Cooperation in collaborative logistics

Jean-François Audy¹, Sophie D’Amours², Nadia Lehoux³, and Mikael Rönnqvist⁴

¹ Doctoral Student, Laval University, Quebec City, Canada, jean-francois.audy@cirrelt.ca
² Professor, Laval University, Quebec City, Canada, sophie.damours@gmc.ulaval.ca
³ Professor, Laval University, Quebec City, Canada, nadia.lehoux@cirrelt.ca
⁴ FOR@C Research Consortium & Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)

Introduction

Logistics activities provide many opportunities for collaboration between companies. This collaboration aims to reduce the cost of executing the logistics activities, improve service, enhance capacities as well as protect the environment and mitigate climate change (Simchi-Levi et al., 1999). Collaboration occurs when two or more autonomous and self-interested business units form a coalition and exchange or share resources (including information) with the goal of making decisions or undertaking activities that will generate benefits that they cannot (or only partially) generate individually. The level of collaboration can range from information exchange, joint planning, joint execution, to strategic alliance (e.g. co-evolution) (D’Amours et al., 2004).

In this extended abstract, Section 1 presents the different dimensions of the collaboration and Section 2 describes five generic coordination mechanisms of the logistics activities in a coalition.

1. Dimensions of the collaboration

In the literature, collaboration is commonly differentiated according to two dimensions: vertical and horizontal. Adapted from Baratt (2004), Figure 1 illustrates both dimensions from the perspective of a core company’s self-owned three business units (i.e. two production plants and one warehouse inside the part numbered 3 which is delimited by the dotted lines) that belong to supply chain (b).
Vertical collaboration occurs with business units belonging to the same supply chain such as downstream with a supplier of the core company (i.e. part 5) or upstream with a customer of the core company (i.e. part 1). Information exchange to reduce the bullwhip effect is a typical example of vertical collaboration between business units located at different echelons in the same supply chain.

Horizontal collaboration occurs with business units outside our supply chain, such as a competitor company with whom the core company can share warehousing capacity (i.e. part 4) or a non-competitor company with whom the core company can share production capacity (i.e. part 2). Group purchasing organizations are a typical example of horizontal collaboration among buyers belonging to different business units. Both vertical and horizontal collaboration can also occur within the core company between its own business units (i.e. part 3).

A third dimension of collaboration, which is the combining of both vertical and horizontal collaboration, has also been differentiated and designated as lateral, diagonal or synergistic collaboration, see e.g. case studies in Mason et al. (2007).

2. **Coordination mechanisms for the logistics activities**

Frayret et al. (2004) propose a classification scheme of the various coordination mechanisms of manufacturing activities in distributed manufacturing system. One class of coordination mechanism, designated as ‘coordination by plan’ (from March and Simon, 1958), involves the establishment of predefined plans to coordinate a priori
interdependent activities under the responsibility of autonomous and self-interested business units.

This class is subdivided into three subclasses of mechanism: (i) ‘direct supervision with plan’, (ii) ‘mediation with plan’ and (iii) ‘joint plan establishment’. The first two subclasses use a third party to perform the coordination. In subclass (i), the third party performs a centralized planning of all business units’ activities and each business unit must follow the centralized plan. In subclass (ii), each business unit performs a first planning of their own activities and then the third party performs an integration of these individual plans into one coherent-centralized plan that each business unit must follow. Such integration involves modifications to the individual plans that are possible through the mediation between the third party and each business unit. In subclass (ii), the third party acts as a support (i.e. non-coercive) for the coordination rather than a supervisor (i.e. coercive) as in subclass (i). In the third subclass (iii), with mutual adjustments between them, the business units perform a joint planning of their activities to agree on a centralized plan that each company will follow.

By addressing financial issues within these mechanisms, we can tailor some of them to coordinate interdependent (vertical collaboration) or similar (horizontal collaboration) logistics activities on which a coalition of business units aim to collaborate. These financial issues include a number of questions such as:

(a) How should the potential financial benefit of the coordination of the logistics activities among a set of collaborating business units be computed?

(b) How should the potential financial benefit be shared among the collaborating business units?

In several case studies involving collaboration in logistics, question (a) is addressed with optimization problems and Operations Research (OR) methods are used to solve them, see e.g. Cruijssen et al. (2005), Forsberg et al. (2005), Palander and Väätäinen (2005), le Blanc et al. (2007), Cruijssen et al. (2007), Ergun et al (2007), Krajewska et al. (2007), Agarwal and Ergun (2008a,b), Lehoux et al. (2008), Özener and Ergun (2008), Frisk et al. (2009), Lehoux et al. (2009) and Marier et al. (2009). The solution of one optimization problem corresponds to the predefined plan on which is based the coordination mechanisms within the class ‘coordination by plan’. The financial benefit for an optimization problem with a minimization objective refers generally to a savings, whereas with a maximization objective the benefit refers to a profit. In logistics, most optimization problems have a minimization objective, thus for the potential financial benefit of the collaboration, we will simply refer to a savings. In many of the previously mentioned case studies, the savings are defined as the difference between the cost of the common solution (i.e. logistics activities planning of all business units together) and the sum of the cost of each stand-alone solution (i.e. logistics activities planning of each business unit alone).

In the literature, there exist many optimization problems and OR methods for the planning of the logistics activities for one business unit (i.e. stand-alone solution). Modifications to such problems and OR methods could be required in a context of collaboration in which the planning of the logistics activities is for several autonomous and self-interested business units (i.e. common solution). For instance, Forsberg et al. (2005) report, in their case study of raw material exchange between two companies, some
additional constraints to their allocation model according to a different exchange scenario (e.g. a limit on the total volume that could be exchanged between the companies). In one of their case studies involving three companies performing raw material exchange, Lehoux et al. (2009) report that each company must remain the main supplier for its own mills. Bouchriha et al. (2009), Marier et al. (2009) and Lehoux et al. (2009) mention that raw material exchanges between distinct companies are typically pair-wise equal (i.e. a company must supply each collaborator with the equivalent volume received from this collaborator). By adding constraints to the optimization problem, such modifications usually reduce the potential savings of the collaboration. Moreover, as we will explain in Subsections 2.3 and 2.4, such modifications could also be directly linked to question (b).

When question (b) is addressed in the previously mentioned case studies, different sharing approaches are employed. Furthermore, they can be grouped in five generic coordination mechanisms (CM), as illustrated in Figure 2. Each mechanism involves two collaborating business units having logistics activities (e.g. transportation) to be coordinated by a plan and their respective resources (e.g. carriers) available to achieve the plan. Also, designated as a ‘Planning function’, the latter represents the step in the mechanism where the predefined plan is established according to the sharing approach of the generic mechanism. Such a planning function could be performed by a third party (as in the previously mentioned subclasses (i) and (ii)) or with a joint planning process between the collaborating units (as in subclass (iii)). Finally, the information, decision and financial flows in each mechanism are illustrated (the flows numbering respects the chronological sequence of the mechanism). The following sub-sections summarize each coordination mechanism.
2.1. Coordination mechanism 1 (CM 1)

In this mechanism, the planning function solves the optimization problem in order to achieve maximum savings and then, the benefit sharing is addressed with a financial flow between the business units. Such a financial flow is based on a predefined incentive rule such as pricing agreements or quantity discount. A detailed review of these incentives can be found in Cachon (2003). Lehoux et al. (2008) present a case study using coordination mechanism 1. The case study involves bilateral collaboration between a paper producer and a wholesaler. To establish the collaborative approach providing the greatest savings
for the coalition as well as for both companies, the paper producer must share part of its
transportation savings (i.e. incentive rule) with the wholesaler.

2.2. Coordination mechanism 2 (CM 2)
In this mechanism, the planning function solves the optimization problem in order to
achieve maximum savings and then, the benefit sharing is addressed with a sharing
principle based on an economic model (i.e. cost allocation method) such as the Shapley
value, the nucleolus and the separable and non-separable costs. Such economic models,
many of which are based on cooperative game theory, realize an allocation of the total
cost of the common-solution among the companies. These fractions paid by each
company are then used to pay each resource. A survey on these models can be found in
Tijs and Driessen (1986) and in Young (1985, 1994). Case studies using coordination
mechanism 2 include e.g. Frisk et al. (2009) and Audy et al. (2009) for collaboration in
transportation activities.

2.3. Coordination mechanism 3 (CM 3)
In this mechanism, the planning function solves the optimization problem in order to
achieve maximum savings, with respect to an additional constraint related to the benefit
sharing. The optimization problem decides that certain activities belonging to a business
unit are accomplished by its own resource and others are accomplished by the resource of
the second business unit. Such decisions lead to the generation of two plans, one for each
company. Since there is no financial flow between the business units or between the
business unit and the resource belonging to the other business unit, the cost of the plan of
each business unit must be, at least, less than the cost of their stand-alone plan. Such a
condition (or a more restrictive one) related to benefit sharing could be expressed by a
constraint in the optimization problem.
In their case study involving three companies performing raw material pair-wise
exchange, Lehoux et al. (2009) report the use of this mechanism. These companies
previously agree with the sharing principle behind the Equal Profit Method (from Frisk et
al., 2009), an economic model that aims to find a stable allocation such that the maximum
difference in relative savings between all pairs of two collaborating companies is
minimized. Thus, to come up with three plans resulting in a benefit sharing that the
companies could agree on, a new constraint has been added to the optimization problem.
The new constraint states that each pair of companies must have the same relative
savings.

2.4. Coordination mechanism 4 (CM 4)
In this mechanism, the planning function simultaneously addresses the resolution of the
optimization problem and the benefit sharing. For each activity, the optimization problem
fixed a cost to be paid for its completion by a specific resource. The fixing of the cost
takes into account the cost incurred by the resource to realize the activity and the revenue
associated to the activity. For all their activities, each company pays this cost to their
resource or to that of the other company, according to which resource has been chosen in
the plan. Thus, the benefit sharing is addressed with the financial flow between each
company and the resource of the other company. In Agarwal and Ergun (2008a), coordination mechanism 4 is used by sea container carriers sharing the loading capacity of their ships. Other collaborative logistics case studies or examples using coordination mechanism 4 include e.g. Agarwal and Ergun (2008b) and Agarwal et al. (2009).

2.5. Coordination mechanism 5 (CM 5)

In this mechanism, the planning function partially solves the optimization problem (or a relaxation (i.e. more simplified version) of the optimization problem) and provides its partial plan to each business unit. Firstly, each business unit assigns its activities to its own resource, but also provides the partial plan. Such a partial plan includes a list of potential collaboration opportunities, if any, for each activity. That means that such opportunities may appear within the activities assigned to one resource, but also between activities assigned to different resources. Given these latter potential collaboration opportunities, it is then up to the two resources to decide together to collaborate or not, and if they collaborate, to decide together which resource will carry out the activities (i.e. flow 4). Since the resources are paid only for each activity they accomplish (i.e. flows 6 and 7), the decisions they made in flow 4 fixes the benefit sharing.

Mechanism 5 is based on a generalization of the mechanism used in the case study in Eriksson and Rönnqvist (2003), which is illustrated in CM 5a. In this case study, the potential collaboration opportunities are back-hauling tours existing among the transportation activities of two forest companies. Moreover, this collaboration is realized through the carrier (i.e. the resource) of the second company (i.e. business unit).

Conclusion

This extended abstract presents the different dimensions of the collaboration and describes five generic coordination mechanisms of the logistics activities in a coalition.

References

