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1 von Neumann’s Minimax Theorem [6, 1928]

A two-person zero-sum game is represented byΓ = (N,X,Y,g) where

• N = {1,2}: the set of players

• X = {x1, . . . , xΣ1} : a finite set ofpurestrategiesx of player 1

• Y = {y1, . . . , yΣ2} : a finite set ofpurestrategies of player 2

• g : X × Y→ R: the payoff function of player 1

• −g : X × Y→ R: the payoff function of player 2

Example 1 The so-called Morra, or also calledgangster baccarat,or Paper,
Stone, Scissors:

Σ1 = Σ2 = 3, g(1,1) = 0, g(1,2) = 1, g(1,3) = −1,

g(2,1) = −1, g(2,2) = 0, g(2,3) = 1,

g(3,1) = 1, g(3,2) = −1, g(3,3) = 0.

Definition 1 A mixed strategy of player 1 is an elementξ of the set

{ξ | ξ1 + · · · + ξΣ1 = 1, ξ1 ≥ 0, . . . , ξΣ1 ≥ 0}.

The mixed strategy of player 2η is defined similarly.

Definition 2 The payoff h(ξ, η) to player 1 for the strategy pair(ξ, η) is given by

h(ξ, η) =
Σ1∑
x=1

Σ2∑
y=1

g(x, y)ξxηy

Theorem 1 (Minimax Theorem) In two-persin zero sum games,

Maxξ Minηh(ξ, η) = Minη Maxξh(ξ, η).

∗Do not quote without permission of the author.
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Remark 1 The inequality

Maxξ Minηh(ξ, η) ≤ Minη Maxξh(ξ, η)

is obvious.

Remark 2 The minimax theorem has been proved in many ways by topological
ones using fixed point theorems, convex analyses using separation theorems or
completely algebraic ones. The original von Neumann’s proof, however, does not
involve fixed point theorems: it is a mixture of continuity and some topological
considerations, but very hard to follow.

Remark 3 The concept ofmixed strategiesin its rigorous form was first defined
by Émile Borel [1] as early as 1921.Oskar Morgenstern [5]also developed the
idea of mixed strategies in 1928 in an informal form of theSherlock Holmes story,
see Suzuki [12].

2 Proof by Linear Programming

Here, we review the proof of the minimax theorem in the linear programming (LP)
approach.

Let A = (ai j ) be them× n matrix defining a zero-sum two-person game, and
let

p = (p1, . . . , pm), q = (q1, . . . , qn)

be mixed strategies of player 1 and 2, respectively. Without loss of generality, we
may assume thatai j > 0 for all i and j.

Now consider the LP problem:

maxv

subject to

m∑
i=1

ai j pi ≥ v, j = 1, . . . , n,

m∑
i=1

pi = 1; pi ≥ 0, i = 1, . . . ,m.

This is the problem to find amaxmin strategyof player 1. Since this problem has
a feasible solution yieldingv > 0, by defining

p′i =
pi

v
, i = 1, . . . ,m

the above problem can be transformed into (P):

min
m∑

i=1

p′i
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subject to: 
∑m

i=1 ai j p′i ≥ 1, j = 1, . . . , n,

p′i ≥ 0, i = 1, . . . ,m.

Similarly, consider the problem of finding aminimax strategyof player 2:

minv

subject to:

n∑
j=1

ai j qj ≤ v, i = 1, . . . ,m,

n∑
j=1

qj = 1; qj ≥ 0, j = 1, . . . , n,

which, by defining

q′j =
qj

v
, j = 1, . . . , n,

is equivalent to the problem (D):

max
n∑

j=1

q′j

subject to: 
∑n

j=1 ai j q′j ≤ 1, i = 1, . . . , n,

q′j ≥ 0, j = 1, . . . , n.

Now, applying theduality theoremstating thatif the problem(P) and its dual,
(D) are both feasible, then both problems have optimal solutions giving rise to the
same value of the objective functions, we conclude that there existp′ andq′ such
that

m∑
i=1

p
′∗
i =

n∑
j=1

q
′∗
j =

1
v

Thus, we have the valuev; maximin strategyp′v, and minimax strategyq′v. This
completes the proof of the minimax theorem.

3 Zermelo’s Theorem [13, 1913]

We state here the so called Zermelo’s theorem following the tradition of game
theory1.

1Recently, Schwalbe and Walker [8] have reported that this theorem is not exactly the same
to what Zermelo proved. One of the theorems proved by Zermelo states, in particular, that the
number of steps needed to win from a winning position is not more than the number of positions
in the game.
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Theorem 2 In chess, either white can force a win, or black can force a win, or
both can force at least a draw.

This theorem can be expressed in the following two-person zero-sum gameΓ =

(N,X,Y,g):

player’s strategy Player i’s strategy is a plan of moves against every conceivable
contingency in the game. The number of strategies of a player in chess is
finite, though very large.

The payoff function ofΓ is defined by

player 1’s payoff function

g(x, y) =


1 if player 1 wins

−1 if player 1 looses

0 if draw occurs

Let G be the matrix with (x, y)-element beingg(x, y).

Player 1 can force a win ⇐⇒ G has at least one rowx with g(x, y) = 1 for all
y = 1, . . . ,Σ2.

• This x is a maximin strategy of player 1; and anyy is a minimax strat-
egy of player 2.

Player 2 can force a win ⇐⇒ G has at least one columny with g(x, y) = −1
for all x = 1, . . . ,Σ1

• Thisy is a minimax strategy of player 2; and anyx is a maximin strat-
egy of player 1.

Both can force a draw ⇐⇒ G has at least one pair (x, y) with g(x, y) = 0 for
all x andy.

• This x is a maximin strategy of player 1, and thisy is a minimax strat-
egy of player 2.

4 Émile Borel [1, 1921]

In this short paper, Borel defined the concept of mixed strategies, and analyzed a
two-person constant-sum game with payoffs being the probability of winning in
the game. The payoffmatrix is assumed to be skew symmetric with the following
properties:

• m: the number of codes (pure strategies) of each player.
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• a: the probability of player 1 winning; andb that of player 2 winning, so
thata+ b = 1.

•
 a = 1/2+ αik,

b = 1/2+ αki,
where−1/2 ≤ αik, αki ≤ 1/2.

• αik + αki = 0.

• αii = 0.

Borel then goes on to deal with the matrix by what is today calledthe iterated
elimination of weakly dominated strategies.

Letting p andq be the mixed strategies of player 1 and 2 over the remaining
n(< m) strategies, respectively, the payoff to player 1, i.e., the probability of player
1 winning in the game is given by

n∑
i=1

n∑
k=1

(
1
2
+ αik)piqk =

1
2
+ α,

where

α =

n∑
i=1

n∑
k=1

αik piqk.

The ”best” strategy for player 1 is the one such thatα = 0 whatever the prob-
abilities q = (q1, . . . , qn) may be. That this is the maximin strategy of player 1
should be clear. The solution is given for the case wheren = 3.

The game of Morra can be expressed by the matrixA = (aik) such that

m= 3; α12 = α23 =
1
2
, α13 = −

1
2
,

which will be equivalent to the one given in Example 1.1 by the utility transfor-
mation

f (aik) = 2aik − 1, i, k = 1,2,3.

Borel says without proof that whenn > 7, the existence of the minimax solu-
tion will be restricted only for particular values ofαik’s, which clearly contradicts
the minimax theorem to be appeared seven years later.

Borel wrote several papers on two-person games since 1921, but none of these
claimed the general existence of the ”best” strategies.

In 1953, Fŕechet [2] wrote a letter toEconometricaclaiming thatÉmile Borel
should be the one to initiate the modern theory of games. But, von Neumann [7]
rejected this immediately on the ground that Borel did not prove the fundamental
minimax theorem, even believed this to be false for a large number of strategies.
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5 Hugo Steinhaus (and B.Knaster, S. Banach)

5.1 Games of Pursuit [9, Steinhaus 1925]

This paper was published in a journal editors of which were students of the uni-
versity in Lwów, Poland. The original paper is not available now even in Polish,
and the photostatic copy was provided by Polish mathematician Stan Ulam, who
was a friend of von Neumann after immigrating to USA. The English translation
is provided by Harold Kuhn.

The paper discusses three models of games: chess, naval pursuit and games of
chance, among which we shall comment on the second one, the naval pursuit.
The model:

• A ship 1 is pursuing ship 2.

• P1 = (x1, y1): position of ship 1

• P2 = (x2, y2): position of ship 2

• B(P1,P2): modeof pursuit, indicating the angle between the line of sight,
connectingP1 andP2, and the direction of steering of pursuing ship.

• C(P1,P2): modeof escape, representing the angle of escaping ship.

• the speed of each ship is given.

Let t = F(B,C) be the duration of the chase from the beginning to the end of the
manoeuvre. Then:

escaping ship 2’s problemGivenB, find amodeof escapeC0 = F1(B) that gives
the maximum value oft,

tmax= F(B,C0).

.

pursuing ship 1’s problem Find amodeof pursuitB0 that attains the minimum
value oft,

tmin = F(B0, F1(B0)).

solution When the speed of the pursuing ship exceeds that of the escaping ship,
a finite value oftmin = t0 is obtained.

Remark 4

t0 = F(B0, F1(B0)) = min
B

F(B, F1(B))

= min
B

max
C

F(B,C) ≥ max
C

min
B

F(B,C)

= min
B

F(B,C0).

Steinhaus wrote in the letter attached to [9, Steinhaus 1925] that he did not know
the above inequality holding in equality.
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Remark 5 The problem is reminiscient of theStackelberg Oligopolyin that the
escaping ship is best replying to the pursuing ship, and knowing this the pursuing
ship chooses it’s best strategy. The only difference appears to be that the game is
zero-sum.

5.2 Games of Fair Division [10]

Steinhaus was also interested in games of fair division, which seek a fair scheme
or rule to divide a fixed size of, say, a cake ([10] and [11]). Games of fair divi-
sion constitute an intuitive and interesting class of games that provide prototype
considerations on fairness and equity.

Below is a summary of ann-persondivide and choosemethod given by B.Knaster
ans S.Banach reported by Steinhaus [10].

• There is a cake to be divided forn persons 1,2,...,n .

• 1 cuts from the cake an arbitrary part.

• 2 has then the right, but is not obliged, to diminish the slice cut.

• Whatever 2 does, 3 has the right, but is not obliged, to diminish still the
already diminished or not diminished slice; and so on up to n.

• The last diminisher must take as his part the slice he was the last to touch.

• The remainingn− 1 persons then start the game with the remainder of the
cake.

• After n − 2 persons are thus disposed of, the remaining two persons now
apply the two-person divide-and-choose method.

Harold Kuhn [4] reformulated the game of fair division in an extensive form
and show the method to obtain the fair division by a linear programming.

In [3], a physicistGeorge Gamowwho is famous as an initiator of the Big
Bang Theory, and Marvin Stern also tell a story of dividing a fixed amount of
brandy to three glasses, extending the divide-and-choose method. The three actors
are Gamow, Stern and von Kalman who is known with theKalman filter. How
can do you think they attain a fair division?

Hugo Steinhaus completed his doctorate in 1911 under David Hilbert. He is
remembered as a collaborator of S.Banach, but his interest extends to medicine,
electricity, biology, geology and anthropology. At that time Lwów and Wroclaw
have a number of excellent mathematicians such as Sierpinski, Banach, Ulam,
Kratowski, etc. As far as game theory is concerned, however, Steinhaus worked
in isolation being unaware of Borel and von Neumann’s ongoing works.

7



References
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