT1-MMP inhibited by TIMP-2

can act as a receptor of pro-MMP-2. It has been suggested

that the maximum enhancement of pro-MMP-2 activation

is observed at a TIMP-2/MT1-MMP ratio of 0.05,

indicating that a large number of free MT1-MMPs may

surround the ternary complex of pro-MMP-2–TIMP-2–

MT1-MMP for effective pro-MMP-2 activation [56]. Pro-

MMP-2 can be activated by other MT-MMPs in several

cell types. These include MT2-MMP [57], MT3-MMP

[58], MT5-MMP [59,60] and MT6-MMP [61]. Interest-

ingly, pro-MMP-2 activation by MT2-MMP is direct and

independent of TIMP-2 [62].

Recent in vitro and in vivo studies have revealed a major

role for gelatinases in angiogenesis. When ECs are cultured

on Matrigel, the formation of a tubular network is induced

by the addition of recombinant MMP-2 in a dose-dependent

manner and this response is inhibited by a neutralizing

antibody directed against MMP-2 and by a tissue inhibitor

of metalloproteinases, TIMP-2 [63]. Capillary ECs cultured

on two-dimensional type I collagen gels produce low,

constitutive levels of pro-MMP-2 with little endogenous

activation of the protease. However, when placed in three-

dimensional type I collagen gels, there is a marked increase

in the total amount of MMP-2 mRNA and protein [64].

Matrix metalloproteinase-2 activity can also generate

extracellular matrix degradation fragments, leading to
Fig. 2. Red wine polyphenolic compounds and GTPs inhibit MMP-2 expression an

cell-associated pro-MMP-2 protein and the activity of MT1-MMP via protease-ac

the formation of active MMP-2 and VSMC invasion. Red wine polyphenolic comp

MMP-2 into active MMP-2 by directly inhibiting MT1-MMP activity, thereby

membrane type 1 matrix metalloproteinase; TIMP-2, tissue inhibitor of metallopro

specific inhibitor of thrombin.
signals required for cell survival and migration [65]. In

addition, the corneal neovascular area induced by bFGF in

MMP-2-deficient mice is markedly reduced when compared

with that of wild-type littermates [66].

Recent studies have indicated that RWPCs and GTPs

strongly inhibit VSMC invasion induced by growth factors

such as thrombin and PDGFBB [67,68]. The inhibitory effect

of polyphenols is associated with a concentration-dependent

inhibition of thrombin-induced MMP-2 activation (Fig. 2)

[69,70]. In addition, although thrombin did not affect the

expression level of MT1-MMP both at the mRNA and

protein levels, the serine protease increased markedly the

cell-associated MT1-MMP activity. Red wine polyphenolic

compounds and GTPs inhibited MT1-MMP activity when

added directly to the enzymatic assay. Altogether, these

findings suggest that natural polyphenols from red wine and

green tea are able to prevent activation of MMP-2 by

directly inhibiting the activity of membrane-bound MT1-

MMP. Consistent with such an idea, catechin, a polyphe-

nolic compound, has been shown to prevent MT1-MMP-

dependent activation of MMP-2 in cancer cells [71]. The

inhibitory effect of RWPCs is not observed in VSMCs

pretreated with RWPCs before the enzymatic determination

of cell-associated MT1-MMP activity, indicating that

RWPCs most likely inhibit the catalytic activity of MT1-

MMP in a reversible manner [70]. At present, the active

polyphenolic compounds of the red wine extract and the

green tea extract still remain unclear. However, previous

studies have shown that resveratrol and EGCG strongly

inhibit MMP-2 expression and activity in different types of

cells [67,72–74].
d directly the activity of MT1-MMP. Thrombin stimulates the expression of

tivated receptor-independent mechanisms in VSMCs. These effects result in

ounds and GTPs inhibit the expression of MMP-2 and the conversion of pro-

preventing VSMC invasion. MMP-2, matrix metalloproteinase-2; MT1,

teinase-2; GM6001, a broad-spectrum MMP inhibitor; Hirudin, a potent and
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4. Polyphenols prevent migration and proliferation

of ECs and VSMCs

Proliferation and migration of ECs and VSMCs are

major events in the angiogenic process and are also

hallmarks of numerous cardiovascular diseases including

atherosclerosis and restenosis. Several studies have indi-

cated that natural polyphenols are able to inhibit prolifer-

ation and migration of vascular cells [75,76].

Resveratrol has been shown to prevent the progression

of ECs through the S and G2 phases, and this effect is

accompanied by an increased expression of the tumor

suppressor gene protein p53 and an elevation of the

level of the cyclin-dependent kinase inhibitor p21(WAF1/

CIP1) [77]. Delphinidin strongly inhibited EC prolifera-

tion and migration in cyclin D1- and cyclin A-dependent

pathways in response to VEGF [78,79]. Green tea

polyphenols also significantly reduced EC proliferation

in a dose-dependent manner and caused the accumulation

of cells in the G1 phase without affecting cell viability

[80]. In addition, EGCG suppressed EC proliferation

and migration by inducing apoptosis through mitochon-

drial depolarization, activation of caspase-3 and reduction

of binding of VEGF to its receptors in human ECs

[81,82].

Not only ECs but also proliferation and migration of

VSMCs can be affected by RWPCs and GTPs. Iijima et

al. [83] have reported that RWPCs strongly inhibit

proliferation and migration of VSMCs; both these

responses are associated with the down-regulation of

cyclin A gene expression through the decreased expres-

sion of transcription factors CREB and ATF-1 and with

the specific inhibition of p38 MAPK and PI3-kinase/Akt

pathways. In addition, GTPs and EGCG also induced

apoptosis of proliferating VSMCs in a p53- and NF-nB-
dependent manner.
Fig. 3. Antiangiogenic effects of RWPCs on the chick embryo CAM. The local app

of new blood vessels as compared with the control area after a 48-h incubation p
5. In vivo antiangiogenic properties of polyphenols

It is well established that neovascularization occurs in

atherosclerotic plaques of humans [14,17] and also

promotes the progression of tumors [84]. Although poly-

phenols from green tea and red wine showed strong

antiangiogenic properties in several in vitro experiments,

few studies have investigated their antiangiogenic proper-

ties in vivo. The local application of RWPCs and GTPs to

the chick embryo chorioallantoic membrane (CAM)

strongly inhibited angiogenesis as indicated by a marked

reduction in the number and length of small blood vessels

after a 48-h incubation period (Fig. 3) [85,86]. Moreover,

previous studies have indicated that drinking resveratrol, a

polyphenolic compound found in wine, significantly

inhibited corneal neovascularization in mice induced by

VEGF and bFGF [87]. Epigallocatechin-3-gallate from

green tea also suppressed the proliferation of ECs and the

formation of new blood vessels in the CAM assay [86]. In

addition, drinking tea significantly prevented VEGF-induced

corneal neovascularization in a mouse model [86]. It has

been also reported that resveratrol can inhibit tumor growth

and tumor-induced neovascularization in vivo [88].
6. Discussion and conclusion

The molecular mechanism of the in vivo antiangiogenic

properties of red wine- and green tea-derived polyphenolic

compounds remains unclear, but it may be due to their

ability to inhibit several key events of the angiogenic

process such as proliferation and migration of ECs and

VSMCs and the expression of VEGF and activation of

MMP-2.

The bioavailability of GTPs and RWPCs is an important

determinant in understanding their biological activities.
lication of RWPCs (5 and 25 Ag) to the CAM strongly inhibits the formation

eriod. Similar observations were obtained in two additional experiments.
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Lack of understanding on this issue has led to excessive

claims regarding the in vivo biological activity of natural

polyphenols based on extrapolation from in vitro studies.

The absorption of only very few red wine compounds has

been studied to date, and absorption of even fewer

compounds has been studied within a wine matrix. Despite

these limitations, flavanols, flavonols, anthocyanins and

nonflavonoid stilbenes in red wine and green tea have been

shown to be absorbed [89–93]. The inhibitory effect of

RWPCs on proangiogenic responses is detected at concen-

trations as low as 3 Ag/ml [34,83]. Although the

concentration of RWPCs in blood after intake of red wine

remains unknown, a previous study has indicated that

intake of 100 ml of red wine by healthy volunteers caused

an increase in plasma concentration of polyphenolic

monomers of 2.5 Ag/ml (gallic acid equivalents) [89].

The degree of availability of GTPs is still under debate.

Recent studies have demonstrated that a small percentage

of the per os-ingested green tea catechins appears in blood

[90–93]. Lee et al. [90] have indicated that the mean peak

plasma EGCG level is about 0.17 AM after drinking the

equivalent of two cups of tea by human volunteers.

Moreover, a receptor for EGCG has been identified in

human cancer cells [94]. In this type of cells, the inhibitory

effects of EGCG are mediated by the 67-kDa laminin

receptor with a Kd value of about 40 nM.

The concentration of EGCG, which showed antiangio-

genic effects in a mouse corneal model, was in the range of

0.1–0.3 AM [86]. Thus, the inhibitory effect of RWPCs and

GTPs on proangiogenic responses is likely to be reached in

blood after moderate consumption of red wine and green tea.

In conclusion, several recent studies have indicated that

RWPCs and GTPs have in vitro and in vivo antiangiogenic

properties by inhibiting the expression of two strong

proangiogenic factors, VEGF and MMP-2, and also by

preventing the proliferation and migration of ECs and

VSMCs. The antiangiogenic properties of RWPCs and

GTPs could contribute to explain the reduced risk of

coronary heart diseases and cancer mortality following

chronic consumption of moderate amounts of red wine and

green tea.
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