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Abstract: The visible mass of the observable universe agrees with that needed for a flat
cosmos, and the reason for this is not known. It is shown that this can be explained
by modelling the Hubble volume as a black hole that emits Hawking radiation inwards,
disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves
would allow an inference of what lies outside the horizon. This model of “horizon wave
censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is
presented to stimulate discussion. It predicts a minimum mass and acceleration for the
observable universe which are in agreement with the observed mass and acceleration, and
predicts that the observable universe gains mass as it expands and was hotter in the past. It
also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l
cosmic microwave background anomaly seen by the Planck satellite.
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1. Introduction

Using the Hubble space telescope it has been determined that there are about 9 × 1021 stars in the
observable universe. Assuming an average stellar mass based on the Sun, of 2× 1030 kg, the universe’s
visible mass can be calculated to be about 1.8×1052±1 kg (note the error bars on the exponent). Another
similar estimate obtained by [1] was 2.4 × 1052 kg. A recent study has tripled the number of estimated
red dwarf stars in elliptical galaxies so this may be an underestimate [2].
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Given its error bars this mass is indistinguishable from a critical value that determines whether the
universe is gravitationally closed or open. This is the so-called flatness problem pointed out by [3] and
the most popular explanation for it is the theory of inflation. Inflation was first proposed by [4,5] who
showed that an early, small universe would be so curved that quantum effects would produce an effective
cosmological constant. They proposed that the universe was hugely inflated early on so that now it is
many times larger than our observable universe. Some early problems with inflation were solved by [6].
Inflation explains the flatness problem, since we can see only a small proportion of the cosmos. However,
inflation is difficult to test directly.

Another model is suggested here using a Hubble-scale Casimir effect (HsCe) that has been applied
to Unruh radiation to explain inertial mass, but we apply it here to Hawking radiation to model
gravitational mass.

2. Inertia from a HsCe

Work by [7,8] showed that a body with a linear acceleration of a sees thermal radiation of temperature
T where,

T =
~a

2πck
(1)

where ~ is the reduced Planck’s constant, c is the speed of light and k is Boltzmann’s constant. The
dominant wavelength of this radiation (λ) is given by Wien’s displacement law:

λ =
βhc

kT
(2)

where β = 0.2 (determined theoretically by Wien). Replacing T using Equation (1) gives:

λ =
4π2βc2

a
(3)

In galaxies, the orbital acceleration of stars decreases as the galactic radius (r) increases (a = v2/r),
so the Unruh wavelength seen by stars (λ) should lengthen. Milgrom [9,10] noted that at the
radius where the galaxy rotation problem begins, λ becomes equivalent to the Hubble distance
(Θ = 2.7× 1026 m = 2c/H) where H is the Hubble constant. Assuming that inertia is caused by a
form of Unruh radiation [9,10] speculated that at this point there might be a “break in the response of
the vacuum” and that inertial mass might collapse for low accelerations. This suggested a link with the
modified inertia version of empirical Modified Newtonian Dynamics (MoND) [11] but the abrupt break
in inertia implied by this model did not fit the observed behaviour of galaxies.

McCulloch [12] proposed that inertia was due to Unruh radiation and that, instead of an abrupt break,
that a Hubble-scale Casimir effect (HsCe) was acting on the Unruh radiation. This model assumes that
only Unruh wavelengths that fit exactly into twice the Hubble diameter are allowed, and this predicts
a far more gradual reduction in the inertial mass mi below the gravitational mass mg as accelerations
become tiny. This model is analogous to a seiche in physical oceanography, in which only certain-sized
waves are allowed within a bounded body of water such as a lake or harbour. This model can also be
interpreted as “horizon wave censorship” in that any patterns or waves that do not fit exactly within the
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Hubble scale immediately imply that the pattern extends outside it and that would give an inside observer
the ability to determine information from outside the Hubble horizon and this cannot be allowed. In this
model (for which either the HsCe or horizon censorship interpretation can be used) the modified inertial
mass (mi) is:

mi = mg

(
1− λ

4Θ

)
(4)

Replacing the Unruh wavelength λ using Equation (3):

mi = mg

(
1− βπ2c2

|a|Θ

)
∼ mg

(
1− 2c2

|a|Θ

)
(5)

The derivation of Equation (5) can be seen in [12]. It should be pointed out that although Equation (5)
suggests that a tiny acceleration would produce a negative inertial mass, this would never occur, since if
the acceleration becomes tiny and the inertial mass approaches zero, then the acceleration due to external
forces would increase again. This model then predicts a minimum acceleration. This model could be
called Modified inertia by a Hubble-scale Casimir effect (MiHsC) or quantised inertia. For terrestrial
accelerations (a = 9.8 m/s2) the modification of inertia is negligible, but for the tiny accelerations seen
in deep space the second term in Equation (5) can become important. Although MiHsC makes some bold
assumptions (e.g., that Wien’s law holds at these huge scales) these are somewhat justified by the fact
that the minimum acceleration predicted by MiHsC agrees well with the cosmic acceleration attributed
to dark energy [12,13], and MiHsC also predicts the anomalous Tajmar effect seen for supercooled
spinning rings [14] and galaxy and galaxy cluster rotation without the need for dark matter [15]. MiHsC
violates the equivalence principle, but not in a way that could have been detected in the usual torsion
balance experiments [14]. Further, standard inertia has been shown to be explained to within 26% by
this model [16,17].

3. Gravity from the HsCe

For an observer in an expanding universe there is a maximum volume that can be observed, since
beyond the Hubble distance the velocity of recession is greater than the speed of light and the redshift
is infinite: this is the Hubble volume. Its boundary is similar to the event horizon of a black hole [18]
because it marks a boundary to what can be observed. This means that it is reasonable to assume that
Hawking radiation is emitted at this boundary both outwards and inwards to conserve energy, and any
wavelength that does not fit exactly within this size cannot be allowed for the inwards radiation, and
therefore also for the outwards radiation. The same principle was applied to Unruh radiation above.
Hawking’s result for the temperature of a black hole was:

T ∼ ~c3

8πGMk
(6)

where M is the gravitational mass and G is the gravitational constant. McCulloch [12] used Wien’s law
and Equation (6) to give an expression for the wavelength of emission of a black hole:
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λ ∼ 16π2GMβ

c2
(7)

and then calculated the black hole mass implied by the maximum wavelength allowed with the
Hubble-scale Casimir effect (setting λ = Θ, in fact it should have been λ = 2Θ). The model
assumed that the wavelength of the Hawking radiation emitted must fit exactly within the Hubble
diameter, a Hubble-scale Casimir effect (HsCe). The model predicted a maximum black hole mass
of M = 1.165× 1052 kg and this was intriguingly close to the observed baryonic mass of the observable
universe: M = 1.8× 1052±1 kg. It is this agreement that this paper is designed to explore.

Here, the black hole model used above is turned inside out. The observable universe is now taken to
be a black hole, and it is assumed that the wavelengths of Hawking radiation it emits inward from its
boundary must fit exactly into twice its own diameter. If they do not, they are disallowed for the same
reasons mentioned above.

Equation (7) predicts that if the mass of the universe (M ) increases, so does the Hawking wavelength
λ emitted by its boundary, but because of the HsCe there is a limitation on λ, so the observable universe’s
mass and temperature are determined by its diameter.

In the calculation above, this mass was derived crudely using an abrupt radiation cutoff at the Hubble
scale. A similar result is derived here using a more complete model of the Hubble-scale Casimir
effect (though still a parameterisation of it) by applying the Stefan-Boltzmann law to the inwards
Hawking radiation:

E = σT 4 (8)

where E is the radiated energy, σ is the Stefan-Boltzmann constant and T is the Hawking temperature
of the event horizon. A positive value of E implies that the edge of the Hubble volume will radiate
energy E inwards and the Hubble volume will gain mass, just as black holes are purported to lose
mass by evaporating Hawking radiation outwards (this analogy was used by [18]). The energy at longer
wavelengths is now increasingly disallowed because of the HsCe as in [12], or the equivalent model of
horizon censorship, to give a modified emitted energy E ′:

E ′ = σT 4

(
1− λ

4Θ

)
(9)

replacing the wavelength (λ) using Equation (7) we get:

E ′ = σT 4

(
1− 4π2GMβ

Θc2

)
(10)

If M is below a certain value then E ′ > 0, the edge of the Hubble volume radiates inwards and the
observable universe (OU) gains mass. If M is less than this value then E ′ < 0, the particle horizon
absorbs radiation and the OU looses mass. The equilibrium value of M , called Meq, can be found by
equating the two terms in brackets and rearranging:

Meq =
Θc2

4π2Gβ
∼ Θc2

8G
∼ c3

4GH
∼ 4.6± 0.4× 1052 kg (11)
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where the error bar arises from an assumed 9% uncertainty in the Hubble constantH [19]. This predicted
mass is within the error bars of the observed baryonic mass of the Hubble volume: 1.8×1052±1 kg. Also,
rearranging Equation (11) we find that:

c =

√
8GMeq

Θ
= 2×

√
2GMeq

Θ
(12)

This formula for the speed of light c is twice the escape velocity for a mass Meq. Therefore, for this
cosmology the speed of light behaves rather like a cosmic escape velocity.

4. Discussion

This model can be explained more intuitively as follows. The edge of the observable universe is an
event horizon, so, radiation, including Hawking radiation, with a wavelength bigger than this cannot
exist since it cannot, even in principle, be seen (following Ernst Mach). Also, wavelengths that do not
fit exactly into this scale cannot exist either because of a Hubble-scale Casimir effect or because they
would give us information from beyond the horizon (horizon wave censorship).

According to Hawking, the mass of a black hole is linearly related to its temperature or
inversely-linearly related to the wavelength of the Hawking radiation it emits. Therefore, for a given
size of the universe there is a maximum Hawking wavelength it can have and a minimum allowed
gravitational mass it can have. If its mass was less than this then the Hawking radiation would have a
wavelength that is bigger than the size of the observed universe and would be disallowed. The minimum
mass it predicts is encouragingly close to the observed mass of the Hubble volume.

Equation (11) implies that the baryonic mass of the observable universe is linearly related to its
diameter, so it increases with time. This is similar to the behaviour of the Steady State Theory [20] and
also the mass predicted here is half of the mass of the observable universe derived from that theory:

MSST =
c3

2GH
∼ Θc2

4G
(13)

The Steady State Theory (SST) assumed that, as the universe expands, matter is created to maintain a
constant density, but it was discredited because it was unable to explain the past hot universe suggested
by the observed Cosmic Microwave Background (CMB).

In the HsCe model the Hubble-mass also increases in time as the universe expands (Equation (11)),
but the HsCe also predicts a hotter early universe, since by combining Equation (2) (Wien’s law) and
taking the maximum wavelength allowed by the HsCe, λ = 2Θ:

T =
hcβ

2kΘ
(14)

Therefore, when the universe was younger, and Θ was smaller, the Hawking temperature emitted from
the universe’s edge was higher.

Evidence for the HsCe model may already have been seen. Data sets from the Cosmic Background
Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck satellite [21] have
shown that the angular two-point correlation of the Cosmic Microwave Background (CMB) on the largest
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angular scales (multipole l < 40) is 5%–10% lower than would be expected from the Λ-CDM model. In
the Planck data this anomaly is significant to 2.5–3 sigma.

Using the Hubble-scale Casimir effect (or horizon wave censorship) to suppress patterns of variation,
instead of Unruh waves, the energy of the CMB blackbody radiation spectrum E would be modified to
E ′ in the same way as for Equations (4) and (9) above, as follows:

E ′ = E

(
1− λm

4Θ

)
(15)

where λm is the peak wavelength of the variation and Θ is a Hubble diameter. The CMB data is presented
with respect to the monopole moment, and the first monopole moment (l = 1, or here: L = 1) indicates
the longest wave observable in the sky, which has a wavelength equal to the width of the sky: 2Θ.
Therefore, the monopole moment can be written in terms of the Hubble diameter, and assuming a flat
space, as L = 2Θ/λm so that:

E ′ = E

(
1− 1

2L

)
(16)

Equation (16) predicts that the Hubble-scale Casimir effect or horizon censorship model, when
applied to patterns of variation, predicts a decrease in variation for l < 40 of 5.5%, which agrees with the
decrease observed by the Planck satellite (which was 5%–10%).

5. Conclusions

The Hubble volume is modelled here by assuming it behaves like a black hole and emits Hawking
radiation inwards from its edge whose wavelengths are subject to a Hubble-scale Casimir effect
(HsCe) or an equivalent horizon wave censorship model. This model predicts a Hubble-mass of
4.6± 0.4× 1052 kg in agreement with the observed mass of 1.8 × 1052±1 kg and therefore provides
an alternative explanation for the flatness problem.

The HsCe model predicts an increase in mass as the universe expands similar to the behaviour of the
steady state theory. Unlike that theory, the HsCe predicts that the universe could have been hotter in
the past.

The HsCe model is presented here as a toy model to stimulate discussion. However, it is supported to
some extent by the recent anomalous results of the Planck satellite which show a suppression of variation
at the largest cosmic scales that agree with those proposed here for Unruh-Hawking radiation.
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