About
53
Publications
6,180
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,405
Citations
Citations since 2017
Introduction
Additional affiliations
January 2001 - November 2020
Publications
Publications (53)
The flavone luteolin (Fig. 1) is phytochemical compound widely distributed in its glycosylated forms in celery, green pepper, camomile tea and artichoke. This polyphenolic compound has shown promising health promoting effects in human cell culture, experimental in vitro and in vivo clinical studies. 1 It has been revealed to have antitumorigenic, a...
Influenza virus causes severe respiratory infection in humans. Current antivirotics target three key proteins in the viral life cycle: neuraminidase, the M2 channel and the endonuclease domain of RNA-dependent-RNA polymerase. Due to the development of novel pandemic strains, additional antiviral drugs targetting different viral proteins are still n...
Influenza is a causative agent of upper respiratory tract infection that causes 290 000 - 650 000 deaths worldwide annually. 1 Because of its high virulence and mutation rate, the H5N1, H1N1, and H3N2 strains has made a likelihood of human influenza pandemic and the possible socioeconomic impact remain major worldwide concern. These strains have al...
The Influenza A virus encodes an RNA-dependent RNA polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase
activity and PB2 with host RNA 5’–cap binding site. The PA subunit is a target for anti-influenza therapies, as general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located...
The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg 2+ or Mn 2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA i...
STING protein (stimulator of interferon genes) plays an important role in the innate immune system. A number of potent compounds regulating its activity have been reported, mostly derivatives of cyclic dinucleotides (CDNs), natural STING agonists. Here, we aim to provide complementary information to large-scale "ligand-profiling" studies by probing...
Influenza A virus (IAV) encodes a polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase activity and PB2 with host RNA five-prime cap binding site. Their cooperation and stepwise activation include a process called cap-snatching, which is a crucial step in the IAV life cycle. Reproduction of IAV can be blocked b...
The complexity of the thermodynamics associated with the binding of fluorinated and non‐fluorinated cyclic dinucleotides to the STING protein was analyzed and explained by employing a combination of experimental and theoretical methods. Large enthalpy/entropy compensations can only be explained by complementing the structural and energetic analysis...
STING (stimulator of interferon genes) is a key regulator of innate immunity that has recently been recognized as a promising drug target. STING is activated by cyclic dinucleotides (CDNs) which eventually leads to expression of type I interferons and other cytokines. Factors underlying the affinity of various CDN analogues are poorly understood. H...
Influenza viruses can cause severe respiratory infections in humans, leading to nearly half a million deaths worldwide each year. Improved antiviral drugs are needed to address the threat of development of novel pandemic strains. Current therapeutic interventions target three key proteins in the viral life cycle: neuraminidase, the M2 channel and R...
The biological effects of flavonoids on mammal cells are diverse, ranging from scavenging free radicals and anti-cancer activity to anti-influenza activity. Despite appreciable effort to understand the anti-influenza activity of flavonoids, there is no clear consensus about their precise mode-of-action at a cellular level.
Here, we report the devel...
Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the mem...
This study focuses on design, synthesis and in vitro evaluation of inhibitory potency of two series of sialylmimetic that target an exosite (“150-cavity”) adjacent to the active site of influenza neuraminidases from A/California/07/2009 (H1N1) pandemic strain and A/chicken/Nakorn-Patom/Thailand/CU-K2-2004 (H5N1). The structure-activity analysis as...
Influenza neuraminidase is responsible for the escape of new viral particles from the infected cell surface. Several neuraminidase inhibitors are used clinically to treat patients or stockpiled for emergencies. However, the increasing development of viral resistance against approved inhibitors has underscored the need for the development of new ant...
Neuraminidase is the main target for current influenza drugs. Reduced susceptibility to oseltamivir, the most widely prescribed neuraminidase inhibitor, has been repeatedly reported. The resistance substitutions I223V and S247N, alone or in combination with the major oseltamivir-resistance mutation H275Y, have been observed in 2009 pandemic H1N1 vi...
The eukaryotic Ddi1 family is defined by a conserved retroviral aspartyl protease-like (RVP) domain found in association with a ubiquitin-like (UBL) domain. Ddi1 from Saccharomyces cerevisiae additionally contains a ubiquitin-associated (UBA) domain. The substrate specificity and role of the protease domain in the biological functions of the Ddi fa...
The assembly of immature retroviral particles is initiated in the cytoplasm by the binding of the structural polyprotein precursor Gag with viral genomic RNA. The protein interactions necessary for assembly are mediated predominantly by the capsid (CA) and nucleocapsid (NC) domains, which have conserved structures. In contrast, the structural arran...
Although Ddi1-like proteins are conserved among eukaryotes, their biological functions remain poorly characterized. Yeast Ddi1 has been implicated in cell cycle regulation, DNA-damage response, and exocytosis. By virtue of its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, it has been proposed to serve as a proteasomal shuttle factor....
In an effort to identify an HIV-1 capsid assembly inhibitor with improved solubility and potency, we synthesized two series of pyrimidine analogues based on our earlier lead compound N-(4-(ethoxycarbonyl)phenyl)-2-(pyridine-4-yl)quinazoline-4-amine. In vitro binding experiments showed that our series of 2-pyridine-4-ylpyrimidines had IC50 values hi...
Assembly of human immunodeficiency virus (HIV-1) represents an attractive target for antiretroviral therapy, which is not exploited by currently available drugs. We established high-throughput screening for assembly inhibitors, based on competition of small molecules for the binding of a known dodecapeptide assembly inhibitor to the C-terminal doma...
The structure of the active site in a metalloenzyme can be a key determinant of its metal ion binding affinity and catalytic activity. In this study, the conformational features of the Zn(2+)-binding HNH motif were investigated by CD-spectroscopy in combination with isothermal microcalorimetric titrations. Various point mutations, including T454A,...
The nuclease domain of colicin E7 (NColE7) cleaves DNA nonspecifically. The active center is a Zn(2+)-containing HNH motif at the C-terminus. The N-terminal loop is essential for the catalytic activity providing opportunity for allosteric modulation of the enzyme. To identify the key residues responsible for the structural integrity of NColE7, a vi...
The nuclease domain of colicin E7 (NColE7) promotes the nonspecific cleavage of nucleic acids at its C-terminal HNH motif. Interestingly, the deletion of four N-terminal residues (446-449 NColE7 = KRNK) resulted in complete loss of the enzyme activity. R447A mutation was reported to decrease the nuclease activity, but a detailed analysis of the rol...
We report enzymologic, thermodynamic and structural analyses of a series of six clinically derived mutant HIV proteases (PR) resistant to darunavir. As many as 20 mutations in the resistant PRs decreased the binding affinity of darunavir by up to 13 000-fold, mostly because of a less favorable enthalpy of binding that was only partially compensated...
The binding of monosaccharides and short peptides to lymphocyte receptors (human CD69 and rat NKR-P1A) was first reported in 1994 and then in a number of subsequent publications. Based on this observation, numerous potentially high-affinity saccharide ligands have been synthesized over the last two decades in order to utilize their potential in ant...
Insertions in the protease (PR) region of human immunodeficiency virus (HIV) represent an interesting mechanism of antiviral
resistance against HIV PR inhibitors (PIs). Here, we demonstrate the improved ability of a phosphonate-containing experimental
HIV PI, GS-8374, relative to that of other PIs, to effectively inhibit patient-derived recombinant...
Purpose:
To characterize the relationship between superparamagnetic ferritin-bound iron and diffusion tensor scalars in vitro, and validate the results in vivo.
Materials and methods:
The in vitro model consisted of a series of 40-mL 1.1% agarose gels doped with ferritin covering and exceeding those concentrations normally found within healthy h...
HIV protease is a primary target for the design of virostatics. Screening of libraries of non-peptide low molecular weight compounds led to the identification of several new compounds that inhibit HIV PR in the low micromolar range. X-ray structure of the complex of one of them, a dibenzo[b,e][1,4]diazepinone derivative, showed that two molecules o...
During the last few decades, the treatment of HIV-infected patients by highly active antiretroviral therapy, including protease
inhibitors (PIs), has become standard. Here, we present results of analysis of a patient-derived, multiresistant HIV-1 CRF02_AG
recombinant strain with a highly mutated protease (PR) coding sequence, where up to 19 coding...
Using a combination of experimental techniques (circular dichroism, differential scanning calorimetry, and NMR) and molecular dynamics simulations, we performed an extensive study of denaturation of the Trp-cage miniprotein by urea and guanidinium. The experiments, despite their different sensitivities to various aspects of the denaturation process...
Proteases play a crucial role in the retroviral infection but so far the mechanism of their regulation remains unclear. Protease MIA-14 from murine intracisternal A-type particles, containing a C-terminal domain rich in glycines (G-patch), is responsible for binding of single-stranded oligonucleotides (both RNA and DNA) without inhibiting the prote...
HIV protease (HIV PR) is a primary target for anti-HIV drug design. We have previously identified and characterized substituted metallacarboranes as a new class of HIV protease inhibitors. In a structure-guided drug design effort, we connected the two cobalt bis(dicarbollide) clusters with a linker to substituted ammonium group and obtained a set o...
Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the transfer of a methyl group from betaine to l-homocysteine, yielding dimethylglycine and l-methionine. In this study, we prepared a new series of BHMT inhibitors. The inhibitors were designed to mimic the hypothetical transition state of BHMT substrates and consisted of analogues with NH,...
Darunavir is the most recently approved human immunodeficiency virus (HIV) protease (PR) inhibitor (PI) and is active against many HIV type 1 PR variants resistant to earlier-generation PIs. Darunavir shows a high genetic barrier to resistance development, and virus strains with lower sensitivity to darunavir have a higher number of PI resistance-a...
A novel strategy is presented for designing peptides with specific metal-ion chelation sites, based on linking computationally predicted ion-specific combinations of amino acid side chains coordinated at the vertices of the desired coordination polyhedron into a single polypeptide chain. With this aim, a series of computer programs have been writte...
HIV protease (PR) is a prime target for rational anti-HIV drug design. We have previously identified icosahedral metallacarboranes as a novel class of nonpeptidic protease inhibitors. Now we show that substituted metallacarboranes are potent and specific competitive inhibitors of drug-resistant HIV PRs prepared either by site-directed mutagenesis o...
Lopinavir (LPV) is a second-generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long-term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a...
Expression of genes in the gapA operon encoding five enzymes for triose phosphate interconversion in Bacillus subtilis is negatively regulated by the Central glycolytic genes Regulator (CggR). CggR belongs to the large SorC/DeoR family of prokaryotic transcriptional regulators, characterized by an N-terminal DNA-binding domain and a large C-termina...
While the selection of amino acid insertions in human immunodeficiency virus (HIV) reverse transcriptase (RT) is a known mechanism of resistance against RT inhibitors, very few reports on the selection of insertions in the protease (PR) coding region have been published. It is still unclear whether these insertions impact protease inhibitor (PI) re...
The monoclonal antibodies 1696 and F11.2.32 strongly inhibit the activity of wild-type HIV-1 protease (PR) by binding to epitopes at the enzyme N-terminus (residues 1-6) and flap residues 36-46, respectively. Here we demonstrate that these antibodies are also potent inhibitors of PR variants resistant to active-site inhibitors used as anti-AIDS dru...
Adsorption of HIV protease onto surfaces that are usually considered to be protein-resistant was studied quantitatively using surface plasmon resonance. Adsorption onto gold surfaces functionalized by OH-terminated alkyl chains was much stronger than onto oligo(ethylene glycol)-terminated surfaces. Equilibrium and kinetic adsorption constants were...
Human immunodeficiency virus (HIV) encodes an aspartic protease (PR) that cleaves viral polyproteins into mature proteins, thus leading to the formation of infectious particles. Protease inhibitors (PIs) are successful virostatics. However, their efficiency is compromised by antiviral resistance. In the PR sequence of viral variants resistant to th...
Specific antibodies interfere with the function of human tumor-associated carbonic anhydrase IX (CA IX), and show potential as tools for anticancer interventions. In this work, a correlation between structural elements and thermodynamic parameters of the association of antibody fragment Fab M75 to a peptide corresponding to its epitope in the prote...
Tetraphenylporphyrin conjugates with one (PB1) and four (PB4) cobalt(III) bis(1,2-dicarbollide) substituents were synthesized and the physicochemical and photophysical properties as well as inhibition of HIV-1 protease were described. In methanol, both PB1 and PB4 were monomeric producing the triplet states and singlet oxygen after excitation. The...
Rubredoxin from the hyperthermophile Pyrococcus furiosus (Pf Rd) is an extremely thermostable protein, which makes it an attractive subject of protein folding and stability studies. A fundamental question arises as to what the reason for such extreme stability is and how it can be elucidated from a complex set of interatomic interactions. We addres...
HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI st...
HIV protease (PR) specifically cleaves viral polyproteins to yield infectious progeny virus particles. Inactivation of PR leads to loss of virus infectivity and PR thus became an attractive pharmaceutic target. Indeed, seven protease inhibitors (PI) have been approved for clinical use to date. However, emerging resistant viral variants with reduced...