Milan Hladik

Milan Hladik
Verified
Milan verified their affiliation via an institutional email.
Verified
Milan verified their affiliation via an institutional email.
  • Professor
  • Professor at Charles University in Prague

About

210
Publications
32,446
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,499
Citations
Current institution
Charles University in Prague
Current position
  • Professor

Publications

Publications (210)
Article
Full-text available
Sensitivity analysis in linear programming is a standard technique for measuring the effects of variations in one coefficient on the optimal value and optimal solution. However, one-coefficient variations are too simple to reflect the complexity of real-life situations. That is why we propose a more general approach and consider variations of possi...
Preprint
Full-text available
Binary classification tasks with imbalanced classes pose significant challenges in machine learning. Traditional classifiers often struggle to accurately capture the characteristics of the minority class, resulting in biased models with subpar predictive performance. In this paper, we introduce a novel approach to tackle this issue by leveraging Un...
Article
Interval multi-objective linear programming (IMOLP) ímodels are one of the methods to tackle uncertainties. In this paper, we propose two methods to determine the efficient solutions in the IMOLP models through the expected value, variance and entropy operators which have good properties. One of the most important properties of these methods is to...
Article
Full-text available
Explainable Artificial Intelligence (XAI) encompasses the strategies and methodologies used in constructing AI systems that enable end-users to comprehend and interpret the outputs and predictions made by AI models. The increasing deployment of opaque AI applications in high-stakes fields, particularly healthcare, has amplified the need for clarity...
Article
Full-text available
Incomplete cooperative games generalize the classical model of cooperative games by omitting the values of some of the coalitions. This allows for incorporating uncertainty into the model and studying the underlying games and possible payoff distributions based only on the partial information. In this paper, we conduct a systematic investigation of...
Article
This paper provides a thorough exploration of the absolute value equations Ax−|x|=b, a seemingly straightforward concept that has gained heightened attention in recent years. It is an NP-hard and nondifferentiable problem and equivalent with the standard linear complementarity problem. Offering a comprehensive review of existing literature, the stu...
Article
Full-text available
This paper provides an overview of the necessary and sufficient conditions for guaranteeing the unique solvability of absolute value equations. In addition to discussing the basic form of these equations, we also address several generalizations, including generalized absolute value equations and matrix absolute value equations. Our survey encompass...
Article
Full-text available
This paper addresses a linear programming problem with interval right-hand sides, forming a family of linear programs associated with each realization of the interval data. The paper focuses on the outcome range problem, which seeks the range of an additional function—termed the outcome function—over all possible optimal solutions of such linear pr...
Article
Full-text available
In supervised learning, the Universum, a third class that is not a part of either class in the classification task, has proven to be useful. In this study we propose (N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \set...
Chapter
We consider the problem of minimization of a positive definite quadratic form; this problem has a unique optimal solution. The question here is what are the largest allowable variations of the input data such that the optimal solution will not exceed given bounds? This problem is called global sensitivity analysis since, in contrast to the traditio...
Preprint
This paper provides an overview of the necessary and sufficient conditions for guaranteeing the unique solvability of absolute value equations. In addition to discussing the basic form of these equations, we also address several generalizations, including generalized absolute value equations and matrix absolute value equations. Our survey encompass...
Article
In the realm of multi-class classification, the twin K-class support vector classification (Twin-KSVC) generates ternary outputs {-1,0,+1} by evaluating all training data in a "1-versus-1-versus-rest" structure. Recently, inspired by the least-squares version of Twin-KSVC and Twin-KSVC, a new multi-class classifier called improvements on least-squa...
Chapter
Interval linear programming studies linear programming problems with interval coefficients. Herein, the intervals represent a range of possible values the coefficients may attain, independently of each other. They usually originate from a certain uncertainty of obtaining the data, but they can also be used in a type of a sensitivity analysis. The g...
Preprint
This paper introduces a concept of a derivative of the optimal value function in linear programming (LP). Basically, it is the the worst case optimal value of an interval LP problem when the nominal data the data are inflated to intervals according to given perturbation patterns. By definition, the derivative expresses how the optimal value can wor...
Preprint
We deal with linear programming problems involving absolute values in their formulations, so that they are no more expressible as standard linear programs. The presence of absolute values causes the problems to be nonconvex and nonsmooth, so hard to solve. In this paper, we study fundamental properties on the topology and the geometric shape of the...
Article
Full-text available
In supervised learning, the Universum, a third class that is not a part of either class in the classification task, has proven to be useful. In this study we propose (N\( \mathfrak {U} \)TBSVM), a Newton-based approach for solving in the primal space the optimization problems related to Twin Bounded Support Vector Machines with Universum data (\( \...
Article
Full-text available
Universum data sets, a collection of data sets that do not belong to any specific class in a classification problem, give previous information about data in the mathematical problem under consideration to enhance the classifiers’ generalization performance. Recently, some researchers have integrated Universum data into the existing models to propos...
Preprint
Full-text available
In supervised learning, the Universum, a third class that is not a part of either class in the classification task, has proven to be useful. In this study we propose (NUTBSVM), a Newton-based approach for solving in the primal space the optimization problems related to Twin Bounded Support Vector Machines with Universum data (UTBSVM). In the UTBSV...
Preprint
Full-text available
XAI refers to the techniques and methods for building AI applications which assist end users to interpret output and predictions of AI models. Black box AI applications in high-stakes decision-making situations, such as medical domain have increased the demand for transparency and explainability since wrong predictions may have severe consequences....
Article
Full-text available
In binary classification, kernel-free quadratic support vector machines are proposed to avoid difficulties such as finding appropriate kernel functions or tuning their hyper-parameters. Furthermore, Universum data points, which do not belong to any class, can be exploited to embed prior knowledge into the corresponding models to improve the general...
Chapter
The support vector classification-regression machine for k-class classification (K-SVCR) is a novel multi-class classification approach based on the “1-versus-1-versus-rest” structure. In this work, we suggested an efficient model by proposing the p-norm \((0<p< 1)\) instead of the 2-norm for the regularization term in the objective function of K-S...
Chapter
The separation of two polyhedra by a family of parallel hyperplanes is a well-known problem with important applications in operations research,statistics and functional analysis. In this paper, we introduce a new algorithm for constructing a family of parallel hyperplanes that separates two disjoint polyhedra given by a system of linear inequalitie...
Article
Imbalanced datasets are prominent in real-world problems. In such problems, the data samples in one class are significantly higher than in the other classes, even though the other classes might be more important. The standard classification algorithms may classify all the data into the majority class, and this is a significant drawback of most stan...
Preprint
The absolute value equations (AVE) problem is an algebraic problem of solving Ax+|x|=b. So far, most of the research focused on methods for solving AVEs, but we address the problem itself by analysing properties of AVE and the corresponding solution set. In particular, we investigate topological properties of the solution set, such as convexity, bo...
Article
Full-text available
The support vector classification-regression machine for K-class classification (K-SVCR) is a novel multi-class classification method based on the “1-versus-1-versus-rest” structure. In this paper, we propose a least squares version of K-SVCR named LSK-SVCR. Similarly to the K-SVCR algorithm, this method assesses all the training data into a “1-ver...
Preprint
Full-text available
Multi-task learning (MTL) has emerged as a promising topic of machine learning in recent years, aiming to enhance the performance of numerous related learning tasks by exploiting beneficial information. During the training phase, most of the existing multi-task learning models concentrate entirely on the target task data and ignore the non-target t...
Article
Motivated by recently published papers, we discuss the problem of solving absolute value equations of the form Ax+|x|=b. Specifically, we show the equivalence of two sufficient conditions for the unsolvability of such equations which are based on linear programming. Furthermore, we prove that two generalizations of sufficient conditions for unique...
Article
Full-text available
Optimization problems are often subject to various kinds of inexactness or inaccuracy of input data. Here, we consider multiobjective linear programming problems, in which two kinds of input entries have the form of interval data. First, we suppose that the objectives entries are interval values, and, second, we suppose that we have an interval est...
Article
Full-text available
Parametric linear systems with interval coefficients arise in many practical applications in engineering and other related areas. In this paper, we derive a connection between parametric systems and interval linear programming, where interval parametric linear systems can be used to describe the weak optimal solution set. Then, we discuss the branc...
Article
Full-text available
Universum data that do not belong to any class of a classification problem can be exploited to utilize prior knowledge to improve generalization performance. In this paper, we design a novel parametric ν-support vector machine with universum data (\( \mathfrak {U} \)Par-ν-SVM). Unlabeled samples can be integrated into supervised learning by means o...
Article
Full-text available
Due to their relation to the linear complementarity problem, absolute value equations have been intensively studied recently. In this paper, we present error bound conditions for absolute value equations. Along with the error bounds, we introduce a condition number. We consider general scaled matrix p-norms, as well as particular p-norms. We discus...
Article
Full-text available
The Universum provides prior knowledge about data in the mathematical problem to improve the generalization performance of the classifiers. Several works have shown that the Universum twin support vector machine (\( \mathfrak {U} \)-TSVM) is an efficient method for binary classification problems. In this paper, we improve the \( \mathfrak {U} \)-TS...
Chapter
Universum twin support vector machine (\( \mathfrak {U} \)-TSVM) is an efficient method for binary classification problems . In this paper, we improve the \( \mathfrak {U} \)-TSVM algorithm and propose an improved Universum twin bounded support vector machine (named as IUTBSVM) . Indeed, by introducing a different Lagrangian function for the primal...
Article
Full-text available
We consider the problem of maximization of a convex quadratic form on a convex polyhedral set, which is known to be NP-hard. In particular, we focus on upper bounds on the maximum value. We investigate utilization of different vector norms (estimating the Euclidean one) and different objective matrix factorizations. We arrive at some kind of dualit...
Article
Full-text available
In this paper, we study the absolute value equation (AVE) Ax-b=|x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-b=|x|$$\end{document}. One effective approach to ha...
Article
Full-text available
We consider the linear complementarity problem with uncertain data modeled by intervals, representing the range of possible values. Many properties of the linear complementarity problem (such as solvability, uniqueness, convexity, finite number of solutions etc.) are reflected by the properties of the constraint matrix. In order that the problem ha...
Chapter
Interval linear programming provides a mathematical model for optimization problems affected by uncertainty, in which the uncertain data can be independently perturbed within the given lower and upper bounds. Many tasks in interval linear programming, such as describing the feasible set or computing the range of optimal values, can be solved by the...
Article
Full-text available
We deal with interval parametric systems of linear equations and the goal is to solve such systems, which basically comes down to finding an enclosure for a parametric solution set. Obviously, we want this enclosure to be tight and cheap to compute; unfortunately, these two objectives are conflicting. The review of the available literature shows th...
Article
We present an algorithm for computing a spectral decomposition of an interval matrix as an enclosure of spectral decompositions of particular realizations of interval matrices. The algorithm relies on tight outer estimations of eigenvalues and eigenvectors of corresponding interval matrices, resulting in the total time complexity O(n4), where n is...
Chapter
We consider the horizontal linear complementarity problem and we assume that the input data have the form of intervals, representing the range of possible values. For the classical linear complementarity problem, there are known various matrix classes that identify interesting properties of the problem (such as solvability, uniqueness, convexity, f...
Article
Full-text available
We study the optimum correction of infeasible systems of linear inequalities through making minimal changes in the coefficient matrix and the right-hand side vector by using the Frobenius norm. It leads to a special structured unconstrained nonlinear and nonconvex problem, which can be reformulated as a one-dimensional parametric minimization probl...
Preprint
Full-text available
In binary classification, kernel-free linear or quadratic support vector machines are proposed to avoid dealing with difficulties such as finding appropriate kernel functions or tuning their hyper-parameters. Furthermore, Universum data points, which do not belong to any class, can be exploited to embed prior knowledge into the corresponding models...
Preprint
Full-text available
To reliably model real robot characteristics, interval linear systems of equations allow to describe families of problems that consider sets of values. This allows to easily account for typical complexities such as sets of joint states and design parameter uncertainties. Inner approximations of the solutions to the interval linear systems can be us...
Article
Full-text available
In this paper, we study the optimum correction of the absolute value equations through making minimal changes in the coefficient matrix and the right hand side vector and using spectral norm. This problem can be formulated as a non-differentiable, non-convex and unconstrained fractional quadratic programming problem. The regularized least squares i...
Article
We consider the quadratic optimization problem \(\max _{x \in C}\ x^{\mathrm {T}}Q x + q^{\mathrm {T}}x\), where \(C\subseteq {\mathbb {R}}^n\) is a box and \(r:= {{\,\mathrm{rank}\,}}(Q)\) is assumed to be \({\mathcal {O}}(1)\) (i.e., fixed). We show that this case can be solved in polynomial time for an arbitrary Q and \(q\). The idea is based on...
Preprint
Full-text available
We discuss some basic concepts and present a numerical procedure for finding the minimum-norm solution of convex quadratic programs (QPs) subject to linear equality and inequality constraints. Our approach is based on a theorem of alternatives and on a convenient characterization of the solution set of convex QPs. We show that this problem can be r...
Article
Full-text available
The recent paper (DOI: 10.1007/s10898-017-0537-6) suggests various practical tests (sufficient conditions) for checking pseudoconvexity of a twice differentiable function on an interval domain. The tests were implemented using interval extensions of the gradient and the Hessian of the function considered. In this paper, we present an alternative ap...
Article
Full-text available
We discuss some basic concepts and present a numerical procedure for finding the minimum-norm solution of convex quadratic programs (QPs) subject to linear equality and inequality constraints. Our approach is based on a theorem of alternatives and on a convenient characterization of the solution set of convex QPs. We show that this problem can be r...
Chapter
We consider the problem of maximization of a quadratic form over a box. We identify the NP-hardness boundary for sparse quadratic forms: the problem is polynomially solvable for \(O(\log n)\) nonzero entries, but it is NP-hard if the number of nonzero entries is of the order \(n^{\varepsilon }\) for an arbitrarily small \(\varepsilon > 0\). Then we...
Chapter
It is known that, in general, data processing under interval and fuzzy uncertainty is NP-hard—which means that, unless P = NP, no feasible algorithm is possible for computing the accuracy of the result of data processing. It is also known that the corresponding problem becomes feasible if the inputs do not interact with each other, i.e., if the dat...
Chapter
Interval programming provides a mathematical model for uncertain optimization problems, in which the input data can be perturbed independently within the given lower and upper bounds. This paper discusses the recently proposed outcome range problem in the context of interval linear programming. The motivation for the outcome range problem is to ass...
Chapter
We consider interval-valued pairwise comparison matrices and two types of consistency – weak (consistency for at least one realization) and strong (acceptable consistency for all realizations). Regarding weak consistency, we comment on the paper [Y. Dong and E. Herrera-Viedma, Consistency-Driven Automatic Methodology to Set Interval Numerical Scale...
Preprint
Full-text available
Partially defined cooperative games are a generalisation of classical cooperative games in which payoffs for some of the coalitions are not known. In this paper we perform a systematic study of partially defined games, focusing on two important classes of cooperative games: convex games and positive games. In the first part, we focus on convexity a...
Article
A rank estimator in robust regression is a minimizer of a function which depends (in addition to other factors) on the ordering of residuals but not on their values. Here we focus on the optimization aspects of rank estimators. We distinguish two classes of functions: a class with a continuous and convex objective function (CCC), which covers the c...
Article
Full-text available
This paper deals with the fractional linear programming problem in which input data can vary in some given real compact intervals. The aim is to compute the exact range of the optimal value function. A method is provided for the situation in which the feasible set is described by a linear interval system. Moreover, certain dependencies between the...
Chapter
The support vector classification-regression machine for K-class classification (K-SVCR) is a novel multi-class classification method based on “1-versus-1-versus-rest” structure. In this paper, we propose a least squares version of K-SVCR named as LSK-SVCR. Similarly as the K-SVCR algorithm, this method assess all the training data into a “1-versus...
Preprint
Full-text available
We deal with interval parametric systems of linear equations and the goal is to solve such systems, which basically comes down to finding an enclosure for a parametric solution set. Obviously we want this enclosure to be as tight as possible. The review of the available literature shows that in order to make a system more tractable most of the solu...
Chapter
We deal with a system of parametric interval linear equations and also with its particular sub-classes defined by symmetry of the constraint matrix. We show that the problem of checking whether a given vector is a solution is a P-complete problem, meaning that there unlikely exists a polynomial closed form arithmetic formula describing the solution...
Chapter
Recently, we have proposed several improvements of the standard monotonicity approach to solving parametric interval linear systems. The obtained results turned out to be very promising; i.e., we have achieved narrower bounds, while generally preserving the computational time. In this paper we propose another improvements, which aim to further decr...
Chapter
It is well known that many problems in interval computation are intractable, which restricts our attempts to solve large problems in reasonable time. This does not mean, however, that all problems are computationally hard. Identifying polynomially solvable classes thus belongs to important current trends. The purpose of this paper is to review some...
Article
In this paper, we consider interval multi-objective linear programming (IMOLP) models which are used to deal with uncertainties of real-world problems. So far, a variety of approaches for obtaining efficient solutions (ESs) of these problems have been developed. In this paper, we propose a new and two generalized methods. In the new method, convert...
Preprint
We consider a system of linear equations, whose coefficients depend linearly on interval parameters. Its solution set is defined as the set of all solutions of all admissible realizations of the parameters. We study unbounded directions of the solution set and its relation with its kernel. The kernel of a matrix characterizes unbounded direction in...
Article
Full-text available
We consider the linear regression model with stochastic regressors and stochastic errors both in regressors and the dependent variable (“structural EIV model”), where the regressors and errors are assumed to satisfy some interesting and general conditions, different from traditional assumptions on EIV models (such as Deming regression). The most in...
Article
Full-text available
This paper deals with the problem of linear programming with inexact data represented by real intervals. We introduce the concept of duality gap to interval linear programming. We give characterizations of strongly and weakly zero duality gap in interval linear programming and its special case where the matrix of coefficients is real. We show compu...
Chapter
Maximization of a convex quadratic form on a convex polyhedral set is an NP-hard problem. We focus on computing an upper bound based on a factorization of the quadratic form matrix and employment of the maximum vector norm. Effectivity of this approach depends on the factorization used. We discuss several choices as well as iterative methods to imp...
Preprint
We propose an exact iterative algorithm for minimization of a class of continuous cell-wise linear convex functions on a hyperplane arrangement. Our particular setup is motivated by evaluation of so-called rank estimators used in robust regression, where every cell of the underlying arrangement corresponds to a permutation of residuals (and we also...
Preprint
Full-text available
Absolute value equations, due to their relation to the linear complementarity problem , have been intensively studied recently. In this paper, we present error bounds for absolute value equations. Along with the error bounds, we introduce an appropriate condition number. We consider general scaled matrix p-norms, as well as particular p-norms. We d...
Article
Full-text available
Interval programming provides one of the modern approaches to modeling optimization problems under uncertainty. Traditionally, the best and the worst optimal values determining the optimal value range are considered as the main solution concept for interval programs. In this paper, we present the concept of semi-strong values as a generalization of...
Preprint
We present an algorithm for computing a spectral decomposition of an interval matrix as an enclosure of spectral decompositions of particular realizations of interval matrices. The algorithm relies on tight outer estimations of eigenvalues and eigenvectors of corresponding interval matrices. We present a method for general interval matrices as well...
Preprint
We consider the quadratic optimization problem $\max_{x \in C}\ x^T Q x + q^T x$, where $C\subseteq\mathbb{R}^n$ is a box and $r := \mathrm{rank}(Q)$ is assumed to be $\mathcal{O}(1)$ (i.e., fixed). We show that this case can be solved in polynomial time for an arbitrary $Q$ and $q$. The idea is based on a reduction of the problem to enumeration of...
Preprint
A rank estimator in robust regression is a minimizer of a function which depends (in addition to other factors) on the ordering of residuals but not on their values. Here we focus on the optimization aspects of rank estimators. We distinguish two classes of functions: the class with a continuous and convex objective function (CCC), which covers the...
Article
Full-text available
Interval linear programming provides a tool for solving real-world optimization problems under interval-valued uncertainty. Instead of approximating or estimating crisp input data, the coefficients of an interval program may perturb independently within the given lower and upper bounds. However, contrarily to classical linear programming, an interv...
Preprint
We consider the linear complementarity problem with uncertain data modeled by intervals, representing the range of possible values. Many properties of the linear complementarity problem (such as solvability, uniqueness, convexity, finite number of solutions etc.) are reflected by the properties of the constraint matrix. In order that the problem ha...
Article
In this paper, we investigate the parametric generalised Sylvester matrix equation A(p)XB(p)+C(p)XD(p)=F(p), whose elements are linear functions of uncertain parameters varying within intervals. This model generalises both interval matrix equations and parametric interval linear systems, so it is a quite general model. First, we give some sufficien...
Article
Full-text available
We address the problem of testing weak optimality of a given solution of a given interval linear program. The problem was recently wrongly stated to be polynomially solvable. We disprove it. We show that the problem is NP-hard in general. We propose a new algorithm for the problem, based on orthant decomposition and solving linear systems. Running...
Article
We propose a novel DEA method for computing efficiency scores. The method is based on a robust optimization viewpoint: the higher scores for those decision making units (DMU's) that remain efficient even for larger simultaneous and independent variations of all data and vice versa. Moreover, the value of each score itself gives the distance to inef...
Article
Full-text available
Interval programming provides a mathematical tool for dealing with uncertainty in optimization problems. In this paper, we study two properties of interval linear programs: weak optimality and strong boundedness. The former property refers to the existence of a scenario possessing an optimal solution, or the problem of deciding non-emptiness of the...
Article
Traditionally, game theory problems were considered for exact data, and the decisions were based on known payoffs. However, this assumption is rarely true in practice. Uncertainty in measurements and imprecise information must be taken into account. The interval-based approach for handling such uncertainties assumes that one has lower and upper bou...
Article
The aim of this paper is to obtain the range set for a given multiobjective linear programming problem and a weakly efficient solution. The range set is the set of all values of a parameter such that a given weakly efficient solution remains efficient when the objective coefficients vary in a given direction. The problem was originally formulated b...
Article
In the first part of the paper, we consider standard systems of linear interval equations and we focus particularly on two solution methods, the Bauer–Skeel method and the Hansen–Bliek–Rohn method. We show relations between these two methods and between various modifications that are based on preconditioning of the system and on the residual form....
Preprint
Full-text available
In the paper the interval least squares approach to estimate/fit data with interval uncertainties is introduced. The solution of this problem is discussed from the perspective of interval linear algebra. Using the interval linear algebra carefully, it is possible to significantly speed up the computation in specialized cases. The interval least squ...
Conference Paper
Full-text available
The recent paper (DOI: 10.1007/s10898-017-0537-6) suggests various practical tests (sufficient conditions) for checking pseudoconvexity of a twice differentiable function on an interval domain. The tests were implemented using interval extensions of the gradient and the Hessian of the function considered. In this paper, we present an alternative ap...
Article
This paper deals with interval parametric linear systems with general dependencies. Motivated by the so‐called parameterized solution introduced by Kolev, we consider the enclosures of the solution set in a revised affine form. This form is advantageous to a classical interval solution because it enables us to obtain both outer and inner bounds for...

Network

Cited By